
Codes on graphs and

iterative decoding

Bane Vasić

Error Correction Coding Laboratory

University of Arizona

Prelude

Information transmission

Channel

1 0 1 0 0 … 1 0 1 0 0 …

Information transmission

signal

time

threshold

1 0 1 1 0 0

Noisy memoryless channels

Channel

x1 x2 x3 x4 … y1 y2 y3 y4 …
p(yi | xi)

1 1

1

, . . . , | , . . . , |

n

n n j i

i

p y y x x p y x

Simple memoryless channels

• Binary symmetric channel (BSC)

• Binary erasure channel (BEC)

• Binary input additive white Gaussian

noise (AWGN) channel, 2

E

p(y|0)

p(y|1)

y

Channel capacity - BSC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

0

,

C

Channel capacity - BEC

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

0

0

C

E

Channel capacity - BAWGN

p(y|0)

p(y|1)

y

-25 -20 -15 -10 -5 5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

0

Eb=N0 (dB)

C

Eb/N0 (dB)

Error correction coding

• The decoder tries to find x (or m) from y so that the

probability of bit/codeword error is minimal.

• In other words, decoder tries to find a codeword “closest”
to y.

m̂
Encoder Decoder

Channel

x̂
m x y

1
(, . . . ,)

n
x x x

1
(, . . . ,)

k
m m m

1
(, . . . ,)

n
y y y

• Message

• Codeword

• Received word

• Code rate

kR
n

coded

Error rate performance

FER

SNR
10-1

10-6

10-15

Shannon limit
uncoded

Maximum likelihood decoding

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Protecting information by coding

all words of length n

all words of length n

Protecting information by coding

codewords

Minimum distance

Protecting information by coding

code C

Linear block codes

Dimension of a linear block code

h1

g2

g1

{g1,…,gk} the basis for code C

{h1,h2,…,hn-k} the basis of C

Encoding

Generator matrix

an k x n matrix of rank k

0 0 0

0 1 0

1 0 0

1 1 1

a b a b

0 0 0

0 1 1

1 0 1

1 1 0

a b a b

Linear block codes as subspaces

• Given a GF(2) (ground field), we define the vector space

- the n-tuple v=(v1,v2, … vn) of elements from the

ground filed is a type of vector.

• Elias and Golay: A binary linear (n,k) code C is a k -
dimensional subspace of a vector space Galois Field,
GF(2).

Parity check

g1

g2

h1

x
x h1

T =0

Parity check

g1

g2

h1

x

x h1
T =0

Parity check

g1

g2

h1

x

x h1
T =0

Syndrome

y h1
T 0

y

h1

g1

g2

Dual code C

• Let x be a codeword

• A received vector which is not a codeword results in a

nonzero syndrome.

parity check matrix

Linear constraints

• A codeword x satisfies

• n-k equations in n variables

• Example:

0
T

v H

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

H

1 1 4 6 7

52 2 4 6

53 3 6 7

: 0

: 0

: = 0

c x x x x

c x x x x

c x x x x

Side observations

• Since for any codeword x.

• and since it follows

– H can be found from G.

• For any a,b {0,1}

• The parity check matrix can be modified by adding linear

combinations of its rows.

• The ranks of any such new parity matrix is still n-k.

LDPC code basics

Applications of LDPC codes

• Wireless networks, satellite communications, deep-space

communications, power line communications are among

applications where the low-density parity check (LDPC) codes are

the standardized. Standards include: Digital video broadcast over

satellite (DVB-S2 Standard) and over cable (DVB-C2 Standard),

terrestrial television broadcasting (DVB-T2, DVB-T2-Lite Standards),

GEO-Mobile Radio (GMR) satellite telephony (GMR-1 Standard),

local and metropolitan area networks (LAN/MAN) (IEEE 802.11

(WiFi)), wireless personal area networks (WPAN) (IEEE 802.15.3c

(60 GHz PHY)), wireless local and metropolitan area networks

(WLAN/WMAN) (IEEE 802.16 (Mobile WiMAX), near-earth and deep

space communications (CCSDS), wire and power line

communications (ITU-T G.hn (G.9960)), utra-wide band

technologies (WiMedia 1.5 UWB), magnetic hard disk drives, optical

communications, flash memories.

