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Objectives of talk
* Beyond typicality decoding

* As block length increases:
* How quickly does error drop?

 How quickly do you approach capacity?

* Intro to tools used to answer such questions:
» Large deviations

* Gaussian approximations
* When to use which type of tool & connections between

* Will try to illustrate general techniques and results in
simplest illustrative context: BSC



Agenda

Analyzing decoding error for a bounded
information decoder: regimes of interest

Error exponents of ML decoders

Non-asymptotic analysis of ML decoder & Normal
approximation



Agenda

Analyzing decoding error for a bounded
information decoder: regimes of interest

Error exponents of ML decoders

Today we follow a “recentered” analysis due to Forney
(notes '01, see also Barg-Forney '02).
Also see classic texts: Gallager & Csiszar-Korner

Non-asymptotic analysis of ML decoder & Normal
approximation

We follow development in Polyanskiy-Poor-Verdu (PPV
'10). Extensive historic context is provided therein,
particularly Strassen '62



Motivating question

Want to analyze ML decoding

Given some codebook C the ML decoding rule is

X = argmaxycc Pv|x(Y\X)

candidate codeword

observation

Minimizes average probability of error



A few manipulations

X = argmax,cc Py|x(Y[X)
= argmaxycc log py|x(y[x)

PY|X(Y\X)
py(y)

= argmax, . log

= argmax,cc /(X; y)

\

The “information density”,
expectation = mutual information



Standard random codebook ensemble analysis

Expected average error over a random codebook ensemble
M codewords Xg, ..., Xp_1, each length-n
Each X,, statistically independent of others

Each X,, generated in an i.i.d. manner ~ Bern(0.5)

Bound average probability of error

M—1

1
Prlerror| = v Z Prlerror| X = X,,]
m=0
= Prlerror|X = Xg}
- _

<Pr|| ] i(Xm Y)>i(Xo,Y)

. m=1




Initial analysis: via “bounded information” decoder

Bounded information decoder with parameter v: decode to X; if
o i(X;,Y)>~, and
o i(X;,Y) <~yforall j#1i

Error bound:

M—1

Prlerror] < Pr [(i(Xo,Y) < ) U U i(Xj,Y) >
j=1

< Prli(Xo,Y) < 7] + (M — 1) Pr[i(X1,Y) > 7]

\ “outage” or \ “confusion” or

“atypicality” event “union bound” events

Wil give us initial insight into error events and analysis regimes.



Particularize expressions to BSCs

For a binary symmetric channel with crossover probability p

X
i(X,Y) = log PY|X(Y| )
py(y)
d ) S —d )
= lo P j Y)(l p)n H0ey) Common terms
& ~n
ey T 1=
= dn(x,y) log - nlog

Hamming distance

and note:

o If p < 0.5 then log[p/(1 — p)] <0, so
to maximize i(X,Y) need to minimize dy(X,Y)

o dy(X,Y)=wty(X®Y)



Bounded information = bounded distance decoder

For BSC simplifies: i(Xp,Y) > v < wty(Xp,Y) <A

From before:

Prlerror] < Pr[i(Xo,Y) <]+ (M — 1) Pr[i(X1,Y) > 7]

< Priwtg(Xo@Y) > A+ (M —1)Priwty(X1 @ Y) < Al

\ /

“re-center” analysis around observation

Statistical observations:

@ Xo®Y ~ i.id. Bern(p) by channel law & codeword dist.

@ Since X; ~ Bern(0.5) and X; 1L {Xp, Y} the sequence X;
acts like a “one-time-pad” when added to Y, meaning:

o (X1 P, Y) AL {Xo,Y}
o X; @Y is uniformly distributed, i.e., it is i.i.d. Bern(0.5)



Plot the distributions in play for (small) length: n=20
Simple expression for average probability of error:
Prlerror] < Prlwty(Xo) > A] + (M — 1) Priwty(X1) < A]

where we define the re-centered codewords as
o Xo=Xo @Y and X; =X; @Y, so
o Xo ~ i.i.d. Bern(p), X1 ~ i.i.d. Bern(0.5), and Xq 1L X;
o So, wty(Xg) ~ Binom(n, p) and wty(X1) ~ Binom(n,0.5)
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Replot as cumulative distribution functions (CDFs)

0.35

Probability mass

PMF of bit flips

—— Binom(20,0.11)
—— Binom(20,0.5)

0.3r

20

But, what we really care about is that wty(Xo) is
too big, or wty(X1) is too small. So, more useful
to examine CDFs, rather than PMFs.

