
Error correction guarantees

Drawback of asymptotic analyses

• Valid only as long as the incoming messages are

independent. (independence assumption)

• The messages are independent for l iterations only if the

neighborhoods of depth l around the variable nodes are

trees.

• In a Tanner graph of girth g, the number of independent
iterations satisfies the relation g/4-1≤l<g/4

Adapted from LDPC Codes: An Introduction by Amin Shokrollahi

Independence assumption

• If n is the total number of variable nodes, this puts an

upper bound on l (of the order log(n)

• l =log(n) number of iterations is usually not enough to

prove that the decoding process corrects all errors.

• A different analysis is needed to show that the decoder

succeeds.

• A property of the graphs that guarantees successful

decoding is called expansion.

Expanders

• Definition: A bipartite graph with n variable

nodes is called an (,)-expander if for

any subset S of the variable nodes of size

at most n the number of (check node)

neighbors of S is at least  aS |S|, where aS

is the average degree of the nodes in S.

 |S|   n  |(S)|   aS |S|

• Remark: if there are many edges going out

of a subset of message nodes, then there

should be many different (unshared)

neighbors.

S (S)

Decoding on the BEC

• Theorem: If a Tanner graph is an (,1/2)-expander, then

the erasure decoding algorithm recovers any set of n or

fewer erasures.

• Proof: Suppose that this were not the case and consider

a minimal counterexample consisting of a nonempty set
S of erasures. Consider the subgraph induced by S, and

denote by (S) the set of neighbors of S.

S

(S)

S

(S)

Proof - continuation

• No node in (S) has degree 1, since this neighbor would

recover one element in S and would contradict the

minimality of S. Hence, the total number of edges

emanating from these nodes is at least 2|(S)|.

• On the other hand, the total number of edges emanating
from S is aS|S|, so aS |S| 2|(S)|,

• which implies |(S)|aS |S|/2 and contradicts the

assumption of the ½- expansion property of the graph.

S

(S)

Decoding on BSC

• Parallel bit-flipping algorithm:

• While there are unsatisfied check bits
– Find a bit for which more than d/2 neighboring checks are

unsatisfied

– Flip that bit

• Properties:
– Converges under the condition that every step reduces

unsatisfied nodes by at least 1.

– Runs in linear time.

(note: a check is unsatisfied if sum of its bits  0)

Bit-flipping decoder on BSC

• Observation: The decoder progresses with correcting
errors as long there are bits for which more than dv/2

neighboring checks are unsatisfied.

• What property on the graph ensures that? Expansion.

• Lemma: Consider a (α,dv) expander with n variable

nodes and let k ≤ n be the number of variables in error.

Then, there are more than dv/2 unsatisfied checks.

Expander arguments

• Sipser and Spielman (1996): Let G be a

(dv, dc, α, ( +ε)dv) expander over n variable nodes, for

any ε > 0. Then, the parallel bit flipping algorithm will
correct any α0 < α (1+4ε)/2 fraction of error after

log1/(1-4ε)(α0n) decoding rounds

• Burshtein and Miller, (2001): “Expander graph arguments

for message passing algorithms”

• Feldman et al. (2003): “ LP Decoding corrects a constant

fraction of errors”

Drawbacks of expander arguments

• Bounds derived using random graph arguments on the

fraction of nodes having sufficient expansion are very

pessimistic
– Richardson and Urbanke (2003): In the (5,6) regular code

ensemble, minimum distance is 3% of code length. But only

3.375 x 10-11 fraction of nodes have expansion of  ()dv

• Expansion arguments cannot be used for column-
weight-three codes (they work for dv  5)

• Determining the expansion of a given graph known to be

NP hard, and spectral gap methods cannot guarantee an
expansion factor  

Girth and column-weight

• The expansion arguments rely on properties of random

graphs and hence do not lead to explicit construction of

codes.

• Ii the expansion properties can be related to the
parameters of the Tanner graph, such as g, and dv , then

the bounds on guaranteed error correction capability can

be established as function of these parameters.

