##### Presenter(s)

2009 ISIT Plenary Lecture

Facets of Entropy

Professor Raymond W. Yeung

Chinese University of Hong Kong

##### Abstract

Constraints on the entropy function are sometimes referred to as the laws of information theory. For a long time, the submodular inequalities, or equivalently the nonnegativity of the Shannon information measures, are the only known constraints. Inequalities that are implied by the submodular inequality are categorically referred to as Shannon-type inequalities. If the number of random variables is fixed, a Shannon-type inequality can in principle be verified by a linear program known as ITIP.

A non-Shannon-type inequality is a constraint on the entropy function which is not implied by the submodular inequality. In the late 1990’s, the discovery of a few such inequalities revealed that Shannon-type inequalities alone do not constitute a complete set of constraints on the entropy function.

In the past decade, connections between the entropy function and a number of fields in information science, mathematics, and physics have been established. These fields include probability theory, network coding, combinatorics, group theory, Kolmogorov complexity, matrix theory, and quantum mechanics. This talk is an attempt to present a picture for the many facets of the entropy function.