Complementary CDF of wty(Xo):
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Let’s think about an interesting block-length: n=200

PMF of bit flips
(\ —oemnon|  But, what we really care about is that wty(Xgp) is
| too big, or wty(X1) is too small. So, more useful
| to examine CDFs, rather than PMFs.
00 5IO Hamm;régoweight 150 =0 Complementary CDF Of WtH(XO):
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Event probability

Plot on log-scale to see better

. C-CDF & CDF
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Exercise: (roughly) what rate is possible at Pr[err] = 103

Necessary data:

Prlerror] < Prlwty(Xo) > A] + (M

Priwt(Xo) > Al = ) Prlwty(Xo) = t]
t=A

A
Pr[wt/_/ X1 < A ZPI’[W’CH X1 ]
t=0

— 1) Pr[WtH()N(l) < A]

Event probability

CDFs, zoomed in
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Calculate achievable rate at target Pr[err] = 103

CDFs, zoomed in

Prlwty(Xo) > 39] = 2.89 x 1074 —_|
10_5 .................................................................................................
R R R ¢ ----P-i-ck--Mto--c-Iose the gap
Priwty(X1) < 39] = 4.16 x 1071 SRR SR /A [ N
N A ________ _ —— Binom(@00,0.11)
20 ' " ' — Bincl)m(200,0.5)
105 20 40 60 80 100
il-lamming weight
A = 39

(One way) to solve for achievable M:

Pr[WtH()N(o) > 39] + (M — ].) PI’[WtH()N(l) < 39] — 10_3

log, M log, 1.71 x 10%° bits
n 200 channel use



Event probability

But this is Shannon theory, need something to get big

Let block length n get large, but what do we keep fixed? Rate? Pr[error]?
The choice leads to two regimes of study:

o . . . —‘Bincl)m(200,0.5)
’ ® Hamming weight » Zoomed—-in CDFs for n = 2000
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Rate fixed = 0.253,

n =2000

CDFs, zoomed in

——Binom(200,0.11)

rate = 0_253, M = 22000 x 0.252 = 2506
Pr[err] = 7.9 x 10-27 = 2-2000 x 0.0434

Pr[error] fixed = 10-3,

n =2000

rate = 04288, M = 22000x0.4288 = 9858
Pr[err] = 1(0-3 = 2-2000 x 0.0015

1000



Remainder of talk: two chunks

Chunk 1: Error exponent analysis of ML decoding

Prlerror] vs. blocklength for rate fixed = 0.253

Prlerror]

200 400 600 800 1000 1200 1400 1600 1800 2000
Block length

Chunk 2: How fast approach capacity using ML decoding

Rate vs. blocklength for Pr[error] fixed = 0.001
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Block length

Slope (magnitude) of error
decay on a log plot is the
“error exponent”. Here it is
about 0.0434. Can it be
improved?

Asymptotes to capacity as
n increases. But, how long
to get close? How does the
rate approach capacity?
Can you approach faster
than in plot to left?



Key difference in analyses: how threshold increases
with block length

Zoomed-in CDFs for N = 2000
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How does critical threshold value scale with block
length for each objective (fixed rate or fixed error)?



Scaling of threshold with bloc

Threshold value of A vs. block length

k length for each setting

400

—— Fixed rate
—— Fixed Pr[error]
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N
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o

Threshold Hamming weight
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o (@)

100
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-\ For fixed rate setting:

threshold chosen to
minimize Pr[error] for each
block length n

For fixed Pr[error] setting:
threshold chosen to maximize
rate for each block length n

O [ [ [ [ [ [ [ [
200 400 600 800 1000 1200 1400 1600 1800 20
Block length

00

Note: in both settings the threshold needs to be larger than the mean number
of bit flips ( = n p), so let’s subtract the mean from each and re-plot



Scaling of “excess” Hamming weight with block length

Zoomed-in CDFs for n = 2000

Threshold Hamming weight
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“Excess” Hamming weight: linear vs. square-root

For fixed-rate setting:

A — . block length i ' '
(A-np) .VS . en? excess rate increases linearly in

180 I I T T T
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Recap: what we have learned

Analyzed error in random code ensemble for BSC under a simple
(and suboptimal) bounded-distance decoding

Observed behavior of tail of distribution is quite important
Characterized behavior of this decoder

Tradeoff between
 “outage’”/ “atypicality” events of correct codeword, and
 “confusion” / “union bound” events of other (candidate, but
incorrect) codewords

Two interesting regimes
* Fix rate, see how Pr[err] drops with block length
 Fix Pr[err], see how rate increases with block length



Also: will return to analyzing the ML decoder

To get a better grip want to analyze the (optimal) ML decoder. Why is
bounded information (bounded distance for BSC) decoder suboptimal?

* Misses coupling between “outage” and “confusion” events
* Really relative events are what are important in ML

* E.g., you might be lucky, wty(X1,Y) might be much less than A
making it harder for an incorrect codeword to be closerto Y

ML decoding
. i
Prlerror] < Pr | | J i(Xm,Y) > i(Xo,Y)
. m=1

: : : union removes coupling
Bounded information decoding

Prlerror] < Pr [ (i(Xo,Y) < fy)U U i(X;,Y) > ’Y)

< Pr[i(Xo,Y) < 4] + (M — 1) Pr[i(X1,Y) > ]



Agenda

Analyzing decoding error for a bounded information
decoder: regimes of interest

Error exponents of ML decoders

Non-asymptotic analysis of ML decoder & Normal
approximation



Refine the analysis of ML decoding

N _
ML error:  Prlerror] < Pr | | ] i(Xm,Y) > i(Xo,Y)
. m=1
Particulari BSC(p): (X, Y) =dy(x,y) lo P+ hlo Lo p
articularize to (p): , H(x,y) log g

Substituting and “re-centering” we get:

Prierror] < Pr |UM=2 dy(Xm, Y) < dH(xo,Y)]

— Pr _U%;ll WtH()N(m) < WtH()N(O)}

N [/

codewords “re-centered” about observation

Recall: recentered c.w. statistically indep.! (one-time-pad)



Define a coupled event

Recall idea of bounded distance decoder: observation
“too far” from true c.w. or “too close” to some other c.w.

Now we couple these: (i) “too far” from true codeword,
and (ii) “too close” to some other codeword

.An,(; = {WtH(Xo) > n5}
two events

. B.s:=4{ UM 1wt (X,,) < néd
of interest 3= Ut Win(Xim) < 0 )

1 2 n
where: o € {O, — =, ... —}
n'n n

\

fractional Hamming weight

coupled event 5,7,5 — An,5 A Bn,5



Analyze the coupled event

Prlerror] < Pr [ U 8,775}

56{0,, L1}
— Z Pr(&Ens]
56{0,, o
— Z Pr [An,(; M ang]
5€{0,%,...,2}
= Z Pr[Ans] Pr(Bns]
5€{0,%,..., .

< (n+1) max Pr A, ] Pr[Bns]

TN/

next: bound each (decoupled) probability



Chernoff tail bounds

Theorem
Let Xi,...,X, ~ i.i.d. Bern(q), then for any threshold 1 > 7 > q

Priwty(X) > nr] = 2-"P0lla) o

and, if0 <71 <g,

Priwty(X) < nr] = 2-"P(7ll4)

where D(7||q) is the (binary) KL divergence
T 1—71

D =7log, — + (1 —7)|
(Tllg) =7 °g2q+( ) %827

Where a, = b, means we get the exponent correct:

lim log 2 = 0

n— o0 bn

expected
fraction ones

realized
fraction ones

Note: KL divergence convex & increasing in separation between 7 and q



Tail bounds for each event

R

~ . B )¢

Pr[Am(s] = Pr [WtH(Xo) > n(S] = 2 nD(4][p) =
threshold )

p
Generating distribution is i.i.d. Bern(p) 0
Pr[B,s] = Pr | UMD wty(Xom) né| 1
< min{1,(M —1)Pr [Wt/_/()N( ) < nd|} —

E min{l, 2nR2—nD(5||O.5)} >II<
»—n|D(6]/0.5)—R|* a

0.5

lal* = max{a,0} 0

Generating distribution is now i.i.d. Bern(0.5) 0

B =gen.

distrib.

