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Objectives of talk

• Beyond typicality decoding

• As block length increases: 

• How quickly does error drop? 

• How quickly do you approach capacity?

• Intro to tools used to answer such questions:

• Large deviations 

• Gaussian approximations

• When to use which type of tool & connections between

• Will try to illustrate general techniques and results in 
simplest illustrative context: BSC



Agenda

Analyzing decoding error for a bounded 
information decoder: regimes of interest

Error exponents of ML decoders

Non-asymptotic analysis of ML decoder & Normal 
approximation



Agenda

Analyzing decoding error for a bounded 
information decoder: regimes of interest

Error exponents of ML decoders
Today we follow a “recentered” analysis due to Forney 
(notes ’01, see also Barg-Forney ’02).  
Also see classic texts: Gallager & Csiszár-Körner

Non-asymptotic analysis of ML decoder & Normal 
approximation

We follow development in Polyanskiy-Poor-Verdú (PPV 
’10).  Extensive historic context is provided therein, 
particularly Strassen ’62



Motivating question

Want to analyze ML decoding

Given some codebook     the ML decoding rule is C
ML decoding

ˆ

x = argmax

x2C p
Y|X(y|x)

Minimizes average probability of error

observation

candidate codeword



A few manipulations

ML decoding

ˆ

x = argmax

x2C p
Y|X(y|x)

= argmax

x2C log p
Y|X(y|x)

= argmax

x2C log

p
Y|X(y|x)
p
Y

(y)

= argmax

x2C i(x; y)

The “information density”, 
expectation = mutual information



Standard random codebook ensemble analysis
Standard random codebook ensemble analysis

Expected average error over a random codebook ensemble

M codewords X
0

, . . . ,XM�1

, each length-n

Each Xm statistically independent of others

Each Xm generated in an i.i.d. manner

Bound average probability of error

Pr[error] =
1

M

M�1

X

m=0

Pr[error|X = Xm]

= Pr[error|X = X
0

]

 Pr
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i(Xm,Y) � i(X
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,Y)
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Standard random codebook ensemble analysis

Expected average error over a random codebook ensemble

M codewords X
0

, . . . ,XM�1

, each length-n

Each Xm statistically independent of others

Each Xm generated in an i.i.d. manner ⇠ Bern(0.5)

Bound average probability of error

Pr[error] =
1

M

M�1

X

m=0

Pr[error|X = Xm]

= Pr[error|X = X
0

]

 Pr

"

M�1

[

m=1

i(Xm,Y) � i(X
0

,Y)

#



Initial analysis: via “bounded information” decoder

Initial take on error

Bounded information decoder: decode to Xj if

i(Xi ,Y) > �, and

i(Xj ,Y)  � for all j 6= i .

Error bound:

✏  Pr

2

4
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1
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3

5

 Pr[i(X
1

,Y)  �] + (M � 1) Pr[i(X
2

,Y) > �]

Will give us initial insight into error events and analysis regimes.

Initial take on error

Bounded information decoder with parameter �: decode to Xi if

i(Xi ,Y) � �, and

i(Xj ,Y) < � for all j 6= i .

Error bound:

✏  Pr

2

4
(i(X

1

,Y)  �)

[
0

@
M[

j=2

i(Xj ,Y) > �

1

A

3

5

 Pr[i(X

1

,Y)  �] + (M � 1) Pr[i(X

2

,Y) � �]

Will give us initial insight into error events and analysis regimes.

“outage” or 
“atypicality” event

“confusion” or
“union bound” events

Initial take on error

Bounded information decoder with parameter �: decode to Xi if

i(Xi ,Y) � �, and

i(Xj ,Y) < � for all j 6= i .

Error bound:

Pr[error]  Pr

2

4(i(X
0

,Y) < �)
[

0

@

M�1

[

j=1

i(Xj ,Y) � �

1

A

3

5

 Pr[i(X
0

,Y)  �] + (M � 1) Pr[i(X
1

,Y) � �]

Will give us initial insight into error events and analysis regimes.



Particularize for BSCs

For a binary symmetric channel with crossover probability p

i(X,Y) = log
pY|X(y|x)

pY(y)

= log
pdH(x,y)(1� p)n�dH(x,y)

2�n

= dH(x, y) log
p

1� p
+ n log

1� p

2

and note:

If p < 0.5 then log[p/(1� p)] < 0, so
to maximize i(X,Y) need to minimize dH(X,Y)

dH(X,Y) = wtH(X� Y)

Particularize expressions to BSCsParticularize for BSCs

For a binary symmetric channel with crossover probability p

i(X;Y) = log

p
Y|X(y|x)
p
Y

(y)

= log

pdH(x,y)
(1� p)

N�dH(x,y)

2

�N

= dH(x, y) log

p

1� p
+ N log

1� p

2

Particularize for BSCs

For a binary symmetric channel with crossover probability p

i(X,Y) = log

p
Y|X(y|x)
p
Y

(y)

= log

pdH(x,y)
(1� p)

N�dH(x,y)

2

�N

= dH(x, y) log

p

1� p
+ N log

1� p

2

and note:

If p < 0.5 then log[p/(1� p)] < 0, so

to maximize i(X,Y) need to minimize dH(X,Y)

dH(X,Y) = wtH(X� Y)

Hamming distance

Common terms



Bounded information = bounded distance decoder

“re-center” analysis around observation

Impt observations on distribution of Hamming distance

For BSC simplifies: i(X
0

,Y) � � , wtH(X
0

,Y)  �
From before:

✏  Pr[i(X
0

,Y)  �] + (M � 1) Pr[i(X
1

,Y) � �]

 Pr[wtH(X
0

� Y) � �] + (M � 1) Pr[wtH(X
1

� Y)  �]

Statistical observations:

wtH(X
0

� Y) ⇠ Bern(p) by channel law

Since X
1

⇠ Bern(0.5) and X
1

?? {X
0

,Y} the sequence X
1

acts like a “one-time-pad” when added to Y, meaning:

(X
1

� Y) ?? {X
0

,Y}

X
1

� Y is uniformly distributed, i.e., it is i.i.d. Bern(0.5)
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Impt observations on distribution of Hamming distance

For BSC simplifies: i(X
0

,Y) � � , wtH(X
0
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From before:

Pr[error]  Pr[i(X
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1

,Y) � �]
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0
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1
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Statistical observations:

X
0

� Y ⇠ i.i.d. Bern(p) by channel law & codeword dist.

