
Error correction guarantees 



Drawback of asymptotic analyses 

•  Valid only as long as the incoming messages are 

independent. (independence assumption) 

• The messages are independent for l  iterations only if the 

neighborhoods of depth l around the variable nodes are 

trees. 

 

 

 

 

• In a Tanner graph of girth g, the number of independent 
iterations satisfies the relation g/4-1≤l<g/4 

 
Adapted from LDPC Codes: An Introduction by Amin Shokrollahi 



Independence assumption 

• If n is the total number of variable nodes, this puts an 

upper bound on l (of the order log(n)  

• l =log(n) number of iterations is usually not enough to 

prove that the decoding process corrects all errors.  

• A different analysis is needed to show that the decoder 

succeeds. 

• A property of the graphs that guarantees successful 

decoding is called expansion.  

 



Expanders 

• Definition: A bipartite graph with n variable 

nodes is called an (,)-expander if for 

any subset S of the variable nodes of size 

at most n the number of (check node) 

neighbors of S is at least  aS |S|, where aS 

is the average degree of the nodes in S. 

    

        |S|   n    |(S)|   aS |S|  

 

• Remark: if there are many edges going out 

of a subset of message nodes, then there 

should be many different (unshared) 

neighbors. 

 

S (S) 



Decoding on the BEC 

• Theorem: If a Tanner graph is an (,1/2)-expander, then 

the erasure decoding algorithm recovers any set of n or 

fewer erasures. 

• Proof: Suppose that this were not the case and consider 

a minimal counterexample consisting of a nonempty set 
S of erasures. Consider the subgraph induced by S, and 

denote by (S) the set of neighbors of S.  
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Proof - continuation 

• No node in (S) has degree 1, since this neighbor would 

recover one element in S and would contradict the 

minimality of S. Hence, the total number of edges 

emanating from these nodes is at least 2|(S)|. 

 

 

  

 

• On the other hand, the total number of edges emanating 
from S is aS|S|, so aS |S| 2|(S)|, 

• which implies |(S)|aS |S|/2 and contradicts the 

assumption of the ½- expansion property of the graph. 
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Decoding on BSC 

• Parallel bit-flipping algorithm: 

• While there are unsatisfied check bits 
– Find a bit for which more than d/2 neighboring checks are 

unsatisfied 

– Flip that bit 

• Properties: 
– Converges under the condition that every step reduces 

unsatisfied nodes by at least 1. 

– Runs in linear time. 

 

(note: a check is unsatisfied if sum of its bits  0) 

 

 



Bit-flipping decoder on BSC 

• Observation: The decoder progresses with correcting 
errors as long there are bits for which more than dv/2 

neighboring checks are unsatisfied.  

• What property on the graph ensures that? Expansion. 

• Lemma: Consider a (α,dv) expander with n variable 

nodes and let k ≤ n be the number of variables in error. 

Then, there are more than dv/2 unsatisfied checks. 

 



Expander arguments 

• Sipser and Spielman (1996): Let G be a                       

(dv, dc, α, ( +ε)dv) expander over n variable nodes, for 

any ε > 0. Then, the parallel bit flipping algorithm will 
correct any  α0 < α (1+4ε)/2 fraction of error after      

log1/(1-4ε)(α0n)  decoding rounds 

 

• Burshtein and Miller, (2001): “Expander graph arguments 

for message passing algorithms” 

• Feldman et al. (2003): “ LP Decoding corrects a constant 

fraction of errors” 

 



Drawbacks of expander arguments 

• Bounds derived using random graph arguments on the 

fraction of nodes having sufficient expansion are very 

pessimistic 
– Richardson and Urbanke  (2003):  In the (5,6) regular code 

ensemble,  minimum distance is 3% of code length. But only 

3.375 x 10-11 fraction of nodes have expansion of  ()dv 

• Expansion arguments cannot be used for column-
weight-three codes (they work for dv  5) 

• Determining the expansion of a given graph known to be 

NP hard, and spectral gap methods cannot guarantee an 
expansion factor    

 

 

 



Girth and column-weight 

• The expansion arguments rely on properties of random 

graphs and hence do not lead to explicit construction of 

codes.  

• Ii the expansion properties can be related to the 
parameters of the Tanner graph, such as g, and dv , then 

the bounds on guaranteed error correction capability can 

be established as function of these parameters. 