Outline

• Basics

– Error correction codes, linear block codes, parity check matrices,

code graphs

– Decoding using local information, iterative decoders

– Decoders as finite-state dynamical systems, basins of attraction

and decoding failures

• Failures of iterative decoders

– Correcting number of errors linear in code length

– Finite length analysis

– Trapping sets

• Code design

– Combinatorial designs and codes

– Quasi-cyclic codes designed from group-theoretic transforms,

Latin squares, difference families, finite geometries

Graphical model for a linear block code

 Variables

1 1 4 6 7

2 2 4 5 6

3 3 5 6 7

: 0

: 0

: = 0

c v v v v

c v v v v

c v v v v

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3

Checks

Definitions

• LDPC codes belong to the class of linear block codes

which can be defined by sparse bipartite graphs.

• The Tanner graph of an LDPC code is a bipartite graph

with two sets of nodes:

– the set of variable nodes

– and the set of check nodes

V

C

Definitions

• The check nodes (variable nodes resp.) connected to a

variable node (check node resp.) are referred to as its

neighbors.

• The set of neighbors of a node is denoted by

• The degree of a node is the number of its

neighbors.

Definitions

• A vector is a codeword if and only if

for each check node, the modulo two sum of its

neighbors is zero.

• An regular LDPC code has a Tanner graph with

variable nodes each of degree and check nodes

each of degree .

• This code has length rate

• The Tanner graph is not uniquely defined by the code

and when we say the Tanner graph of an LDPC code,

we only mean one possible graphical representation.

An example of a regular n=25 =3, =5 code

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

H

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0

Iterative decoding

Message Passing Example: 1

Message Passing Example: 1

2

3

4

5

6

7

8

9

Done !

An unresolvable configuration

Stucked !

Iterative decoders for BEC

 Iterative decoding on BEC

E
erased bit

correct bit

Decoding simulation

BEC decoding simulation

a check involving a single erased bit

other check

BEC simulation - 1

a check satisfied after correction

BEC simulation - 2

BEC simulation - 3

BEC simulation - 4

BEC simulation - 5

BEC simulation - 6

Success !

Another example BEC simulation - 1

Another example BEC simulation - 2

BEC simulation -final

Stuck !

Decoding failures

• A BEC iterative decoder fails to converge to a codeword

(correct or wrong) if at any iteration there is no check

node connected to less than one erased variable node.

• A graph induced by such set of check nodes is called a

stopping set.

Combinatorial definition of a stopping set

• Consider a set S of variable nodes.

• Let N(S) be a set of all checks nodes connected to S.

• If smallest outdegree of nodes in N(S) is two, then S is a

stopping set.

• Other channels such as BSC, AWGN do not have such

combinatorial definition of a decoding failure.

S

N(S)

Iterative decoders for BSC

Decoding on graphs on BSC

• Two basic types of algorithms:

– Bit flipping

– Message passing

Bit flipping

• If more checks are unsatisfied than satisfied, flip the bit.

• Continue until all checks are satisfied

Message passing

x f
()

x f
x

()
f x

x

h1

h2

1

()
h x

x

2

()
h x

x

1
1

()
y f

y

2
2

()
y f

y

n(x)\{f} n(f)\{x}

y1

y2

• Steps:

– A variable node sends his value to all neighboring checks.

– A check computes XOR of all incoming messages and sends this

along the edges, but it excludes the message on the edge the

result is send along!

– Variable takes a majority vote of incoming messages and sends

this along, if tie, sends its original value

Gallager A/B algorithm

• The Gallager A/B algorithms are hard decision decoding

algorithms in which all the messages are binary.

• With a slight abuse of the notation, let denote

the number of incoming messages to which are equal

to . Associated with every decoding round

and variable degree is a threshold .

• The Gallager B algorithm is defined as follows.

Gallager A/B algorithm

• The Gallager A algorithm is a special case of the

Gallager B algorithm with for all .

• At the end of each iteration, a decision on the value of

each variable node is made based on all the incoming

messages and possibly the received value.

General iterative decoders

• An iterative decode is defined as a 4-tuple given by

• is a set the message values are confined to

• is the set of channel values

• The function used for update at a

check node with degree .

• The function is the update function

used at a variable node with degree .