Since X
1

⇠ Bern(0.5) and X
1

?? {X
0

,Y} the sequence X
1

acts like a “one-time-pad” when added to Y, meaning:

(X
1

� Y) ?? {X
0

,Y}

X
1

� Y is uniformly distributed, i.e., it is i.i.d. Bern(0.5)
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Binom(20,0.11)
Binom(20,0.5)

Plot the distributions in play for (small) length: n=20

Distribution
generated by
true codeword,
only one of these

Distribution
generated by
incorrect 
codewords, 
more-than-one
of these, in fact,
(M - 1)

Simplified analysis

Simple expression for average probability of error:

✏  Pr[wtH(U) � �] + (M � 1) Pr[wtH(V) < �]

where

U ⇠ i.i.d. Bern(p), V ⇠ i.i.d. Bern(0.5), and U ?? V

So, wtH(U) ⇠ Binom(N, p), and wtH(V) ⇠ Binom(N, 0.5)

E.g., p = 0.11, N = 20:

threshold � (designer specified)

Simplified analysis

Simple expression for average probability of error:
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E.g., p = 0.11, n = 20:
threshold � (designer specified)
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Binom(20,0.11)
Binom(20,0.5)

Replot as cumulative distribution functions (CDFs)
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Tail behavior will be a 
topic of central 
importance today!

CDFs

But, what we really care about is that wtH(X̃
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) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

1

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

1

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

0

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

0

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

0

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]



CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

1

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

1

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

0

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

0

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
Complementary CDF of wtH(X̃

0

):

Pr[wtH(X̃
0

) � �] =
n

X

t=�

Pr[wtH(X̃
0

) = t]

CDF of wtH(X̃
1

):

Pr[wtH(X̃
1

)  �] =
�

X

t=0

Pr[wtH(X̃
1

) = t]

Let’s think about an interesting block-length: n=200
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Binom(200,0.11)
Binom(200,0.5)

But, it’s hard to see what’s going 
on in the tails from this plot



Plot on log-scale to see better

Question: if you 
(i) use this decoder, and 
(ii) target an error rate of 10-3, then

 What code rate is possible?

zoom in on upper left
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Exercise: (roughly) what rate is possible at Pr[err] = 10-3

Necessary data:CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃
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) is too small. So, more useful
to examine CDFs, rather than PMFs.
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CDFs

But, what we really care about is that wtH(X̃
0

) is
too big, or wtH(X̃

1

) is too small. So, more useful
to examine CDFs, rather than PMFs.
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Simplified analysis

Simple expression for average probability of error:

Pr[error]  Pr[wtH(X̃
0

) � �] + (M � 1) Pr[wtH(X̃
1

)  �]

where we define the re-centered codewords as

X̃
0

= X
0

� Y and X̃
1

= X
1

� Y, so

X̃
0

⇠ i.i.d. Bern(p), X̃
1

⇠ i.i.d. Bern(0.5), and X̃
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?? X̃
1

So, wtH(X̃
0

) ⇠ Binom(n, p) and wtH(X̃
1

) ⇠ Binom(n, 0.5)

E.g., p = 0.11, n = 20:
threshold � (designer specified)
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Calculate achievable rate at target Pr[err] = 10-3

Calculation

� = 39

Pr[wtH(U) � 39] = 2.89⇥ 10

�4

Pr[wtH(V) < 39] = 4.16⇥ 10

�19

Solve for M:

Pr[wtH(U) � 39] + (M � 1) Pr[wtH(V) < 39] = 10

�3

R =

log

2

M

N

=

log

2

1.71⇥ 10

15

200

= 0.253

bits per channel use

Calculation

� = 39 � = 384 � = 268

Pr[wtH(X̃
0

) � 39] = 2.89⇥ 10�4

Pr[wtH(X̃
1

)  39] = 4.16⇥ 10�19

(One way) to solve for achievable M:
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0
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1

)  39] = 10�3

R =
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M
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1.71⇥ 1015

200
= 0.253
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Calculation

� = 39 � = 384 � = 268

Pr[wtH(X̃
0

) � 39] = 2.89⇥ 10�4

Pr[wtH(X̃
1

)  39] = 4.16⇥ 10�19

(One way) to solve for achievable M:
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1

)  39] = 10�3

R =
log

2

M
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200
= 0.253

bits
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Calculation

� = 39 � = 384 � = 268

Pr[wtH(X̃
0

) � 39] = 2.89⇥ 10�4

Pr[wtH(X̃
1

)  39] = 4.16⇥ 10�19

(One way) to solve for achievable M:

Pr[wtH(X̃
0

) � 39] + (M � 1) Pr[wtH(X̃
1

)  39] = 10�3

R =
log

2

M

n
=

log
2

1.71⇥ 1015

200
= 0.253

bits

channel use

Pick M to close the gap
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But this is Shannon theory, need something to get big
Let block length n get large, but what do we keep fixed?  Rate?  Pr[error]?  
The choice leads to two regimes of study:

rate = 0.253, M = 22000 x 0.252 = 2506

Pr[err] = 7.9 x 10-27 = 2-2000 x 0.0434
rate = 0.4288, M = 22000x0.4288 = 2858

Pr[err] = 10-3 = 2-2000 x 0.0015

Calculation

� = 39 � = 384 � = 268

Pr[wtH(U) � 39] = 2.89⇥ 10

�4

Pr[wtH(V)  39] = 4.16⇥ 10

�19

Solve for M:

Pr[wtH(U) � 39] + (M � 1) Pr[wtH(V)  39] = 10

�3

R =

log

2

M

N

=

log

2

1.71⇥ 10

15

200

= 0.253

bits

channel use

Calculation

� = 39 � = 384 � = 268

Pr[wtH(U) � 39] = 2.89⇥ 10

�4

Pr[wtH(V)  39] = 4.16⇥ 10

�19

Solve for M:

Pr[wtH(U) � 39] + (M � 1) Pr[wtH(V)  39] = 10

�3

R =

log

2

M

N

=

log

2

1.71⇥ 10

15

200

= 0.253

bits

channel use

Rate fixed = 0.253,
n = 2000

Pr[error] fixed = 10-3,
n = 2000     
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Remainder of talk: two chunks

Chunk 1: Error exponent analysis of ML decoding

Chunk 2: How fast approach capacity using ML decoding
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Pr[error] vs. blocklength for rate fixed = 0.253
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Rate vs. blocklength for Pr[error] fixed = 0.001

Slope (magnitude) of error 
decay on a log plot is the 
“error exponent’’. Here it is 
about 0.0434.  Can it be 
improved?