 

 



Finite length analysis goals   

• Establish a connection between guaranteed error 
correction capability and graph parameters such as g, 

girth, and dv , variable degree 

• Column weight dv=3 is the main focus 
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Number of correctable errors and FER 

• Consider the BSC, and let ck - the  number of 

configurations of received bits for which k channel error 

lead to a codeword (frame) error. 

• Let i - the minimal number of channel errors that can 

lead to a decoding error. Then 

 

 

 

• When 1 

 



• What is usually plotted (semi-log scale): 

 

 

 

 

• As the error probability decreases… e have that 

 

 

 

 

 so 
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Frame error rate (FER) 



Practical problems related to error floor 

 

 

 

 

 

 

 

 

 

 

 

 

Error floor estimation Code construction 



FER contribution of  different error patterns 

 



Trapping sets 



Basic concepts 

• An eventually correct variable node 

• A fixed point of iterative decoding 

• Inducing set  

• Fixed set 

• The critical number m of a trapping set is the minimal 

number of variable nodes that have to be initially in error 

for the decoder to end up in that trapping set. 

 

• An(a,b) trapping set: a set of not eventually correct 

variabe nodes of size a, and the b odd degree check 

nodes in the sub-graph induced by these variable nodes.  

 

 



Basic terminology 

• Consider an LDPC code of length n, and assume that 

the all-zero codeword is transmitted over the BSC, and 
that the word y is received.  

• Let xl, l ≤ D be the decoder output vector at the l th 

iteration (D the maximum number of iterations). 

• A variable node v is said to be eventually correct if there 

exists a positive integer q such that for all l ≥ q,             
   v  supp(xl) 

• A decoder failure is said to have occurred if there does 
not exist l ≤ D such that  

                                  supp(xl) = ∅. 

 



Trapping sets of various decoders 

• The decoding failures for various algorithms on different 

channels are closely related 

• Example BSC: 

 

 

 

 
– Bit flipping algorithm: {v1, v3}, {v2, v4}, {v1, v2, v3}… 

– Gallager A/B algorithm:  {v2, v4, v5} 

– LP decoder: {v1, v2, v3, v4, v5} 

 

 

 



Critical number 

• The critical number m of a trapping set (for a given 

decoder) is the minimal number of variable nodes that 

have to be initially in error for the decoder to end up in 

that trapping set 

 



Definitions 

• Definition 1: Let T(y) denote the set of variable nodes 

that are not eventually correct. If T(y) ≠ ∅, let a = |T(y)| 
and b be the number of odd degree check nodes in the 

sub-graph induced by T(y). We say T(y) is an (a, b) 
trapping set. 

• Note that for each failure of the iterative decoder, there is 

a corresponding set of corrupt variable nodes 

    F = supp(xD)  

• The set F is not necessarily a trapping set because it 

may not contain all the variable nodes that are eventually 

incorrect, such as variable nodes that oscillate between 

the right value and the wrong value. 

 



Inducing sets and fixed sets 

• Definition 2: Let T be a trapping set. If T(y) = T then 

supp(y) is an inducing set of T. 

• Definition 3: Let T be a trapping set and let               

Y(T) = {y |T(y) = T }. The critical number m(T) of 

trapping set T is the minimal number of variable nodes 

that have to be initially in error for the decoder to end up 
in the trapping set T , i.e. m(T) = minY(T ) |supp(y)| 

• Definition 4: The vector y is a fixed point of the decoding 

algorithm if supp(y) = supp(xl) for all l. 

• Definition 5: If T(y) is a trapping set and y is a fixed 

point, then T(y) = supp(y) is called a fixed set. 

 



The (a,b) notation 

• A (a,b) trapping set  is a set of a variable nodes whose 

induced sub-graph has b odd degree checks 

• The most important parameter – critical number: 

– The minimal number of variable  nodes that have to be initially in 

error for the decoder to end up in the trapping set 

• To “end up” in a trapping set means that (after a  finite  

number of iterations)  the decoder will be in error, on at 

least one variable node  at every iteration 

 



Trapping sets for column weight-three codes 

• Theorem [Chillapagari et al., (2009)]: (sufficient 

conditions) Let  be a subgraph induced by the set of 
variable nodes T. Let the checks in  can be partitioned 

into two disjoint subsets: E consisting of checks with 

even degree, and O consisting of checks with odd 

degree. The vector y is a fixed set if :  

 (a) supp(y)=T,  

 (b) Every variable node in  is connected to at least two 
checks in E , 

 (c) No two checks of O are connected to a variable node 

outside . 