B = event set

0 Pr[X=0]



Combining and analyzing gives following result

For ML decoding over the BSC the following “random coding”
bound is achievable

Prlerror] = 2| Minscio1 DOlp)+D(E]05)-RI*

The & parameterized the likelihood of the two error events:
e The “atypical” probability that the noise level is too high
* The “confusion” probability that some spurious c.w. is too close

As you change () one term increases, the other decreases
The optimizing /) strikes a balance between the two events

Proof: combine individual bounds in coupling event



Analysis splits into high- and low-rate regimes

Er(R) = minscpo,1D(6]|p) + |D(6//0.5) — R

Want to determine when positivity constraint is active. Define:

derit = arg min D(d]|p) + D(6]|0.5) — R

6€[0,1]
Plot of 6Cm(p) against p
Differentiate and solve to find ous|
5o /P o
VP V1I=p S ol
Plotted on right. o1s]
Note that if p < 0.5, always >

above 45-degree line, why?

0 0.1 0.2 0.3 0.4
Crossover probability p

0.5



Analysis of low rate regime

At sufficiently low rates, in particular if R < D(d4i]|0.5) thenthe | - |7 is not active

This means that for these (low) rates:

E.(R) = min D(d||p) + |D(3]|0.5) — RI*
0€[0,1]

= min D(o D(0]|0.5) — R
min D(3]|p) + D(3]0.5)

— D((Scrit’ P) + D(écntHOS) — R

=1 —log[l +2/p(1 - p)] = R

E(R)

1 —log[1+2+/p(1 — p)]
Slope = -1

Rcrit — D(écrit“p)



Analysis of high rate regime

On the other hand, at high rates R > D(d:/0.5) the |- |Tis active. It introduces an
extra constraint into the optimization which we re-express as

E.(R) = ' D(o
(R)= o s ™M 5105k DO1P)

We can picture the solution on the simplex:
Feasible region: {5 . D(0]]0.5) < R}
is [ ]. Note, extends to left of 0.t

D(61|p) minimized at closest \

edge of feasible region

< >
| I —
0 P ? Ocrit 0.5 0

minimizing ¢
What happens as you let the feasible region extend all the way to p?
* Optimizing § is 0 =p, so
* D(p||0.5) =1—Hg(p)=C
* D(6]|p) = D(p|lp) = 0 (the error exponent goes to 0 at capacity)



Summary of results for high- and low-rate regimes

Low Rate: R < D(6i:]|0.5) = |-|T is not active

E/(R) = D(crit]|p)+D(crit[|0.5) =R = 1—log[1+21/p(1 — p)]]-R

Exponent has a linear slope throughout this region

High Rate: R > D(d.||0.5) = |-|T is active

E.(R) = ' D(o
(R) = ot s Bisiom<r 2 1IP)

Exponent converges to zero as rate converges to capacity



Plot of exponent as a function of rate

Plot of error exponent vs rate, p = 0.11
0.35 : . :

Low rate region
slope = -1

High rate region
0.3

0.25F
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o
N

0.15F

Error exponent, E (R)

0.2 0.3 0.4 0.5
Rate

Rcrit — D((Scrit HP)

0 0.1

Can get a matching upper bound in high rate region, the “sphere-packing” bound



Generalization to arbitrary DMCs

We've seen E/(R) for the BSC is: (N.B. at start picked input distribution Pxto be Bern(0.5))

0.11D(0]|p) + |D(6]|0.5) — R|™

____________
——

20,)0001lp) + (1 — He(d)) — RI™

)
‘< ~ -
.~ . L 4 0 T e K-—‘
- mm

worst case mutual info realized
channel behavior across channel in worst case

Er(R) —

|

3

=3
>,
M

------

||
S
S,

%)

1

For general DMCs more complicated, but underlying idea is the same:

--—— o
- -y - -
‘—-----.~ ‘—‘ "~ -

E.(R) ::;'maXp)‘;'?]?‘ll'n\/Y'\ D(Px VY|XH'DXPY|X) + [1(Px Vy|);))— R|+

X'l

~..
______
------

=
-----------
------

choose best worst case mutual info realized
input distribution  channel behavior across channel in worst case



How did we do? Compare to bounded-dist. decoder

Prlerror]
o

Pr[error]: Bnd—dist vs. ML, rate fixed = 0.253

Bounded distance,

+—"  exponent = 0.0434

ML decoding,

| __— exponent =0.0633

| —O— Bounded distance

—B— ML decoding

200 400 600 800 1000 1200 1400 1600 1800 2000

Block length

Improvement due to more accurate treatment and analysis of “coupled” events



Rate analysis

Bound on rate achieved by ML (Chernoff analysis) vs Bnd—dist.

osb . T T o T SR
From before
0.45} /
V¢!
D
0.4F
9 \ |
T Solved for maximum R
0.35| that meets this condition
0.3F
—O6— ML decoding (lower bound)
—B— Bounded distance
0.25 . .