Asymptotes to capacity as 
n increases.  But, how long 
to get close?  How does the 
rate approach capacity? 
Can you approach faster 
than in plot to left?



Calculation

� = 39 � = 384 � = 268

Pr[wtH(U) � 39] = 2.89⇥ 10
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Calculation
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Key difference in analyses: how threshold increases 
with block length

Recall block length of:
n = 200 vs. n = 2000

How does critical threshold value scale with block 
length for each objective (fixed rate or fixed error)?
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Fixed rate
Fixed Pr[error]

Scaling of threshold with block length for each setting

For fixed rate setting: 
threshold chosen to 
minimize Pr[error] for each 
block length n

For fixed Pr[error] setting: 
threshold chosen to maximize 
rate for each block length n

Note: in both settings the threshold needs to be larger than the mean number 
of bit flips ( = n p), so let’s subtract the mean from each and re-plot
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Scaling of “excess” Hamming weight with block length
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Fixed rate
Fixed Pr[error]

“Excess” weight is how far above the mean
number of flips we set the threshold

mean Hamming weight = 0.11 x 2000 = 220



“Excess” Hamming weight: linear vs. square-root
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Fixed rate
Fixed Pr[error]
linear
square−root

For fixed-rate setting: 
excess rate increases linearly in 
block length

For fixed Pr[error] setting:
excess rate increases as square 
root of block length

�0.5 log

✓

n

K (n � K )

◆

= �0.5 log

 

1

n(p + O( 1p
n
))(1� p � O( 1p

n
)

!

= 0.5 log n + O(1)

� n�HB(p)+0.5 log n�log
1� p

p

p

np(1� p)Q�1

✓

✏� B + Gp
n

◆

+O(1)

log
1� p

p
=

d

dx
HB(x)

�

�

�

�

x=p

� n

�0
p

n

�0.5 log

✓

n

K (n � K )

◆

= �0.5 log

 

1

n(p + O( 1p
n
))(1� p � O( 1p

n
)

!

= 0.5 log n + O(1)

� n�HB(p)+0.5 log n�log
1� p

p

p

np(1� p)Q�1

✓

✏� B + Gp
n

◆

+O(1)

log
1� p

p
=

d

dx
HB(x)

�

�

�

�

x=p

� n

�0
p

n



Recap: what we have learned

Analyzed error in random code ensemble for BSC under a simple 
(and suboptimal) bounded-distance decoding

Observed behavior of tail of distribution is quite important

Characterized behavior of this decoder

Tradeoff between 
• “outage”/ “atypicality” events of correct codeword, and 
• “confusion” / “union bound” events of other (candidate, but 

incorrect) codewords 

Two interesting regimes
• Fix rate, see how Pr[err] drops with block length
• Fix Pr[err], see how rate increases with block length



Initial take on error

Bounded information decoder with parameter �: decode to Xi if

i(Xi ,Y) � �, and

i(Xj ,Y) < � for all j 6= i .

Error bound:

Pr[error]  Pr

2

4(i(X
0

,Y) < �)
[

0

@

M�1

[

j=1

i(Xj ,Y) � �

1

A

3

5

 Pr[i(X
0

,Y)  �] + (M � 1) Pr[i(X
1

,Y) � �]

Will give us initial insight into error events and analysis regimes.

Also: will return to analyzing the ML decoder

To get a better grip want to analyze the (optimal) ML decoder.  Why is 
bounded information (bounded distance for BSC) decoder suboptimal?

• Misses coupling between “outage” and “confusion” events
• Really relative events are what are important in ML
• E.g., you might be lucky,                  might be much less than     , 

making it harder for an incorrect codeword to be closer to 

Impt observations on distribution of Hamming distance

For BSC simplifies: i(X

1

,Y) � � , wtH(X

1

,Y)  �

From before:

✏  Pr[i(X

1

,Y)  �] + (M � 1) Pr[i(X

2

,Y) � �]

 Pr[wtH(X

1

� Y) � �] + (M � 1) Pr[wtH(X

2

� Y)  �].

Statistical observations:

wtH(X

1

� Y) ⇠ Bern(p) by channel law

Since X

2

⇠ Bern(0.5) and X

2

?? {X
1

,Y} the sequence X

2

acts like a “one-time-pad” when added to Y. The resulting

vector (X

2

� Y) ?? {X
1

,Y} and is uniformly distributed

across all binary vectors (it is i.i.d. Bern(0.5)).

Impt observations on distribution of Hamming distance

For BSC simplifies: i(X

1

,Y) � � , wtH(X

1

,Y)  �

From before:
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1

,Y)  �] + (M � 1) Pr[i(X

2
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 Pr[wtH(X

1

� Y) � �] + (M � 1) Pr[wtH(X

2

� Y)  �].
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wtH(X
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� Y) ⇠ Bern(p) by channel law

Since X

2

⇠ Bern(0.5) and X

2

?? {X
1

,Y} the sequence X

2

acts like a “one-time-pad” when added to Y. The resulting

vector (X

2

� Y) ?? {X
1

,Y} and is uniformly distributed

across all binary vectors (it is i.i.d. Bern(0.5)).

Impt observations on distribution of Hamming distance

For BSC simplifies: i(X

1

,Y) � � , wtH(X

1

,Y)  �

From before:

✏  Pr[i(X

1

,Y)  �] + (M � 1) Pr[i(X

2

,Y) � �]

 Pr[wtH(X

1

� Y) � �] + (M � 1) Pr[wtH(X

2

� Y)  �].

Statistical observations:

wtH(X

1

� Y) ⇠ Bern(p) by channel law

Since X

2

⇠ Bern(0.5) and X

2

?? {X
1

,Y} the sequence X

2

acts like a “one-time-pad” when added to Y. The resulting

vector (X

2

� Y) ?? {X
1

,Y} and is uniformly distributed

across all binary vectors (it is i.i.d. Bern(0.5)).