 



More ambitious goal 

• The decoding failures for various algorithms on different 

channels are closely related and are dependent on only a 

few topological structures. 

• These structures are either trapping sets for iterative 

decoding algorithms on the BSC or larger subgraphs 

containing these trapping sets. 

• On the BSC, trapping sets are subgraphs formed by 

cycles or union of cycles. 

• Ultimate goal: Find topological interrelations among 

trapping sets/topological interrelations among error 

patterns that cause decoding failures for various 

algorithms on different channels. 



Graphical Representation 

• Tanner graph representation 

 

 

 

 

 

• Line and point representation 



Trapping set ontology 

• Parent 

 

 

 

• Children 



Trapping Set Ontology 

• Children are obtained by adding lines to parents, 

changing the color of the points accordingly. 

• Examples: 

 

 

=
 



Evolution 



On the critical number of trapping sets 

• Conjecture: 

  The critical number of a trapping set T is upper bounded 

by the critical number of its parents. 

• Relatively determine the harmfulness of a trapping set. 

• Examples: 

 - Two (6,4) trapping sets: different  in number of inducing 

sets 

Two 8-cycles 

(more harmful) 

One 8-cycle 

One 10-cycle 

(less harmful) 



On the critical number of trapping sets 

• Examples: 

 - Two (7,3) trapping sets: different  in critical number 

Child of (5,3) 

Critical number = 3 

(more harmful) 

Child of (6,4) 

Critical number = 4 

 (less harmful) 



Trapping set ontology 

• Allerton 2009: trapping set ontology 

• A database and software for systematic study of failures 

of iterative decoders on BSC 
http://www.ece.arizona.edu/vasiclab/Projects/CodingTheory/Trapping

SetOntology.html 

 

 

 

 

 

 



TS #TS g=6 g=8 g=10 g=12 

(3,3) 1 1 

 (4,4) 1 1 

(4,2) 1 1 

 (4,0) 1 1 

(5,5) 1 1 

(5,3) 2 1 1 

(5,1) 1 1 

(6,6) 1 1 

(6,4) 4 2 2 

(6,2) 4 3 1 

(6,0) 2 1 1 

Number of trapping sets 



Trapping Set Ontology 
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Example: Tanner code 

•  A good test case (dmin=20, blocks of size 31, all 

codewords, trapping sets repeat 31 times) 



Cycle inventory in different (a,b) topologies 

 



Trapping set structure in Tanner code 

 



• 1023 weight-20 codewords belong in total 

• Only 3 non-isomorphic graphs: (Types T1 T2 and T3). 

– Types T1 and T2 contain the minimal TS(5,3), 

– Type T3 does not contain the TS(5,3). 

 



Codeword structure in Tanner code (1) 

 



Codeword structure in Tanner code (2) 

 



Codeword structure in Tanner code (3) 

 



Codeword structure in Tanner code (4) 

 



Codeword structure in Tanner code (5) 

 



Codeword structure in Tanner code (6) 

 



Searching for trapping sets 
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• Trapping sets are searched for in a way similar to how 

they have evolved in the Trapping Set Ontology. 

• Since the induced subgraph of every trapping set 

contains at least a cycle, the search for trapping sets 

begins with enumerating cycles. 

•  After cycles are enumerated, they will be used in the 

search for bigger trapping sets. 

• A bigger trapping set can be found in a Tanner graph by 

expanding a smaller trapping set. 



Searching for trapping sets 
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• For example:  Suppose that       is a direct successor of      

, and that all      trapping sets have been enumerated. In 

order to enumerate       trapping sets,  we search for sets 

of variable nodes such that the union of such a set with a      

trapping set     form a       trapping set. 

 

• The complexity of the search for trapping sets in the 

Tanner graph of a structured code can be greatly 

reduced by utilizing the structural property of its parity-

check matrix. 



Searching for trapping sets 
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Searching for Trapping Sets 
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How many errors can a column weight three 

code correct under iterative decoding? 



Instantons and trapping sets 

Trapping sets 

Codeword 



Failures of Iterative Decoders 

Variable degree decrease 



The curious case of dv = 3 codes 

• Gallager showed that the minimum distance of 
ensembles of (dv, dc) regular LDPC codes with dv ≥ 3 
grows linearly with the code length 

• This implies that under ML decoding, dv = 3 codes are 

capable of correcting a number of errors linear in the 

code length 

• Gallager  also showed that under his algorithms A and B 

the bit error probability approaches zero whenever we 

operate below the threshold 

• But, the correction of a linear fraction of errors was not 

shown 



Other complications with dv = 3 codes 

• Even for the more complex LP decoding, it has not been 
shown that codes with dv = 3 can correct a fraction of 

errors 

• To correct linear fraction of errors the expansion factor of 
 is necessary, but the best expansion factor achievable 

by dv = 3 codes is 1-1/dv  = 

 

 

 

 

2
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Correcting fixed number of errors 

• Bounded distance decoders (trivial) 
– A code with minimum distance 2t+1 can correct t errors 

• Iterative decoding on BEC (solved) 
– Can recover from t erasures if the size of minimum stopping set 

is at least t+1 

• Iterative message passing decoding on BSC (unknown) 

– Error floor 

 

 

 ck - the  number of configurations of received bits for 

which k channel error lead to a codeword (frame) error 

 



Trapping sets - sufficient conditions 

• Theorem 1: Let C be a code in the ensemble of (3, ρ) 
regular LDPC codes. Let  be a subgraph induced by 
the set of variable nodes T. Let the checks in  can be 

partitioned into two disjoint subsets: E consisting of 

checks with even degree, and O consisting of checks 

with odd degree. y is a fixed point if :  

 (a) supp(y)=T,  

 (b) Every variable node in  is connected to at least two 
checks in E , 

 (c) No two checks of O are connected to a variable node 

outside . 

 



Trapping sets: examples 

(3,3) trapping set (5,3) trapping set 

(8,0) Trapping Set 



The upper bounds 

• Theorem 2: Let C be an (n, 3, ρ) regular LDPC code with 

girth g. Then: 

– If g = 4, then C has at least one FS of size 2 or 3. 

– If g = 6, then C has least one FS of size 3 or 4. 

– If g = 8, then C has at least one FS of size 4 or 5. 

– If g ≥ 10,  then the set of variable nodes {v1,v2, ... ,vg/2}  involved in 

the shortest cycle is a TS of size g/2. 

• By Theorem 1, {v1,v2, ... ,vg/2} is the support of a fixed 

point. 

 



Consequences 

 

• For column weight three codes, the weight of correctable 

error patterns under Gallager A algorithm grows only 

linearly with girth 

 

• For any α>0 and sufficiently large block lengths n, no 

code in the Cn(3, ρ) ensemble can correct all αn errors 

under Gallager A algorithm 

 



The lower bound lemmas 

• Theorem 3: An (n, 3, ρ) code with girth g ≥ 10 can 

correct all error patterns of weight g/2−1 or less in g/2 

iterations of the Gallager A algorithm. 

• Equivalently, there are no trapping sets with critical 
number less than g/2. 

• Proof: Finding, for a particular choice of k, all 

configurations of g/2−1 or less bad variable nodes which 

do not converge in k+1 iterations and then prove that 

these configurations converge in subsequent iterations. 

 

 

 

 

 



Bad configurations (k=1 and k=2) 



Bad configurations (k=3) 



Configurations not converging in k+1 iterations 



Finding all failures of Gallager A decoder 

• A fundamental question: what are all the k error patterns 

that the Gallager A fails to correct? 

• Modified decoders can be designed to correct such error 

patterns 

• Only partial answer form previous analysis: k variables 

involved in a cycle of length 2k  

– k variables that form a fixed set 

• More complicated cases possible 

– Tanner graphs with high girth also contain structures other than 

cycles 

 



The Moore Bound 

• Theorem 8:  For all k < n0(γ/2, g′), any set of k variable 

nodes in a γ ≥ 4-left regular  Tanner  graph with girth 2g’ 

expands by a factor of at least 3γ/4. 

 

• Corollary 1: Let C be an LDPC code with column-weight 
γ ≥ 4 and girth 2g′. Then the bit flipping algorithm can 

correct any error pattern of weight less than n0( /2, g′)/2. 

 

• n0(d, g)  - the Moore bound . A lower bound on the least 

number of vertices in a d-regular graph with girth g. 

 

 



Cage Graphs 

• A (d, g)-cage graph, G(d, g), is a d-regular graph with 

girth g having the minimum possible number of nodes. 