200 400 600 800 1000 1200 1400 1600 1800 2000
Block length

P
Pr[error]iZ_”Er(R) — E/(R)= log Prlerror]

n



Chernoff bounds are tight as you go out the tail...

10°
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....... EERPRRNJ g g .| = Binomial tail
: ' : : | = Gaussian approx
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CDF of Gaussian with same mean
and variance as Bern(2000, 0.11)

Chernoff (black) just
above actual CDF (red)



..but aren’t very good in the regime of interest for
fixed Pr[error]

Chernoff bnd, binomial tail, Gaussian approx, n = 2000

10°

—— Chernoff bnd
— Binomial tail
—— Gaussian approx

Zoom in on upper left 107
corner of plot on last @ X
side BTN
NN
Gaussian approximation is NN\
actually much closer here 107 I SR N\ NG
(but it’s only an approximation NN\
and not a bound) P NN\

10_9220 2410 2é0 : ZéO 32)0 SéO 3;10 32505 SéO 400
threshold 268 threshold 384
Remarks for Pr[err] = 0.001 for rate = 0.253

e Our analysis of the ML decoder wasn’t very good for the fixed Pr[err] regime.

* This is why, when we compared the bounded distance to the ML decoder, the
bounded distance decoder appeared to be superior to ML.

* ML will, of course, perform better.

* The weakness was in our analysis -- a good analysis of bounded distance vs. a
loose analysis of ML. We improve the latter next.



Agenda

Analyzing decoding error for a bounded information
decoder: regimes of interest

Error exponents of ML decoders

Non-asymptotic analysis of ML decoder & Normal
approximation

Look at fixed-error regime

Use an ML decoder (rather than bounded-dist)



We branch the ML analysis down a different route
Prlerror] < Pr {U%:—ll i(Xm,Y) > i(Xo,Y)}

m=1

— Pr [UM_l WtH(Xm,Y) < WtH(XOaY)}

— EXO,Y {PI’[U%:_ll WtH(Xm D Y) < WtH(XQ D Y)’Xo, Y]



We branch the ML analysis down a different route
Prlerror] < Pr {U%;ll i(Xm,Y) > i(Xo,Y)}

m=1

— Pr [UM_l WtH(Xm,Y) < WtH(XOaY)}

— EXO,Y [PI’[U%:_ll WtH(Xm D Y) < WtH(XQ D Y)’Xo, Y]}

_ - _
— Ex, y | min {1, Pr [ L) Wtn(Xm @ Y) < win(Xo & Y)]XO,Y} }

m=1

< Ex, v [min {1, (M — 1) Priwty(X1 @ Y) < wty(Xo & Y)[Xo, Y]H



We branch the ML analysis down a different route
Prlerror] < Pr {U%;ll i(Xm,Y) > i(Xo,Y)}

m=1

— Pr [UM_l WtH(Xm,Y) < WtH(XOaY)}

— EXO,Y [PI’[U%:_ll WtH(Xm D Y) < WtH(XQ D Y)’Xo, Y]}

M—1 ]
— Ex, y | min {1, Pr [ L) Wtn(Xm @ Y) < win(Xo & Y)yxo,v} }

m=1

< Ex, v [min {1, (M — 1) Priwty(X1 @ Y) < wty(Xo & Y)[Xo, Y]H

= E, 1. %) [min {1, (M — 1) Priwt(X1) < wty(Xo)] WtH()N(o)]H



We branch the ML analysis down a different route
Prlerror] < Pr [ufj;ll i(Xm, Y) > i(xo,Y)}

= Pr {U%;ll wty(Xm, Y) < WtH(XOaY)}

= Exoy |PrlUp=, win(Xi @ Y) < wty(Xo © Y)|Xo, Y]]