ML decoding

Bounded information decoding
union removes coupling

Pr[error]  Pr

"

M�1

[

m=1

i(Xm,Y) � i(X
0

,Y)

#

i(X,Y) = dH(x, y) log
p

1� p
+ n log

1� p

2

✏  Pr[9 m 6= 1 s.t. dH(Xm,Y)  dH(X
1

,Y)]

= Pr[9 m 6= 1 s.t. wtH(X̃m)  wtH(X̃
1

)]



Agenda

Analyzing decoding error for a bounded information 
decoder: regimes of interest

Error exponents of ML decoders

Non-asymptotic analysis of ML decoder & Normal 
approximation



Pr[error]  Pr

"

M�1

[

m=1

i(Xm,Y) � i(X
0

,Y)

#

i(X,Y) = dH(x, y) log
p

1� p
+ n log

1� p

2

Pr[error]  Pr
h

[M�1

m=1

dH(Xm,Y)  dH(X
0

,Y)
i

= Pr
h

[M�1

m=1

wtH(X̃m)  wtH(X̃
0

)
i

✏  Pr[9 m 6= 1 s.t. i(Xm,Y) � i(X
1

,Y)]

i(X,Y) = dH(x, y) log
p

1� p
+ n log

1� p

2

✏  Pr[9 m 6= 1 s.t. dH(Xm,Y)  dH(X
1

,Y)]

= Pr[9 m 6= 1 s.t. wtH(Xm � Y| {z }
˜

Xm

)  wtH(X
1

� Y| {z }
˜

X

1

)]

ML error: 

Particularize to BSC(p): 

Substituting and “re-centering” we get: 

Refine the analysis of ML decoding

codewords “re-centered” about observation

Recall: recentered c.w. statistically indep.!  (one-time-pad)

Pr[error]  Pr

"

M�1

[

m=1

i(Xm,Y) � i(X
0

,Y)

#

i(X,Y) = dH(x, y) log
p

1� p
+ n log

1� p

2

Pr[error]  Pr[9 m 6= 1 s.t. dH(Xm,Y)  dH(X
1

,Y)]

= Pr[9 m 6= 1 s.t. wtH(X̃m)  wtH(X̃
1

)]



ML error exp analysis

An,� :=
�

wtH(X̃
0

) � n�
 

Bn,� :=
�

[M�1

m=1

wtH(X̃m)  n�
 

where � 2
⇢

0,
1

n
,
2

n
, . . .

n

n

�

En,� = An,� \ Bn,�

Define a coupled event

Recall idea of bounded distance decoder: observation 
“too far” from true c.w.  or  “too close” to some other c.w.

Now we couple these: (i) “too far” from true codeword, 
and  (ii) “too close” to some other codeword

ML error exp analysis

An,� :=
�

wtH(X̃
1

) � n�
 

Bn,� :=
�
9m 6= 1 s.t. wtH(X̃m)  n�

 

where � 2
⇢

0,
1

n
,
2

n
, . . .

n

n

�

En,� = An,� \ Bn,�

two events
of interest

coupled event

fractional Hamming weight



analyzing coupled event

Pr[error]  Pr
h

[

�2{0, 1

n
,...,1}

En,�

i

=
X

�2{0, 1

n
,..., n

n
}

Pr [En,�]

=
X

�2{0, 1

n
,..., n

n
}

Pr [An,� \ Bn,�]

=
X

�2{0, 1

n
,..., n

n
}

Pr [An,�] Pr [Bn,�]

 (n + 1) max
�2[0,1]

Pr [An,�] Pr [Bn,�]

Analyze the coupled event

next: bound each (decoupled) probability



Chernoff tail bounds

Theorem

Let X
1

, . . . ,Xn ⇠ i.i.d. Bern(q), then for any threshold 1 � ⌧ � q

Pr[wtH(X) � n⌧ ]
.
= 2�nD(⌧kq)

and, if 0  ⌧  q,

Pr[wtH(X)  n⌧ ]
.
= 2�nD(⌧kq)

where D(⌧kq) is the (binary) KL divergence

D(⌧kq) = ⌧ log
2

⌧

q
+ (1� ⌧) log

2

1� ⌧

1� q

Where an
.
= bn means we get the exponent correct:

lim
n!1

log
an

bn
= 0

Theorem

Let X
1

, . . . ,Xn ⇠ i.i.d. Bern(q), then for any threshold 1 � ⌧ � q

Pr[wtH(X) � n⌧ ]
.
= 2�nD(⌧kq)

and, if 0  ⌧  q,

Pr[wtH(X)  n⌧ ]
.
= 2�nD(⌧kq)

where D(⌧kq) is the (binary) KL divergence

D(⌧kq) = ⌧ log
2

⌧

q
+ (1� ⌧) log

2

1� ⌧

1� q

Where an
.
= bn means we get the exponent correct:

lim
n!1

log
an

bn
= 0

expected 
fraction ones

realized 
fraction ones

Note: KL divergence convex & increasing in separation between     and 
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Pr[An,�] = Pr
⇥

wtH(X̃
0

) � n�
⇤ .

= 2�nD(�kp)
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Tail bounds for each event

threshold

Generating distribution is i.i.d. Bern(p)

|a|+ = max{a,0}

Generating distribution is now i.i.d. Bern(0.5)

= gen. distrib.

= event set



Combining and analyzing gives following result

The      parameterized the likelihood of the two error events: 
• The “atypical” probability that the noise level is too high 
• The “confusion” probability that some spurious c.w. is too close

As you change     one term increases, the other decreases

The optimizing     strikes a balance between the two events

Proof: combine individual bounds in coupling event

Pr[An,�] = Pr
⇥
wtH(X̃

1

) � n�
⇤ .

= 2�nD(�kp)

Pr[Bn,�] = Pr
⇥
9m 6= 1 s.t. wtH(X̃m)  n�

⇤

 min
�
1, (M � 1) Pr

⇥
wtH(X̃

2

)  n�
⇤ 

.
= min{1, 2nR2�nD(�k0.5)}

= 2�n|D(�k0.5)�R|+

� p 0.5 D(�k0.5) D(�kp)

Pr[An,�] = Pr
⇥
wtH(X̃

1

) � n�
⇤ .