 

• Theorem 10: Let C be an LDPC code with γ-left regular 

Tanner graph G and girth 2g′. Let T (γ, 2g′) denote the 

size of smallest possible potential trapping set of C for 

the bit flipping algorithm. Then, 

                         |T (γ, 2g′)| = nc(⌈γ/2⌉ , g′). 

 

• Theorem 11: There exists a code C with γ-left regular 

Tanner graph of girth 2g′ which fails to correct  
     nc(⌈γ /2⌉ , g′) errors. 

 

 



Comments 

• For γ=3 and γ=4, the above bound is tight.  

• Observe that for d=2, the Moore bound is n0(d, g)=g and 

that a cycle of length 2g with g variable nodes is always 

a potential trapping set.  

• For a code with γ=3 or 4, and Tanner graph of girth 

greater than eight, a cycle of the smallest length is 

always a trapping set. 

 



Refined Expansion 

• Theorem : An LDPC code with column-weight four and 

girth six can correct three errors in four iterations of 

message-passing decoding if and only if the conditions, 

4 → 11, 5 → 12, 6 → 14, 7 → 16 and 8 → 18 are 

satisfied. 

 

• y → z means that any set of y variable nodes has at 

least z neighbors 

 

 



Summary 

• Introduced LDPC codes, Tanner graphs, iterative 

decoders 

• For BEC showed how to analyze failures using the 

concept of stopping sets 

• For BSC introduced trapping sets and showed how to 

enumerate them. 

 



Extra slides 



Error floor 



Critical number 

• With every trapping set T is associated a critical number 

m (or m(T)) defined as the minimum number of nodes in 
T that have to be initially in error for the decoder to end 

in that trapping set.  

• Smaller values of m  mean that fewer number of errors 
can result in decoding failure by ending in that trapping 
set. 

 

 

 

 

 

m=3 
 

m=3 m=4 



Strength of a trapping set 

• Not all configurations of m  errors in a trapping set result 
in a decoding failure. 
– (5, 3) TS: m=3, only one configuration of three errors leads to a 

decoding failure.  

– (4, 2) TS: m=3m all the four combinations of three errors lead to 
decoding failure.  

 

 

 

• A set of m  erroneous variable nodes which leads to a 
decoding failure by ending in a trapping set T of class X 
is called a failure set of X .  

• The number of failure sets of T is called the strength of 
T and is denoted by s. A class X has s|X| failure sets. 

m=3 
 

m=3 



Approximation 

• The contribution of each class of trapping set: 

 

 

 

 

 

                  

•                       is the probability that a given set of m 
variable nodes is a failure set of class c. 

• There are       such subsets with cardinality m for a set 
with r elements (this probability is computed using the 
structure of Tanner graph). 
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FER contribution of  different error patterns 

 



Designing better codes using trapping sets 

 



Quasi-cyclic codes 



Designing better decoders  

 
(3 bits ) 



Multi-bit iterative decoders 

• Gallager-like algorithms, but the messages are binary 

vectors of length m, m>1. 

• Variable and check node update functions – Boolean  

– no infinite number of bits for intermediate computations 

• Given m bit-messages, one wants to chose the Boolean 

functions to guarantee correction of k errors in I 

iterations. 

• We present 2-bit and 3-bit decoders 

• On BSC, our decoders outperform the belief propagation 

(BP) decoder in the error floor region. 

• More importantly, they achieve this at only a fraction of 

the complexity of the BP decoder. 

 



3-bit decoder that surpasses BP 



Numerical results 

N=155, R=0.4,Tanner code N=768, R=0.75, Quasicyclic code 



Numerical results 

N=4085, R=0.82,MacKay code N=1503, R=0.668, Quasicyclic code 

Note: Notice the diffference in 

slope of FER 



Extra slides 



Trapping set as decoding failures 

• The all zero codeword is transmitted. 

• The decoder performs D iterations.  

– y = (y1 y2 . . . yn) - decoder input 

– xl , l≤ D -the decoder output vector at the l-th iteration  

• A variable node v is eventually correct if there exists a 

positive integer d such that for all l > d, vsupp(xl). 

• A decoder failure is said to occur if there does not exits   

l ≤ D such that supp(xl) = ∅. 

– T(y) – a nonempty set of variable nodes that are not eventually 

correct 

– G - subgraph induced by T(y), C(G) =EO (even and odd 

degree check nodes in) 

– T(y) is an (a,b) trapping set, where a = |T(y)|, b =|O| 

 