M—1 ]
— Ex, y | min {1, Pr [ L) Wtn(Xm @ Y) < win(Xo & Y)yxo,v} }

m=1

< Ex, v [min {1, (M — 1) Priwty(X1 @ Y) < wty(Xo & Y)[Xo, Y]H

= E, 1. %) [min {1, (M — 1) Priwt(X1) < wty(Xo)] WtH()N(o)]H

\

V

< AZO (2) p2(1 — p)" 2 min <:1, (M — 1)i (Z) D"

/



Random coding union (RCU) bound

n ( )

Prlerror] < ) (2) p2(L—p)" “ming 1, (M — 1) f: (Z) 27" 5

A=0 \ s=0 y

Remarks:

* This bound is called the “random coding union bound” (RCU) in
Polyanskiy-Poor-Verdu (PPV ’10)

* Here we condition on the distance between the observation and Tx c.w.
to get the coupling, taking the expectation of the conditional probability
that some other codeword happens to be closer to the observation.

* Holds for all block lengths

* Have not applied a Chernoff bound

e Can plot this bound for non-trivial block lengths

 Aside: to plot (Z) for large n & Kk, it is better numerically to compute

n min{k,n—k}

Iog<Z>: Y dogt— > logt

¢=max{k,n—k} /=1



Compare: RCU, Bounded-dist, ML via Chernoff

Bound on rate achieved by ML (Chernoff analysis) vs Bnd—dist.

OB e
0.45F
0.4F
(¢)
©
s
0.35F
0.3}
—— RCU bound
—©— ML decoding (lower bound)
—B— Bounded distance
02 [ [ [ [ [ | [ | [ | [ |
2)00 400 600 800 1000 1200 1400 1600 1800 2000

Block length

* Now we see the ML decoder (RCU bound) outperforms bounded distance.
e Can we characterize how we approach capacity as block length gets large?
» Can we cleanly break into “outage” and “confusion” events as before?



Recall CDF of Gaussian approximated better near mean

; Chernoff bnd, binomial tail, Gaussian approx, n = 2000
10 —— ; ;

— Chernoff bnd

— Binomial tail
—— Gaussian approx

Will need to bound events

more similar to those in o ,,,,,,,,,, ,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,, ...........
the bounded distance dec.

105 b s e N

In this regime a Gaussian
approximation looks good, |
we need to correct the

approximation to turn it _ S _ | | | |
into a bound 220 240 260 ' 280 300 320 340 360 380 400

threshold 268
for Prlerr] = 0.001



Turn Gaussian approx into a bound via Berry-Esseen

Theorem (Berry-Esseen for i.i.d. Bernoulli r.v.)
For Xi,...,X, ~ i.i.d. Bern(p)

Pr Z(X;—,u)Z)\ no?| — Q(\) SE

alternately

Note: (i) Bounds the absolute difference between CDF and tail of a Gaussian
(i) Can be generalized to other (and non-i.i.d.) distributions
(i) The Berry-Esseen constant “B’ in this case is about 2.5



As before split into “outage” and “confusion events”

S

A=0

S

Now, choose M = — (M2 for some K to be specified

Prlerror]| < i( ) (1—-p)" 2 -Mi<z>2”_+ i (g>pA(1—p)”_A
A=K+1

—0 / | s=0 i = \

Confusion: some other c.w. too close Outage: true c.w. too far away

Holds because MZS 0 ( )2 " is strictly increasing in A and with
above choice for M certainly M 32 (7)27" exceeds 1 for A > K

Question: How should we pick K?



What'’s new: scaling we choose for K (and analysis)

---------
--------
- -
-” s
- ~

B+ G\
~—1
K=np++/np(l—p)Q " e
mean standard deviation # stnd. dev. above mean

(B is Berry-Esseen const,
G is to be discussed)

target Prferr], which was
e = 0.001 in our example

Recall from error exponent story:

« Margin the error exponent threshold (the nd ) was above the mean increased
linearly with block length

* Here he margin the threshold K'is above the mean increases only as the
square-root of the block length

Q1: Where have we seen this scaling before?
Q2: What do we gain by making this choice for K?