= 2�nD(�kp)

Pr[Bn,�] = Pr
⇥
9m 6= 1 s.t. wtH(X̃m)  n�

⇤

 min
�
1, (M � 1) Pr

⇥
wtH(X̃

2

)  n�
⇤ 

.
= min{1, 2nR2�nD(�k0.5)}

= 2�n|D(�k0.5)�R|+

� p 0.5 D(�k0.5) D(�kp)

Pr[An,�] = Pr
⇥
wtH(X̃

1

) � n�
⇤ .

= 2�nD(�kp)

Pr[Bn,�] = Pr
⇥
9m 6= 1 s.t. wtH(X̃m)  n�

⇤

 min
�
1, (M � 1) Pr

⇥
wtH(X̃

2

)  n�
⇤ 

.
= min{1, 2nR2�nD(�k0.5)}

= 2�n|D(�k0.5)�R|+

� p 0.5 D(�k0.5) D(�kp)

Pr of error results

Theorem

For ML decoding over the BSC the following “random coding”
bound is achievable
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Analysis splits into high- and low-rate regimes
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Pr of error results

Theorem

For ML decoding over the BSC the following “random coding”
bound is achievable

Pr[err ]
.
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Want to determine when positivity constraint is active.  Define:

Pr of error results

Theorem

For ML decoding over the BSC the following “random coding”
bound is achievable
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Differentiate and solve to find 

Plotted on right.  
Note that if p < 0.5, always
above 45-degree line, why?
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Theorem

For ML decoding over the BSC the following “random coding”
bound is achievable
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At sufficiently low rates, in particular if                             then the  

Analysis of low rate regime
Low Rate: R < D(�critk0.5) ) | · |+ is not active

Er (R) = D(�critkp)+D(�critk0.5)�R = 1�log[1+2
p

p(1� p)]]�R

High Rate: R > D(�critk0.5) ) | · |+ is active
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Er (R) = D(�critkp)+D(�critk0.5)�R = 1�log[1+2
p

p(1� p)]]�R

High Rate: R > D(�critk0.5) ) | · |+ is active

Er (R) = min
�2[0,1] s.t. D(�k0.5)R

D(�kp)

This means that for these (low) rates:

Er (R) = min
�2[0,1]

D(�kp) + |D(�k0.5)� R|+

= min
�2[0,1]

D(�kp) + D(�k0.5)� R

= D(�critkp) + D(�critk0.5)� R

= 1� log[1 + 2
p

p(1� p)]� R

Er(R)

R

Er (R) = min
�2[0,1]

D(�kp) + |D(�k0.5)� R|+

= min
�2[0,1]

D(�kp) + D(�k0.5)� R

= D(�critkp) + D(�critk0.5)� R

= 1� log[1 + 2
p

p(1� p)]� R

Recall: ML vs Bnd-dist

x̂ = argmaxx2C pY|X(y|x) = argmaxx2C log
pY|X(y|x)

pY(y)
= argmaxx2C i(x; y)

✏  Pr
⇥
9 m 6= 1 s.t.

�
i(Xm,Y) � i(X

1

,Y)
�⇤

✏  Pr
h
(i(X

1

,Y) < �)
[ ⇣

9 m 6= 1 s.t. (i(Xm,Y) � �)
⌘i

 Pr[i(X
1

,Y)  �] + (M � 1) Pr[i(X
2

,Y) � �]

Rcrit = D(�critkp)

Slope = -1



0 0.5p

Low Rate: R < D(�critk0.5) ) | · |+ is not active

Er (R) = D(�critkp)+D(�critk0.5)�R = 1�log[1+2
p

p(1� p)]]�R

High Rate: R > D(�critk0.5) ) | · |+ is active

Er (R) = min
�2[0,1] s.t. D(�k0.5)R

D(�kp)        minimized at closest 
edge of feasible region
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Pr of error results

Theorem

For ML decoding over the BSC the following “random coding”
bound is achievable
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Analysis of high rate regime

On the other hand, at high rates                          the          is active.  It introduces an
extra constraint into the optimization which we re-express as

Low Rate: R < D(�critk0.5) ) | · |+ is not active
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We can picture the solution on the simplex:
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Theorem

For ML decoding over the BSC the following “random coding”
bound is achievable
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What happens as you let the feasible region extend all the way to p?
• Optimizing     is    = p, so
•                          , and
•                                  (the error exponent goes to 0 at capacity)

log

✓

n

k

◆

=
n

X

`=max{k,n�k}

log `�
min{k,n�k}

X

`=1

log `

1p
n
' 0.022

✏ = 0.001

n

� : D(�k0.5)  R
o

log

✓

n

k

◆

=
n

X

`=max{k,n�k}

log `�
min{k,n�k}

X

`=1

log `

1p
n
' 0.022

✏ = 0.001

n

� : D(�k0.5)  R
o

Er (R) = min
�2[0,1]

D(�kp) + |D(�k0.5)� R|+

= min
�2[0,1]

D(�kp) + D(�k0.5)� R

= D(�critkp) + D(�critk0.5)� R

= 1� log[1 + 2
p

p(1� p)]� R

D(pk0.5) = 1� HB(p) = C

D(�kp) = D(pkp) = 0

Er (R) = min
�2[0,1]

D(�kp) + |D(�k0.5)� R|+

= min
�2[0,1]

D(�kp) + D(�k0.5)� R

= D(�critkp) + D(�critk0.5)� R

= 1� log[1 + 2
p

p(1� p)]� R

D(pk0.5) = 1� HB(p) = C

D(�kp) = D(pkp) = 0



Summary of results for high- and low-rate regimes

Low Rate: R < D(�critk0.5) ) | · |+ is not active

Er (R) = D(�critkp)+D(�critk0.5)�R = 1�log[1+2
p

p(1� p)]]�R

High Rate: R > D(�critk0.5) ) | · |+ is active

Er (R) = min
�:D(�k0.5)R

D(�kp) + D(�k0.5)

Low Rate: R < D(�critk0.5) ) | · |+ is not active

Er (R) = D(�critkp)+D(�critk0.5)�R = 1�log[1+2
p

p(1� p)]]�R

High Rate: R > D(�critk0.5) ) | · |+ is active

Er (R) = min
�:D(�k0.5)R

D(�kp) + D(�k0.5)

