Coded Computing: A Transformative Framework for Resilient, Secure, Private, and Communication Efficient Large Scale Distributed Computing
Ph.D. Dissertation, University of Southern California, August 2020

Modern computing applications often require handling massive amounts of data in a distributed setting, where significant issues on resiliency, security, or privacy could arise. This dissertation presents new computing designs and optimality proofs, that address these issues through coding and information-theoretic approaches.

   The first part of this thesis focuses on a standard setup, where the computation is carried out using a set of worker nodes, each can store and process a fraction of the input dataset. The goal is to find computation schemes for providing the optimal resiliency against stragglers given the computation task, the number of workers, and the functions computed by the workers. The resiliency is measured in terms of the recovery threshold, defined as the minimum number of workers to wait for in order to compute the final result. We propose optimal solutions for broad classes of computation tasks, from basic building blocks such as matrix multiplication (entangled polynomial codes), Fourier transform (coded FFT), and convolution (polynomial code), to general functions such as multivariate polynomial evaluation (Lagrange coded computing). We develop optimal computing strategies by introducing a general coding framework called “polynomial coded computing”, to exploit the algebraic structure of the computation task and create computation redundancy in a novel coded form across workers. Polynomial coded computing allows for order-wise improvements over the state of the arts and significantly generalizes classical coding-theoretic results to go beyond linear computations. The encoding and decoding process of polynomial coded computing designs can be mapped to polynomial evaluation and interpolation, which can be computed efficiently.

  Then we show that polynomial coded computing can be extended to provide unified frameworks that also enable security and privacy in the computation. We present the optimal designs for three important problems: distributed matrix multiplication, multivariate polynomial evaluation, and gradient-type computation. We prove their optimality by developing information-theoretic and linear-algebraic converse bounding techniques. 

  Finally, we consider the problem of coding for communication reduction. In the context of distributed computation, we focus on a MapReduce-type framework, where the workers need to shuffle their intermediate results to finish the computation. We aim to understand how to optimally exploit extra computing power to reduce communication, i.e., to establish a fundamental tradeoff between computation and communication. We prove a lower bound on the needed communication load for general allocation of the task assignments, by introducing a novel information-theoretic converse bounding approach. The presented lower bound exactly matches the inverse-proportional coding gain achieved by coded distributed computing schemes, completely characterizing the optimal computation-communication tradeoff. The proposed converse bounding approach strictly improves conventional cut-set bounds and can be widely applied to prove exact optimally results for more general settings, as well as more classical communication problems. We also investigate a problem called coded caching, where a single server is connected to multiple users in a cache network through a shared bottleneck link. Each user has an isolated memory that can be used to prefetch content. Then the server needs to deliver users’ demands efficiently in a following delivery phase. We propose caching and delivery designs that improve the state-of-the-art schemes under both centralized and decentralized settings, for both peak and average communication rates. Moreover, by developing information-theoretic bounds, we prove the proposed designs are exactly optimal among all schemes that use uncoded prefetching, and optimal within a factor of 2.00884 among schemes with coded prefetching.