What’s new: in the fixed-error analysis

we plotted the margin above the mean Hamming weight

N

§ ’
-------

180 I =
— Fixed rate

— Fixed Prlerror]
O linear
O square-root

160

140

— -
(0} o N
(@) o o

T T T

(@)
o
T

Threshold Hamming weight

N
o
1

20

O 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000
Block length

Prlerror] < EK: ( > pR(1—p)" 2 {MEA: (Z) 2"

A=0

Recall this increased as the

|~ square-root of the block length

In current context threshold
IS the K parameter



Apply Berry-Esseen to outage term

First, bound outage: D (Z) pE(L—p)" R =Pr|) Xi>K
A>K Li1=1 _

" n 7 plays role of A

Pr zn:X,->K — Pr Z(X;—p)>K—np /
L i=1 i '

" 17 B+ GY
=Pr|> (Xi—p) > Vnp(1 - p)Q7 (e— )j:

—1 B+ G g T
<o(@(=777))*
_B_l_G B G

| — - ——

Vn o /n VN

— €

Choice ¢ B\J/FEG allows us to cancel out Berry-Esseen const B




A caveat

When going through step

( B+G\\_ B+G
Q(Q G*_ /n ))_*: NG
Need
_B+G>O
€ \/ﬁ

-3|| —— Binom(2000,0.11)

f| O Threshold from bnd—dist
[| —— Gaussian approx

|- = Berry—Esseen bounds for N = 2000

210 220 230 240

For our running example of n = 2000, y/n ~ 45 and with B = 2.57

and G = 2.68 (G is yet to be defined) we compute

B+6G

— —0.1166
/n

€

|.e., the approximation we made here is valid only for large n

@ This analysis doesn’t give bnds for all n (as did earlier ones)

@ Nevertheless, turns out to be quite accurate even for small n

@ |t will tell us how rate approaches cap. as n — o©

250 260 270

Berry-Esseen
bounds quite
loose relative
to an error

of 0.001 at
block length of
n =2000



Next bound the “confusion’” term

-----
_________

‘— ..

- ~

K . . A
A n A n—A“- n —n
: 1 — M 2
> {n)rta-p B> (")

One term in a Binomial distribution, will bound by the max term:

First:

(2)-prs < &

o If np € 7Z then mean of Binomial is the mode (see C&T)
@ Then apply Stirling's approx to get the 1/4/n

V2mn 2= pl < Y12 \ /o ninnon

o For reference: Gy = (e'/*?)/\/27p(1 — p)




Continue with the “confusion” term

-----
——————
~

-
-~ -
--------

Note that this is the tail of a Binomial distribution (again)
We’ve seen two types of bounds today:

» Chernoff “large-deviation” bounds

* Berry-Esseen correction of Gaussian approximation
Which do you think is the right to use here?



Should use a large deviations bound

Large deviation because: A < K =np+ O(y/n) < 7 if nis large
S0, the events are far from the mean, & Berry-Esseen won'’t be good

After some manipulation (See PPV ’10) get

A (n) AL /n ] Gy CEL /n
A n—A —n —n
> p2(1—p) MZ<>2 <—= My 4()2
A=0 A | s=0 > i \/ﬁ A=0 s=0 >
<& 1—r 2_£
—vn\1-2r) \/n

Note that the constant r can be chosen in the range p <r< 0.5,
where r play the role of the fraction of flips in the large deviation

result



Combine two analyses

e mmmm -
-- -y
- -
- -
- -
- S
—‘ ..
- ~y
- -~
- -

K
ny\ A n—A
PF[GTTOF]S-‘\AEFOZ < A)p (1-p)" 2 [M>

- .
-~ -
-
- -
.. ——
-y -
- -
I R --
L I e L

This is the “confusion” event
The dominant event is far from the mean
Bound using a large-deviation technique

This is the “outage” event
The dominant event is closer to the mean
Bound using a CLT (Berry-Esseen) technique

Final b d P <ﬂ—|- 6—ﬂ — €
inal bound: r[error]_\/ﬁ N



Visualize the need to combine bounding techniques

qu_med—in CDFs for N = 2000

10° —
approximation - ool T N Ny e
IS accurate in this | ; ; ;
region, Chernoff
Is loose ok - - XKoo R
107 SITITITNTIEN coff VN IR EIER TP RERR
: ~200 : : : E
Gaussian 107 F SERTIRTIN 2o A\ s
approximation ' ' ' -
terrible here, but — 7y _ _
- 107 TR o STEREEERTRRRRRRRRE _
saw earlier that Sl ; - [——Binom(2000,0.11)
Chernoff quite good Ry & g - | ——Binom(2000,0.5)
300 ’ : - | = = =Gaussian approx.
10 L —