Low Rate: R < D(�critk0.5) ) | · |+ is not active

Er (R) = D(�critkp)+D(�critk0.5)�R = 1�log[1+2
p

p(1� p)]]�R

High Rate: R > D(�critk0.5) ) | · |+ is active

Er (R) = min
�:D(�k0.5)R

D(�kp) + D(�k0.5)

Low Rate: R < D(�critk0.5) ) | · |+ is not active

Er (R) = D(�critkp)+D(�critk0.5)�R = 1�log[1+2
p

p(1� p)]]�R

High Rate: R > D(�critk0.5) ) | · |+ is active

Er (R) = min
�2[0,1] s.t. D(�k0.5)R

D(�kp)

Exponent has a linear slope throughout this region

Exponent converges to zero as rate converges to capacity



Plot of exponent as a function of rate
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Recall: ML vs Bnd-dist

x̂ = argmaxx2C pY|X(y|x) = argmaxx2C log
pY|X(y|x)

pY(y)
= argmaxx2C i(x; y)
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0.0621

Low rate region
  slope = -1

High rate region

Can get a matching upper bound in high rate region, the “sphere-packing” bound



Er (R) = min�2[0,1]D(�kp) + |D(�k0.5)� R|+

= min�2[0,1]D(�kp) + |(1� HB(�))� R|+

Er (R) = maxPX
minVY |X D(PXVY |XkPXPY |X ) + |I (PXVY |X )� R|+

Er (R) = min�2[0,1]D(�kp) + |D(�k0.5)� R|+

= min�2[0,1]D(�kp) + |(1� HB(�))� R|+

Er (R) = maxPX
minVY |X D(PXVY |XkPXPY |X ) + |I (PXVY |X )� R|+

We’ve seen Er(R) for the BSC is: (N.B. at start picked input distribution Px to be Bern(0.5)) 

Generalization to arbitrary DMCs

For general DMCs more complicated, but underlying idea is the same: 

mutual info realized 
across channel in worst case

worst case
channel behavior

mutual info realized 
across channel in worst case

worst case
channel behavior

choose best
input distribution



How did we do? Compare to bounded-dist. decoder
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Pr[error]: Bnd−dist vs. ML,  rate fixed = 0.253

 

 

Bounded distance
ML decoding

Bounded distance, 
exponent = 0.0434

ML decoding, 
exponent = 0.0633 

Improvement due to more accurate treatment and analysis of “coupled” events
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ML decoding (lower bound)
Bounded distance

Rate analysis

Pr[err ]
.
= 2�nEr (R) $ Er (R)

.
= � log Pr[err ]

n

Solved for maximum R 
that meets this condition

From before

Analysis for small n
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Chernoff bnd
Binomial tail
Gaussian approx

Chernoff bounds are tight as you go out the tail...

Chernoff (black) just 
above actual CDF (red)

CDF of Gaussian with same mean 
and variance as Bern(2000, 0.11)
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Chernoff bnd
Binomial tail
Gaussian approx

threshold 268
for Pr[err] = 0.001

threshold 384
for rate = 0.253

...but aren’t very good in the regime of interest for 
fixed Pr[error]

Gaussian approximation is
actually much closer here
(but it’s only an approximation
and not a bound)

• Our analysis of the ML decoder wasn’t very good for the fixed Pr[err] regime.  
• This is why, when we compared the bounded distance to the ML decoder, the 

bounded distance decoder appeared to be superior to ML.
• ML will, of course, perform better.  
• The weakness was in our analysis -- a good analysis of bounded distance vs. a 

loose analysis of ML.  We improve the latter next.

Zoom in on upper left 
corner of plot on last 
slide

Remarks



Agenda

Analyzing decoding error for a bounded information 
decoder: regimes of interest

Error exponents of ML decoders

Non-asymptotic analysis of ML decoder & Normal 
approximation

Look at fixed-error regime
Use an ML decoder (rather than bounded-dist)



We branch the ML analysis down a different route
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We branch the ML analysis down a different route
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Analysis for small n
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i

✏  Pr
h

[M�1

m=1

i(Xm,Y) � i(X
0

,Y)
i

= Pr
h

[M�1

m=1

wtH(Xm,Y)  wtH(X
0

,Y)
i

= EX
0

,Y

h

Pr[[M�1

m=1

wtH(Xm � Y)  wtH(X
0

� Y)|X
0

,Y]
i

= EX
0

,Y

"

min
n

1,Pr
h

M�1

[

m=1

wtH(Xm � Y)  wtH(X
0

� Y)|X
0

,Y
io

#

 EX
0

,Y

h

min
n

1, (M � 1) Pr[wtH(X
1

� Y)  wtH(X
0

� Y)|X
0

,Y]
oi

= E
wtH(

˜X
0

)

h

min
n

1, (M � 1) Pr[wtH(X̃
1

)  wtH(X̃
0

)| wtH(X̃
0

)]
oi

=
n

X

�=0

✓

n

�

◆

p�(1� p)n�� min

(

1, (M � 1)
�

X

s=0

✓

n

s

◆

2�n

)

✏  Pr
h

[M�1

m=1

i(Xm,Y) � i(X
0

,Y)
i

= Pr
h

[M�1

m=1

wtH(Xm,Y)  wtH(X
0

,Y)
i

= EX
0

,Y

h

Pr[[M�1

m=1

wtH(Xm � Y)  wtH(X
0

� Y)|X
0

,Y]
i

= EX
0

,Y

"

min
n

1,Pr
h

M�1

[

m=1

wtH(Xm � Y)  wtH(X
0

� Y)|X
0

,Y
io

#

 EX
0

,Y

h

min
n

1, (M � 1) Pr[wtH(X
1

� Y)  wtH(X
0

� Y)|X
0

,Y]
oi

= E
wtH(

˜X
0

)

h

min
n

1, (M � 1) Pr[wtH(X̃
1

)  wtH(X̃
0

)| wtH(X̃
0

)]
oi

=
n

X

�=0

✓

n

�

◆

p�(1� p)n�� min

(

1, (M � 1)
�

X

s=0

✓

n

s

◆

2�n

)



We branch the ML analysis down a different route

✏  Pr
h

[M�1

m=1

i(Xm,Y) � i(X
0

,Y)
i

= Pr
h

[M�1

m=1

wtH(Xm,Y)  wtH(X
0

,Y)
i

= EX
0

,Y

h

Pr[[M�1

m=1

wtH(Xm � Y)  wtH(X
0

� Y)|X
0

,Y]
i

= EX
0

,Y

"

min
n

1,Pr
h

M�1

[

m=1

wtH(Xm � Y)  wtH(X
0

� Y)|X
0

,Y
io

#

 EX
0

,Y

h

min
n

1, (M � 1) Pr[wtH(X
1

� Y)  wtH(X
0

� Y)|X
0

,Y]
oi

= E
wtH(

˜X
0

)

h

min
n

1, (M � 1) Pr[wtH(X̃
1

)  wtH(X̃
0

)| wtH(X̃
0

)]
oi

=
n

X

�=0

✓

n

�

◆

p�(1� p)n�� min

(

1, (M � 1)
�

X

s=0

✓

n

s

◆

2�n

)

Analysis for small n
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Remarks:
•This bound is called the “random coding union bound” (RCU) in 
Polyanskiy-Poor-Verdú (PPV ’10)

•Here we condition on the distance between the observation and Tx c.w. 
to get the coupling, taking the expectation of the conditional probability 
that some other codeword happens to be closer to the observation.

•Holds for all block lengths 
•Have not applied a Chernoff bound
•Can plot this bound for non-trivial block lengths
•Aside: to plot      for large n & k, it is better numerically to compute 

Random coding union (RCU) bound
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RCU bound
ML decoding (lower bound)
Bounded distance

Compare: RCU, Bounded-dist, ML via Chernoff

• Now we see the ML decoder (RCU bound) outperforms bounded distance.
• Can we characterize how we approach capacity as block length gets large?
• Can we cleanly break into “outage” and “confusion” events as before?



Recall CDF of Gaussian approximated better near mean
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Chernoff bnd
Binomial tail
Gaussian approx

threshold 268
for Pr[err] = 0.001

Will need to bound events
more similar to those in
the bounded distance dec.

In this regime a Gaussian
approximation looks good, 
we need to correct the 
approximation to turn it 
into a bound



Turn Gaussian approx into a bound via Berry-Esseen

Note:   (i) Bounds the absolute difference between CDF and tail of a Gaussian
(ii) Can be generalized to other (and non-i.i.d.) distributions
(iii) The Berry-Esseen constant “B” in this case is about 2.5

Berry-Esseen

Theorem (Berry-Esseen for i.i.d. Bernoulli r.v.)
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As before split into “outage” and “confusion events”

Confusion: some other c.w. too close Outage: true c.w. too far away
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What’s new: scaling we choose for K (and analysis)

K = np +
p

np(1� p)Q�1
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(B is Berry-Esseen const,
  G is to be discussed)

Recall from error exponent story:
• Margin the error exponent threshold (the      ) was above the mean increased 
linearly with block length

• Here he margin the threshold K is above the mean increases only as the 
square-root of the block length

Q1: Where have we seen this scaling before? 
Q2: What do we gain by making this choice for K?

target Pr[err], which was
                in our example
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Fixed rate
Fixed Pr[error]
linear
square−root

What’s new: in the fixed-error analysis
we plotted the margin above the mean Hamming weight

Recall this increased as the 
square-root of the block length

In current context threshold 
is the K parameter
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Apply Berry-Esseen to outage termK = np +
p

np(1� p)Q�1

✓

✏� B + Gp
n

◆

X

�>K

✓

n

�

◆

p�(1� p)n�� = Pr

"

n
X

i=1

Xi > K

#

Pr

"

n
X

i=1

Xi > K

#

= Pr

"

n
X

i=1

(Xi � p) > K � np

#

= Pr

"

n
X

i=1

(Xi � p) >
p

np(1� p)Q�1

✓

✏ +
B + Gp

n

◆

#

 Q

✓

Q�1

✓

✏ +
B + Gp

n

◆◆

+
Bp
n

= ✏ +
Gp
n

First, bound outage:

Choice ✏� B+Gp
n

allows us to cancel out Berry-Esseen const B

K = np +
p

np(1� p)Q�1

✓

✏� B + Gp
n

◆

X

�>K

✓

n

�

◆

p�(1� p)n�� = Pr

"

n
X

i=1

Xi > K

#

Pr

"

n
X

i=1

Xi > K

#

= Pr

"

n
X

i=1

(Xi � p) > K � np

#

= Pr

"

n
X

i=1

(Xi � p) >
p

np(1� p)Q�1

✓

✏� B + Gp
n

◆

#

 Q

✓

Q�1

✓

✏� B + Gp
n

◆◆

+
Bp
n

= ✏� B + Gp
n

+
Bp
n

= ✏� Gp
n

plays role of 

log M⇤(n, ✏) = nC �
p

nVQ�1(✏) + 0.5 log n + O(1)

log M⇤(n, ✏) = nC �
p

nVQ�1(✏) + O(log n)

V = varpX pY |X [i(X ,Y )]

✏ < 0.5

�



A caveat
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Binom(2000,0.11)
Threshold from bnd−dist
Gaussian approx
Berry−Esseen bounds for N = 2000

When going through step
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For our running example of n = 2000 and with B = 2.57 and
G = 2.68 (G is yet to be defined) we compute

✏� B + Gp
n

= �0.1166

I.e., the approximation we made here are valid only for large n

This analysis doesn’t give bnds for all n (as did earlier ones)

Nevertheless, turns out to be quite accurate even for small n

It will tell us how rate approaches cap. as n!1
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I.e., the approximation we made here is valid only for large n

This analysis doesn’t give bnds for all n (as did earlier ones)

Nevertheless, turns out to be quite accurate even for small n

It will tell us how rate approaches cap. as n!1

Berry-Esseen
bounds quite
loose relative
to an error
of 0.001 at 
block length of
n = 2000
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Next bound the “confusion” term

One term in a Binomial distribution, will bound by the max term:
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Continue with the “confusion” term

Note that this is the tail of a Binomial distribution (again)
We’ve seen two types of bounds today:

• Chernoff “large-deviation” bounds
• Berry-Esseen correction of Gaussian approximation

Which do you think is the right to use here?