Finite length analysis goals

• Establish a connection between guaranteed error
correction capability and graph parameters such as g,

girth, and dv , variable degree

• Column weight dv=3 is the main focus

13

Number of correctable errors and FER

• Consider the BSC, and let ck - the number of

configurations of received bits for which k channel error

lead to a codeword (frame) error.

• Let i - the minimal number of channel errors that can

lead to a decoding error. Then

• When 1

• What is usually plotted (semi-log scale):

• As the error probability decreases… e have that

 so

14

Frame error rate (FER)

Practical problems related to error floor

Error floor estimation Code construction

FER contribution of different error patterns

Trapping sets

Basic concepts

• An eventually correct variable node

• A fixed point of iterative decoding

• Inducing set

• Fixed set

• The critical number m of a trapping set is the minimal

number of variable nodes that have to be initially in error

for the decoder to end up in that trapping set.

• An(a,b) trapping set: a set of not eventually correct

variabe nodes of size a, and the b odd degree check

nodes in the sub-graph induced by these variable nodes.

Basic terminology

• Consider an LDPC code of length n, and assume that

the all-zero codeword is transmitted over the BSC, and
that the word y is received.

• Let xl, l ≤ D be the decoder output vector at the l th

iteration (D the maximum number of iterations).

• A variable node v is said to be eventually correct if there

exists a positive integer q such that for all l ≥ q,
 v  supp(xl)

• A decoder failure is said to have occurred if there does
not exist l ≤ D such that

 supp(xl) = ∅.

Trapping sets of various decoders

• The decoding failures for various algorithms on different

channels are closely related

• Example BSC:

– Bit flipping algorithm: {v1, v3}, {v2, v4}, {v1, v2, v3}…

– Gallager A/B algorithm: {v2, v4, v5}

– LP decoder: {v1, v2, v3, v4, v5}

Critical number

• The critical number m of a trapping set (for a given

decoder) is the minimal number of variable nodes that

have to be initially in error for the decoder to end up in

that trapping set

Definitions

• Definition 1: Let T(y) denote the set of variable nodes

that are not eventually correct. If T(y) ≠ ∅, let a = |T(y)|
and b be the number of odd degree check nodes in the

sub-graph induced by T(y). We say T(y) is an (a, b)
trapping set.

• Note that for each failure of the iterative decoder, there is

a corresponding set of corrupt variable nodes

 F = supp(xD)

• The set F is not necessarily a trapping set because it

may not contain all the variable nodes that are eventually

incorrect, such as variable nodes that oscillate between

the right value and the wrong value.

Inducing sets and fixed sets

• Definition 2: Let T be a trapping set. If T(y) = T then

supp(y) is an inducing set of T.

• Definition 3: Let T be a trapping set and let

Y(T) = {y |T(y) = T }. The critical number m(T) of

trapping set T is the minimal number of variable nodes

that have to be initially in error for the decoder to end up
in the trapping set T , i.e. m(T) = minY(T) |supp(y)|

• Definition 4: The vector y is a fixed point of the decoding

algorithm if supp(y) = supp(xl) for all l.

• Definition 5: If T(y) is a trapping set and y is a fixed

point, then T(y) = supp(y) is called a fixed set.

The (a,b) notation

• A (a,b) trapping set is a set of a variable nodes whose

induced sub-graph has b odd degree checks

• The most important parameter – critical number:

– The minimal number of variable nodes that have to be initially in

error for the decoder to end up in the trapping set

• To “end up” in a trapping set means that (after a finite

number of iterations) the decoder will be in error, on at

least one variable node at every iteration

Trapping sets for column weight-three codes

• Theorem [Chillapagari et al., (2009)]: (sufficient

conditions) Let  be a subgraph induced by the set of
variable nodes T. Let the checks in  can be partitioned

into two disjoint subsets: E consisting of checks with

even degree, and O consisting of checks with odd

degree. The vector y is a fixed set if :

 (a) supp(y)=T,

 (b) Every variable node in  is connected to at least two
checks in E ,

 (c) No two checks of O are connected to a variable node

outside .