Decoders as dynamical systems

• Let be the vector of messages along all edges in the

Tanner graph in the -th iteration, and the received

vector, then an iterative decoder on the Tanner graph

can be seen as a dynamical system

• Such dynamical system may have a chaotic behavior

• When alphabets are finite, a decoder is a finite state

machine, with a very large state space.

• The trajectory converge either to a fixed

point or exhibits oscillations around attractor points in the

state space.

• The attractor structure is defined by and .

Attractors of iterative decoders

adapted using www.sussex.ac.uk and

www.metafysica.nl

Trajectory examples

• Bit flipping decoder

C
o

d
ew

o
rd

S

y
n
d

ro
m

e

Trajectory types

• Fixed point

• Cyclic

• Cyclic with a large period

An example of a trajectory

Failures of iterative decoders

Error floor

FER

SNR

10-1

10-6

10-15

Shannon limit

Sphere packing bound

uncoded

coded

FER

SNR
10-1

10-6

10-

1

5

Shannon limit
uncoded

Locality of decoding

A motivating example

• Consider a six cycle in a 3-variable regular Tanner

Graph.

• Assume the channel introduces three errors exactly on

the variable nodes in the cycle.

• Also the assume that the neighborhood of the subgraph

does not influence the messages propagated within the

subgraph (condition to be explained later)

• Gallager – A fails for such error pattern.

• By adding an extra bit in the message, the decoder can

succeed.

Gallager – A iteration 1

1 1

1

0 0 0 0

0 0

1 1 1

1 1 1 1

0 0

1

0

1 1

0 0 0

Initially wrong variable node

Initially correct variable node

Odd-degree check node

 Even-degree check node

Gallager – A iteration 2

1 1

1

0 0 0 0

0 0

1

1

1

1

1

1 1
1 1

0 0

1 1

0 0

1 1

0 0

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

A trapping set illustration

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

A trapping set illustration

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

1 1 1

Oscillations in the decoder

1

1
1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

1 1

Oscillations in the decoder

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable
1

1
1

Oscillations in the decoder

1 1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

1 1 1

Oscillations in the decoder

1
1 1 1 1 1

 Corrupt variable

Variable decoded correctly

Variable decoded wrongly

Correct variable

1 1 1

1 1
1

Oscillations in the decoder

Concept of a trapping set

(3,3) trapping set (5,3) trapping set

(8,0) Trapping Set

Some ways to construct LDPC codes

LDPC codes - combinatorial designs

• Affine partial geometry

• m - a prime

• Blocks: the lines starting at points (0,a) with slopes s

– (0 a,s m-1)

– each point incident with exactly m blocks

– m2 blocks

• Example: k=3, m=5

{ (,) : 0 1, 0 1 }L x y x k y m

s=0 s=1 s=2 s=3 s=4

1 6 11 1 7 13 1 8 15 1 9 12 1 10 14

2 7 12 2 8 14 2 9 11 2 10 13 2 6 15

3 8 13 3 9 15 3 10 12 3 6 14 3 7 11

4 9 14 4 10 11 4 6 13 4 7 15 4 8 12

5 10 15 5 6 12 5 7 14 5 8 11 5 9 13

m

-1 0 1 2 3
-1

0

1

2

3

4

5

x

y

1

3

2

4

5

6 6

7

8

9

10

11

12

14

13

15

k

Integer lattice codes

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

H

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0

s=0 s=1 s=2 s=3 s=4

1 6 11 1 7 13 1 8 15 1 9 12 1 10 14

2 7 12 2 8 14 2 9 11 2 10 13 2 6 15

3 8 13 3 9 15 3 10 12 3 6 14 3 7 11

4 9 14 4 10 11 4 6 13 4 7 15 4 8 12

5 10 15 5 6 12 5 7 14 5 8 11 5 9 13

Affine and projective planes-example

1

2

3

4

Affine Plane Projective Plane

Cyclic difference families

• We can think of the actions of the group V as a

partitioning B into classes or orbits.