0 200 400 600 800 1000



Counting codeword: what rate did we get!

i p L1
Recall our earlier choice: M= 2" Z (n)

S
s=0

Get lower-bound on M:

S UESNWIC I

s=0

€) o (N0 - S
where (%) <|—% , useful for bounding terms in a Binomial
K

distribution, follows using £, < =™



Counting codeword: calculate log-number of msgs

_______
" S

og M >n—loz [ ™) il n— K-
0 n—lo o :
g = g K \gn—2K,/'\
S - O(1) terms
Applying Stirling's approximation to (;}) we get /

_______
" S

| n 05| n K | e1/12~
o6 <k> o <K(” ~ K)> e ( ”> Og V2r )

-
-
--------

Recall “Big-O” notation: f(x) = O(g(x)) as x — oo if and only iff
4A > 0 and an xp such that |f(x)| < Alg(x)]| for all x > xg

log M > n— 0.5 log (K(n”_ K)> — nHpg (%) + 0(1)



Final step: linearize via Taylor’s formula

IogMZn—OEIog(K(nn_K) —nHB K>+O(1)

N/

Apply Taylor’s formula and the choice of K to these two terms

/

K =np++/np(1—p)Q~" (6—

B\%G>

-
-----
- i

/ Incorporate into

O(1) by appealing
comes from Taylor approximation to Taylor’s again




Rate

Compare approximation to earlier bounds

Comparison of normal approximation with earlier results

osb . T T o SR A
0.45F
<
0.4}
Even given caveat earlier about
0351 short block lengths, we see the
approximation is extremely good
even for very short block lengths
0.3F —©— Normal approx
—— RCU bound
—6— ML decoding (lower bound)
—B— Bounded distance
0.25 : :

200 400 600 800 1000 1200 1400 1600 1800 2000
Block length

There is a matching converse:

log M < n(1 — Hg(p)) +0.5logn —vVnVQ!(e)+ O(1)

T

Capacity term V'is called the channel “dispersion”



Normal approximation BSC & DMCs

For the BSC we'’ve seen (M*is largest possible M):

log M*(n,€) = nC —vVnVQ 1(e) + 0.5log n+ O(1)



Normal approximation BSC & DMCs

For the BSC we'’ve seen (M*is largest possible M):
log M*(n,e) = nC —vVnVQ *(e) +0.5logn+ O(1)
For DMCs w/ a unique capacity-achieving input dist. can show:

log M*(n,€) = nC — vVnVQ(e) + O(log n)

where the channel “dispersion” can be calculated as

V = VarPXPY|x[i(X7 Y)]

VO RN

Cap-achieving input dist channel law Information density

Compare order terms to see expansion a bit more exact for BSCs



Recap: three decoders

Bounded distance
e Easy to analyze & gave us theme of analysis, split into “outage”
and “confusion” events
* Identified regimes of interest: fixed rate and fixed Pr{err]
 Allowed us to see scaling of threshold

ML analysis for fixed rate (error exponents)

e Introduced coupling between “outage” & “confusion”
» Applied Chernoff bounds to each

ML analysis for fixed Pr[err] (non-asymptotic)

* Finer analysis of coupled event

* Got to the “normal” approximation: use Berry-Esseen for
“outage” and large deviation for “confusion”

 Understood how rate can approach capacity
 Normal approximation quite accurate even for small n



Talk objectives: recap

* Beyond typicality decoding: Analyzed ML decoding

* As block length increases:

How quick

How quick

y does error drop? Error exponents

y do you approach capacity? Normal approx

* Intro to tools used to answer such questions:

» Large deviations: Chernoff bounds

e Gaussian approximations: Berry-Esseen

* When to use which type of tool & connections between:
Chernoff when tail starts far from mean, Berry-Esseen
when tail starts close to mean.

* Will try to illustrate general techniques and results in
simplest illustrative context: BSC Showed general forms



r

Error exponent, E (R)

Talk results: two interesting & connected problems

Plot of error exponent vs rate, p =0.11 Comparison of normal approximation with earlier results
0-35 1 1 1 1 | | | | 1 1 1 1
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