More ambitious goal

• The decoding failures for various algorithms on different

channels are closely related and are dependent on only a

few topological structures.

• These structures are either trapping sets for iterative

decoding algorithms on the BSC or larger subgraphs

containing these trapping sets.

• On the BSC, trapping sets are subgraphs formed by

cycles or union of cycles.

• Ultimate goal: Find topological interrelations among

trapping sets/topological interrelations among error

patterns that cause decoding failures for various

algorithms on different channels.

Graphical Representation

• Tanner graph representation

• Line and point representation

Trapping set ontology

• Parent

• Children

Trapping Set Ontology

• Children are obtained by adding lines to parents,

changing the color of the points accordingly.

• Examples:

=

Evolution

On the critical number of trapping sets

• Conjecture:

 The critical number of a trapping set T is upper bounded

by the critical number of its parents.

• Relatively determine the harmfulness of a trapping set.

• Examples:

 - Two (6,4) trapping sets: different in number of inducing

sets

Two 8-cycles

(more harmful)

One 8-cycle

One 10-cycle

(less harmful)

On the critical number of trapping sets

• Examples:

 - Two (7,3) trapping sets: different in critical number

Child of (5,3)

Critical number = 3

(more harmful)

Child of (6,4)

Critical number = 4

 (less harmful)

Trapping set ontology

• Allerton 2009: trapping set ontology

• A database and software for systematic study of failures

of iterative decoders on BSC
http://www.ece.arizona.edu/vasiclab/Projects/CodingTheory/Trapping

SetOntology.html

TS #TS g=6 g=8 g=10 g=12

(3,3) 1 1

 (4,4) 1 1

(4,2) 1 1

 (4,0) 1 1

(5,5) 1 1

(5,3) 2 1 1

(5,1) 1 1

(6,6) 1 1

(6,4) 4 2 2

(6,2) 4 3 1

(6,0) 2 1 1

Number of trapping sets

Trapping Set Ontology

35

Example: Tanner code

• A good test case (dmin=20, blocks of size 31, all

codewords, trapping sets repeat 31 times)

Cycle inventory in different (a,b) topologies

Trapping set structure in Tanner code

• 1023 weight-20 codewords belong in total

• Only 3 non-isomorphic graphs: (Types T1 T2 and T3).

– Types T1 and T2 contain the minimal TS(5,3),

– Type T3 does not contain the TS(5,3).

Codeword structure in Tanner code (1)

Codeword structure in Tanner code (2)

Codeword structure in Tanner code (3)

Codeword structure in Tanner code (4)

Codeword structure in Tanner code (5)

Codeword structure in Tanner code (6)

Searching for trapping sets

46

• Trapping sets are searched for in a way similar to how

they have evolved in the Trapping Set Ontology.

• Since the induced subgraph of every trapping set

contains at least a cycle, the search for trapping sets

begins with enumerating cycles.

• After cycles are enumerated, they will be used in the

search for bigger trapping sets.

• A bigger trapping set can be found in a Tanner graph by

expanding a smaller trapping set.

Searching for trapping sets

47

• For example: Suppose that is a direct successor of

, and that all trapping sets have been enumerated. In

order to enumerate trapping sets, we search for sets

of variable nodes such that the union of such a set with a

trapping set form a trapping set.

• The complexity of the search for trapping sets in the

Tanner graph of a structured code can be greatly

reduced by utilizing the structural property of its parity-

check matrix.

Searching for trapping sets

48

Searching for Trapping Sets

49

How many errors can a column weight three

code correct under iterative decoding?