• Example: (13,3,1) CDF, Z13

• Base blocks B1={0,1,4} and B2={0,2,7}

B1 orbits B2 orbits

b11+g b12+g b13+g b21+g b22+g b23+g

0 1 4 0 2 7

1 2 5 1 3 8

2 3 6 2 4 9

3 4 7 3 5 10

4 5 8 4 6 11

5 6 9 5 7 12

6 7 10 6 8 0

7 8 11 7 9 1

8 9 12 8 10 2

9 10 0 9 11 3

10 11 1 10 12 4

11 12 2 11 0 5

12 0 3 12 1 6

1 0 0 0 0 0 0 0 0 1 0 0 1

1 1 0 0 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 1

1 0 0 1 1 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0 0 0

H

1 0 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0 0 1

1 0 1 0 0 0 0 0 1 0 0

0

0 0 0 0 1 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1

0 0

0 1 0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 1 0 0 0

0 0 0 1 0 0 0

 0 1 0 1 0 0

0 0 0 0 1 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0 1 0 1

Protograph based codes

• A protograph is a small Tanner graph.

• Example (Thorpe):

– |V | = 4 variable nodes and |C| = 3 check nodes, connected by

|E| = 8 edges.

– In this case Tanner graph of an (n = 4, k = 1) LDPC code (in this

case, a repetition code).

• Double edges are allowed

1 2 3

Protograph codes

1 1 0 0

0 1 1 0

1 1 1 1

H

A1 A2 A3 B1 B2 B3 C1 C2 C3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

A B C

A1 A2 A3 B1 B2 B3 C1 C2 C3

1

2

3

1

2

3

1

2

3

1 0 0

0 0 1

0 1 0

1 0 0

0 1

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

1 0 0

0 1 0

0

0 0 1

1

1

0 0

0 0

0 0 1

0

0 1 0

1 0

0 1 0

0 0 10

0 0 1

0 0

0 0

0 00 1 1

A

A

A

B

H B

B

C

C

C

1 2 3 1 2 3 1 2 3 1 2 3

Parity check masking

• Start from a quasi-cyclic code and force some blocks to

be zeros (in the Tanner graph, disconnect groups of

checks and variables)

 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

H

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 0 1

1 0 0 0

0H

0 0 0 1 0 0 1 0 0 0

 0 0 0 0 0 1 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0 0

 1 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0

Decoding by belief propagation

Math. Seminar Tucson

Crossword puzzles

• Iterate!

Across:

4 Animal with long ears and a short tail.

10 Person who is in charge of a country.

12 In no place.

Down:

5 Pointer, weapon fired from a bow.

6 Accept as true.

7 A place to shoot at; objective.

4 5 6 7

10

12

14 15

13

16

25

Decoders for channels with soft outputs

• In addition to the channel value, a measure of bit

reliability is also provided

• Bit log-likelihood ratio given yi.

Encoder

Channel

Decoder

x
x̂

m ˆ ˆ,x my

()x

(0 |)
() lo g

(1 |)

i i

i

i i

P x y
x

P x y

(| 0) (0)

()
lo g

(| 1) (1)

()

i i i

i

i i i

i

p y x P x

p y

p y x P x

p y

(| 0) (0)
lo g

(| 1) (1)

i i i

i i i

p y x P x

p y x P x

(| 0) (0)
lo g lo g

(| 1) (1)

i i i

i i i

p y x P x

p y x P x

Log-likelihood ratio

• Without prior knowledge on xi

• For AWGN (yi = xi + ni, ni ~ N(0, 2
))

• For BSC with parameter

(| 0)
() lo g

(| 1)

i i

i i

i i

p y x
x

p y x

2 2

2 2

(| 0) 1
lo g (1) (1)

(| 1) 2 2

i i i

i i i

i i

p y x y
y y

p y x

1
lo g if 0

lo g if 1
1

i

i

y

i
y

Message-passing

• Soft outputs (xi, i)

– xi – an estimate of the ith bit

– i- belief, reliability, likelihood, likelihood ratio

Example:

 1 1 0 0 1 0 1

 1 1 0 0 1 1 1

- 6 -1 +10 +2 -1 -2 -5

:

ˆ :

ˆ() :

x

x

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

 0 0.5 1

Pr(xi=1|yi)

xi)

Soft decoding example

 -6 1 0 +2 1 ? -5

 1 -1 0 +2 -3 ?