Large deviation because:

So, the events are far from the mean, & Berry-Esseen won’t be good

After some manipulation (See PPV ’10) get  

Should use a large deviations bound

Note that the constant r can be chosen in the range p < r < 0.5,
where r play the role of the fraction of flips in the large deviation 
result
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This is the “confusion” event
The dominant event is far from the mean
Bound using a large-deviation technique This is the “outage” event

The dominant event is closer to the mean
Bound using a CLT (Berry-Esseen) technique

Combine two analyses
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Visualize the need to combine bounding techniques
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Zoomed−in CDFs for N = 2000

 

 

Binom(2000,0.11)
Binom(2000,0.5)
Gaussian approx.

Gaussian 
approximation
is accurate in this 
region, Chernoff
is loose

Gaussian 
approximation
terrible here, but 
saw earlier that 
Chernoff quite good
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Recall our earlier choice: 
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Counting codeword: calculate log-number of msgs

log M � n � log

✓

n

K

◆

� log
n � K

n � 2K

Applying Stirling’s approximation to
�n
K

�

we get

� log

✓

n

k

◆

� � log

 

e1/12

p
2⇡

!

� 0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

O(1)

log M � n � 0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

+ O(1)

Recall “Big-O” notation: f (x) = O(g(x)) as x !1 if and only i↵
9M > 0 and an x

0

such that |f (x)|  M|g(x)| for all x > x
0

log M � n � log

✓

n

K

◆

� log
n � K

n � 2K

Applying Stirling’s approximation to
�n
K

�

we get

� log

✓

n

k

◆

� �0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

� log

 

e1/12

p
2⇡

!

O(1)

log M � n � 0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

+ O(1)

Recall “Big-O” notation: f (x) = O(g(x)) as x !1 if and only i↵
9M > 0 and an x

0

such that |f (x)|  M|g(x)| for all x > x
0

terms

log M � n � log

✓

n

K

◆

� log
n � K

n � 2K

Applying Stirling’s approximation to
�n
K

�

we get

� log

✓

n

k

◆

� �0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

� log

 

e1/12

p
2⇡

!

O(1)

log M � n � 0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

+ O(1)

Recall “Big-O” notation: f (x) = O(g(x)) as x !1 if and only i↵
9A > 0 and an x

0

such that |f (x)|  A|g(x)| for all x > x
0



�0.5 log

✓

n

K (n � K )

◆

= �0.5 log

 

1

n(p + O( 1p
n
))(1� p � O( 1p

n
)

!

= 0.5 log n + O(1)

� n�nHB(p)+0.5 log n�log
1� p

p

p

np(1� p)Q�1

✓

✏� B + Gp
n

◆

+O(1)

log
1� p

p
=

d

dx
HB(x)

�

�

�

�

x=p

� n

�0
p

n

⌧ q

K = np +
p

np(1� p)Q�1

✓

✏� B + Gp
n

◆

log M � n � log

✓

n

K

◆

� log
n � K

n � 2K

Applying Stirling’s approximation to
�n
K

�

we get

� log

✓

n

k

◆

� � log

 

e1/12

p
2⇡

!

� 0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

O(1)

log M � n � 0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

+ O(1)

Recall “Big-O” notation: f (x) = O(g(x)) as x !1 if and only i↵
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Apply Taylor’s formula and the choice of K to these two terms

Final step: linearize via Taylor’s formula

log M � n � log

✓

n

K

◆

� log
n � K

n � 2K

Applying Stirling’s approximation to
�n
K

�

we get

� log

✓

n

k

◆

� �0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

� log

 

e1/12

p
2⇡

!

O(1)

log M � n � 0.5 log

✓

n

K (n � K )

◆

� nHB

✓

K

n

◆

+ O(1)

Recall “Big-O” notation: f (x) = O(g(x)) as x !1 if and only i↵
9A > 0 and an x

0

such that |f (x)|  A|g(x)| for all x > x
0

�0.5 log

✓

n

K (n � K )

◆

= �0.5 log

 

1

n(p + O( 1p
n
))(1� p � O( 1p

n
)

!

= 0.5 log n + O(1)

� n�HB(p)+0.5 log n�log
1� p

p

p

np(1� p)Q�1

✓

✏� B + Gp
n

◆

+O(1)

log
1� p

p
=

d

dx
HB(x)

�

�

�

�

x=p
comes from Taylor approximation

Incorporate into 
O(1) by appealing 
to Taylor’s again



Compare approximation to earlier bounds
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Normal approx
RCU bound
ML decoding (lower bound)
Bounded distance
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.
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There is a matching converse:

log M  n(1� HB(p)) + 0.5 log n �
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Even given caveat earlier about
short block lengths, we see the
approximation is extremely good 
even for very short block lengths

V is called the channel “dispersion”Capacity term



Normal approximation BSC & DMCs

For the BSC we’ve seen (M* is largest possible M):
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✏ < 0.5



Normal approximation BSC & DMCs

For the BSC we’ve seen (M* is largest possible M):

For DMCs w/ a unique capacity-achieving input dist. can show:

where the channel “dispersion” can be calculated as

Information density

Compare order terms to see expansion a bit more exact for BSCs

Cap-achieving input dist
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Recap: three decoders

Bounded distance
• Easy to analyze & gave us theme of analysis, split into “outage” 

and “confusion” events 
• Identified regimes of interest: fixed rate and fixed Pr[err]
• Allowed us to see scaling of threshold

ML analysis for fixed rate (error exponents)
• Introduced coupling between “outage” & “confusion”
• Applied Chernoff bounds to each

ML analysis for fixed Pr[err] (non-asymptotic)
• Finer analysis of coupled event
• Got to the “normal” approximation: use Berry-Esseen for 

“outage” and large deviation for “confusion”
• Understood how rate can approach capacity 
• Normal approximation quite accurate even for small n



Talk objectives: recap

• Beyond typicality decoding: Analyzed ML decoding

• As block length increases: 
• How quickly does error drop? Error exponents
• How quickly do you approach capacity? Normal approx

• Intro to tools used to answer such questions:
• Large deviations: Chernoff bounds
• Gaussian approximations: Berry-Esseen

• When to use which type of tool & connections between: 
Chernoff when tail starts far from mean, Berry-Esseen 
when tail starts close to mean.

• Will try to illustrate general techniques and results in 
simplest illustrative context: BSC  Showed general forms
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Normal approx
RCU bound
ML decoding (lower bound)
Bounded distance
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Plot of error exponent vs rate, p = 0.11

Talk results: two interesting & connected problems

Error exponents Finite block length analysis