Instantons and trapping sets

Trapping sets

Codeword

Failures of Iterative Decoders

Variable degree decrease

The curious case of dv = 3 codes

• Gallager showed that the minimum distance of
ensembles of (dv, dc) regular LDPC codes with dv ≥ 3
grows linearly with the code length

• This implies that under ML decoding, dv = 3 codes are

capable of correcting a number of errors linear in the

code length

• Gallager also showed that under his algorithms A and B

the bit error probability approaches zero whenever we

operate below the threshold

• But, the correction of a linear fraction of errors was not

shown

Other complications with dv = 3 codes

• Even for the more complex LP decoding, it has not been
shown that codes with dv = 3 can correct a fraction of

errors

• To correct linear fraction of errors the expansion factor of
 is necessary, but the best expansion factor achievable

by dv = 3 codes is 1-1/dv =

2
3

Correcting fixed number of errors

• Bounded distance decoders (trivial)
– A code with minimum distance 2t+1 can correct t errors

• Iterative decoding on BEC (solved)
– Can recover from t erasures if the size of minimum stopping set

is at least t+1

• Iterative message passing decoding on BSC (unknown)

– Error floor

 ck - the number of configurations of received bits for

which k channel error lead to a codeword (frame) error

Trapping sets - sufficient conditions

• Theorem 1: Let C be a code in the ensemble of (3, ρ)
regular LDPC codes. Let  be a subgraph induced by
the set of variable nodes T. Let the checks in  can be

partitioned into two disjoint subsets: E consisting of

checks with even degree, and O consisting of checks

with odd degree. y is a fixed point if :

 (a) supp(y)=T,

 (b) Every variable node in  is connected to at least two
checks in E ,

 (c) No two checks of O are connected to a variable node

outside .

Trapping sets: examples

(3,3) trapping set (5,3) trapping set

(8,0) Trapping Set

The upper bounds

• Theorem 2: Let C be an (n, 3, ρ) regular LDPC code with

girth g. Then:

– If g = 4, then C has at least one FS of size 2 or 3.

– If g = 6, then C has least one FS of size 3 or 4.

– If g = 8, then C has at least one FS of size 4 or 5.

– If g ≥ 10, then the set of variable nodes {v1,v2, ... ,vg/2} involved in

the shortest cycle is a TS of size g/2.

• By Theorem 1, {v1,v2, ... ,vg/2} is the support of a fixed

point.

Consequences

• For column weight three codes, the weight of correctable

error patterns under Gallager A algorithm grows only

linearly with girth

• For any α>0 and sufficiently large block lengths n, no

code in the Cn(3, ρ) ensemble can correct all αn errors

under Gallager A algorithm

The lower bound lemmas

• Theorem 3: An (n, 3, ρ) code with girth g ≥ 10 can

correct all error patterns of weight g/2−1 or less in g/2

iterations of the Gallager A algorithm.

• Equivalently, there are no trapping sets with critical
number less than g/2.

• Proof: Finding, for a particular choice of k, all

configurations of g/2−1 or less bad variable nodes which

do not converge in k+1 iterations and then prove that

these configurations converge in subsequent iterations.

Bad configurations (k=1 and k=2)

Bad configurations (k=3)

Configurations not converging in k+1 iterations

Finding all failures of Gallager A decoder

• A fundamental question: what are all the k error patterns

that the Gallager A fails to correct?

• Modified decoders can be designed to correct such error

patterns

• Only partial answer form previous analysis: k variables

involved in a cycle of length 2k

– k variables that form a fixed set

• More complicated cases possible

– Tanner graphs with high girth also contain structures other than

cycles

The Moore Bound

• Theorem 8: For all k < n0(γ/2, g′), any set of k variable

nodes in a γ ≥ 4-left regular Tanner graph with girth 2g’

expands by a factor of at least 3γ/4.

• Corollary 1: Let C be an LDPC code with column-weight
γ ≥ 4 and girth 2g′. Then the bit flipping algorithm can

correct any error pattern of weight less than n0( /2, g′)/2.

• n0(d, g) - the Moore bound . A lower bound on the least

number of vertices in a d-regular graph with girth g.

Cage Graphs

• A (d, g)-cage graph, G(d, g), is a d-regular graph with

girth g having the minimum possible number of nodes.

• Theorem 10: Let C be an LDPC code with γ-left regular

Tanner graph G and girth 2g′. Let T (γ, 2g′) denote the

size of smallest possible potential trapping set of C for

the bit flipping algorithm. Then,

 |T (γ, 2g′)| = nc(⌈γ/2⌉ , g′).

• Theorem 11: There exists a code C with γ-left regular

Tanner graph of girth 2g′ which fails to correct
 nc(⌈γ /2⌉ , g′) errors.

Comments

• For γ=3 and γ=4, the above bound is tight.

• Observe that for d=2, the Moore bound is n0(d, g)=g and

that a cycle of length 2g with g variable nodes is always

a potential trapping set.

• For a code with γ=3 or 4, and Tanner graph of girth

greater than eight, a cycle of the smallest length is

always a trapping set.

Refined Expansion

• Theorem : An LDPC code with column-weight four and

girth six can correct three errors in four iterations of

message-passing decoding if and only if the conditions,

4 → 11, 5 → 12, 6 → 14, 7 → 16 and 8 → 18 are

satisfied.

• y → z means that any set of y variable nodes has at

least z neighbors

Summary

• Introduced LDPC codes, Tanner graphs, iterative

decoders

• For BEC showed how to analyze failures using the

concept of stopping sets

• For BSC introduced trapping sets and showed how to

enumerate them.

Extra slides

Error floor

Critical number

• With every trapping set T is associated a critical number

m (or m(T)) defined as the minimum number of nodes in
T that have to be initially in error for the decoder to end

in that trapping set.

• Smaller values of m mean that fewer number of errors
can result in decoding failure by ending in that trapping
set.

m=3

m=3 m=4

Strength of a trapping set

• Not all configurations of m errors in a trapping set result
in a decoding failure.
– (5, 3) TS: m=3, only one configuration of three errors leads to a

decoding failure.

– (4, 2) TS: m=3m all the four combinations of three errors lead to
decoding failure.

• A set of m erroneous variable nodes which leads to a
decoding failure by ending in a trapping set T of class X
is called a failure set of X .

• The number of failure sets of T is called the strength of
T and is denoted by s. A class X has s|X| failure sets.

m=3

m=3

Approximation

• The contribution of each class of trapping set:

• is the probability that a given set of m
variable nodes is a failure set of class c.

• There are such subsets with cardinality m for a set
with r elements (this probability is computed using the
structure of Tanner graph).

P r P r | e rro rs P r e rro rs
M

r m

r r

P r | e rro rs
rs

r
n m

m

| |
n

m
s

r

m

P r e rro rs (1)
n r n r

r
r

FER contribution of different error patterns

Designing better codes using trapping sets

Quasi-cyclic codes

Designing better decoders

(3 bits)

Multi-bit iterative decoders

• Gallager-like algorithms, but the messages are binary

vectors of length m, m>1.

• Variable and check node update functions – Boolean

– no infinite number of bits for intermediate computations

• Given m bit-messages, one wants to chose the Boolean

functions to guarantee correction of k errors in I

iterations.

• We present 2-bit and 3-bit decoders

• On BSC, our decoders outperform the belief propagation

(BP) decoder in the error floor region.

• More importantly, they achieve this at only a fraction of

the complexity of the BP decoder.

3-bit decoder that surpasses BP

Numerical results

N=155, R=0.4,Tanner code N=768, R=0.75, Quasicyclic code

Numerical results

N=4085, R=0.82,MacKay code N=1503, R=0.668, Quasicyclic code

Note: Notice the diffference in

slope of FER

Extra slides

Trapping set as decoding failures

• The all zero codeword is transmitted.

• The decoder performs D iterations.

– y = (y1 y2 . . . yn) - decoder input

– xl , l≤ D -the decoder output vector at the l-th iteration

• A variable node v is eventually correct if there exists a

positive integer d such that for all l > d, vsupp(xl).

• A decoder failure is said to occur if there does not exits

l ≤ D such that supp(xl) = ∅.

– T(y) – a nonempty set of variable nodes that are not eventually

correct

– G - subgraph induced by T(y), C(G) =EO (even and odd

degree check nodes in)

– T(y) is an (a,b) trapping set, where a = |T(y)|, b =|O|