 1 1 +10 0 -3 ? -5

 1 1 0 0 1 -2 1

1

1

1 1 1

m in (| 6 |, | 2 |, | 5 |) 2

(6) (2) (5) 1

M

S s ig n s ig n s ig n

A S M

0 0 1 2 3
A A A A A

0
' 2 2 1 3 4A

 1 1 0 0 1 0 1

 1 1 0 0 1 1 1

- 6 -1 +10 +2 -1 -2 -5

:

ˆ :

ˆ() :

x

x

x

Side remark: some bits “voted” twice

 -6 1 0 +2 1 ? -5

 1 -1 0 +2 -3 ?

 1 1 +10 0 -3 ? -5

The min-sum update rule

() \{ }

x f x h f

h n x f

() \{ }
() \{ }

() sg n () m in | |
f x y f y f

y n f x
y n f x

x

()

() ()
i

i

i i i h x

h n x

g x x

x f ()
x f

x

()
f x

x

h1

h2

1

()
h x

x

2

()
h x

x

1
1

()
y f

y

2
2

()
y f

y

n(x)\{f} n(f)\{x}

y1

y2

Derivation of the check update rule

• Given the log-likelihoods of (xj)1 j m find the log-

likelihood of y, L(y).

1 2 j m-1 m 1

P r{ 0} P r{ # "1 " }
() lo g lo g

P r{ 1} P r{ # "1 " }

y in x is e v e n
L y

y in x is o d d

 x1 x2 xj xm-1 xm 1

y

1

() 2 a r ta n h ta n h
2

j

j m

L y

11

() sg n () | |
j j

j mj m

L y

Derivation of the check update rule

0

0

P r{ 0} , P r{ 1}

(1)

1
P r{ # "1 " }

2

1
P r{ # "1 " }

2

m m j m j

j

j m

m j m j m j

j

j m

m m

m m

B e rn o u lli tr ia ls : x q x p

q p p q

q p p q

 in x is e v e n q p q p

 in x is o d d q p q p

1 1 1

1 1 1

:

P r{ 0} , P r{ 0} , 0

1 1
P r{ # "1 " } 1

2 2

1 1
P r{ # "1 " } 1

2 2

j j j j

j j j j j j

j m j m j m

j j j j j j

j m j m j m

G e n e r a liz a tio n

x q x p j m

 in x is e v e n q p q p q p

 in x is o d d q p q p q p

Derivation of the check update rule

1

1

1

1

P r{ 0} P r{ # "1 " }
() lo g lo g

P r{ 1} P r{ # "1 " }

1
1

1 1
lo g

1
1

1 1

1
1

1
lo g

1
1

1

j

j j

j

j j

j

j

j

j

j m

j m

j m

j m

y in x is e v e n
L y

y in x is o d d

e

e e

e

e e

e

e

e

e

/ 2 / 2

/ 2 / 2

1

/ 2 / 2

/ 2 / 2

1

1

1

1

1

1

1

() lo g

1

1 ta n h
2

lo g

1 ta n h
2

1 ta n h
21

2 lo g
2

1 ta n h
2

2 a r ta n h ta n h
2

j j

j j

j j

j j

j m

j m

j

j m

j

j m

j

j m

j

j m

j

j m

e e

e e
L y

e e

e e

1

() 2 a rta n h ta n h
2

j

j m

L y

Min-sum approximation

• (x) = -log tanh(x/2) = log((ex+1)/(ex-1))= -1(x)

•

'

| | m in | | m in | |
i f i f i f

i i
i

Sum-product algorithm (Kschischang et. al.)

~ { } () \{ }

() () ()
f x y f

x h n f x

x f X y

() \{ }

() ()
x f h x

h n x f

x x

()

() ()
i

i

i i h x i

h n x

g x x

x f
()

x f
x

()
f x

x

h1

h2

1

()
h x

x

2

()
h x

x

1
1

()
y f

y

2
2

()
y f

y

n(x)\{f} n(f)\{x}

y1

y2

The sum-product algorithm

• The update rule

• The result of decoding after iterations, denoted by

• is determined by the sign of

• If otherwise

The min-sum algorithm

• In the limit of high SNR, when the absolute value of the

messages is large, the sum-product becomes the min-

sum algorithm, where the message from the check to

the bit looks like:

