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Noisy memoryless channels 
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Simple memoryless channels 

 

• Binary symmetric channel (BSC) 

 

 

 

• Binary erasure channel (BEC) 

 

 

 

• Binary input  additive white Gaussian 

noise (AWGN) channel, 2 
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Channel capacity - BSC 
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Channel capacity - BEC 
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Channel capacity - BAWGN 
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Error correction coding 

• The decoder tries to find x ( or m ) from y so that the 

probability of bit/codeword error is minimal. 

• In other words, decoder tries to find a codeword “closest” 
to y. 
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• Message 

• Codeword 

• Received word  

• Code rate  
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Maximum likelihood decoding 
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Protecting information by coding 

all words of length n 



all words of length n 

Protecting information by coding 

codewords 



Minimum distance 



Protecting information by coding 

code C 



Linear block codes 



Dimension of a linear block code 
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Encoding 

Generator matrix 

an k x n matrix of rank k 
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Linear block codes as subspaces 

• Given a GF(2) (ground field), we define the vector space 

- the n-tuple v=( v1,v2, … vn ) of elements from the 

ground filed is a type of vector. 

• Elias and Golay: A binary linear (n,k) code C is a k -
dimensional subspace of a vector space Galois Field, 
GF(2). 
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Parity check 
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Dual code C  

• Let x be a codeword 

 

 

 

 

 

 

• A received vector which is not a codeword results in a 

nonzero syndrome. 

parity check  matrix 



Linear constraints 

• A codeword x satisfies  

• n-k equations in n variables 

• Example: 
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Side observations 

• Since                 for any codeword x. 

• and since                it follows                 

–  H  can be found from G. 

• For any  a,b {0,1} 

 

 

 

• The parity check matrix can be modified by adding linear 

combinations of its rows. 

• The ranks of any such new parity matrix is still n-k. 

 

 



LDPC code basics 



Applications of LDPC codes 

• Wireless networks, satellite communications, deep-space 

communications, power line communications are among 

applications where the low-density parity check (LDPC) codes are 

the standardized. Standards include: Digital video broadcast over 

satellite (DVB-S2 Standard) and over cable (DVB-C2 Standard), 

terrestrial television broadcasting (DVB-T2, DVB-T2-Lite Standards),  

GEO-Mobile Radio (GMR) satellite telephony (GMR-1 Standard), 

local and metropolitan area networks (LAN/MAN) (IEEE 802.11 

(WiFi)), wireless personal area networks (WPAN) (IEEE 802.15.3c 

(60 GHz PHY)), wireless local and metropolitan area networks 

(WLAN/WMAN) (IEEE 802.16 (Mobile WiMAX), near-earth and deep 

space communications (CCSDS), wire and power line 

communications ( ITU-T G.hn (G.9960)), utra-wide band 

technologies (WiMedia 1.5 UWB), magnetic hard disk drives, optical 

communications, flash memories. 

 



Outline 

• Basics 

– Error correction codes, linear block codes, parity check matrices, 

code graphs  

– Decoding using local information, iterative decoders 

– Decoders as finite-state dynamical systems, basins of attraction 

and decoding failures 

• Failures of iterative decoders 

– Correcting  number of errors linear in code length 

– Finite length analysis 

– Trapping sets 

• Code design 

– Combinatorial designs and codes 

– Quasi-cyclic codes designed from group-theoretic transforms, 

Latin squares, difference families, finite geometries 

 



Graphical model for a linear block code 
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Definitions 

• LDPC codes belong to the class of linear block codes 

which can be defined by sparse bipartite graphs.  

• The Tanner graph of an LDPC code    is a bipartite graph     

with two sets of nodes:  

– the set of variable nodes 

– and the set of check nodes  

V 

C 



Definitions 

• The check nodes (variable nodes resp.) connected to a 

variable node (check node resp.) are referred to as its 

neighbors.  

• The set of neighbors of a node    is denoted by 

• The degree       of a node    is the number of its 

neighbors.  

 



Definitions 

• A vector                               is a codeword if and only if 

for each check node, the modulo two sum  of its 

neighbors is zero.  

• An              regular LDPC code has a Tanner graph with    

variable nodes each of degree     and          check nodes 

each of degree   . 

• This code has length     rate  

• The Tanner graph is not uniquely defined by the code 

and when we say the Tanner graph of an LDPC code, 

we only mean one possible graphical representation. 

 



An example of a regular n=25 =3, =5 code 

 
1 0  0  0  0 1 0  0  0  0 1 0  0  0  0 1 0  0  0  0 1 0  0  0  0

0  1 0  0  0 0  1 0  0  0 0  1 0  0  0 0  1 0  0  0 0  1 0  0  0

0  0  1 0  0 0  0  1 0  0 0  0  1 0  0 0  0  1 0  0

0  0  0  1 0 0  0  0  1 0 0  0  0  1 0 0  0  0  1 0

0  0  0  0  1 0  0  0  0  1 0  0  0  0  1 0  0  0  0  1
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0  0  1 0  0 0  1 0  0  0 1 0  0  0  0 0  0  0  0  1

0  0  0  1 0 0  0  1 0  0 0  1 0  0  0 1 0  0  0  0
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0  1 0  0  0 0  0  0  0  1 0  0  1 0  0 1 0  

0  0  1 0  0 1 0  0  0  0 0  0  0  1 0

0  0  0  1 0 0  1 0  0  0 0  0  0  0  1

0  0  0  0  1 0  0  1 0  0 1 0  0  0  0

0  0  1 0  0

0  0  0 0  0  0  1 0

0  1 0  0  0 0  0  0  0  1

0  0  1 0  0 1 0  0  0  0

0  0  0  1 0 0  1 0  0  0



Iterative decoding 







Message Passing Example: 1 



Message Passing Example: 1 
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Done ! 



An unresolvable configuration 

Stucked ! 



Iterative decoders for BEC 



 Iterative decoding on BEC 

E 
erased bit 

correct bit 



Decoding simulation 



BEC decoding simulation 

a check involving a single erased bit 

other check 



BEC simulation - 1 

a check satisfied after correction 



BEC simulation - 2 



BEC simulation - 3 



BEC simulation - 4 



BEC simulation - 5 



BEC simulation - 6 

Success ! 



Another example BEC simulation - 1 



Another example BEC simulation - 2 



BEC simulation -final 

Stuck ! 



Decoding failures 

• A BEC iterative decoder fails to converge to a codeword 

(correct or wrong) if at any iteration there is no check 

node connected to less than one erased variable node. 

• A graph induced by such set of check nodes is called a 

stopping set.   



Combinatorial definition of a stopping set 

• Consider a set S of variable nodes. 

• Let N(S) be a set of all checks nodes connected to S. 

• If smallest outdegree of nodes in N(S) is two, then S is a 

stopping set. 

 

 

 

 

 

 

 

 

• Other channels such as BSC, AWGN do not have such 

combinatorial definition of a decoding failure. 
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Iterative decoders for BSC 



Decoding on graphs on BSC  

• Two basic types of algorithms: 

– Bit flipping 

– Message passing 



Bit flipping 

• If more checks are unsatisfied than satisfied, flip the bit. 

• Continue until all checks are satisfied 

 



Message passing 
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• Steps: 

– A variable node sends his value to all neighboring checks. 

– A check computes XOR of all incoming messages and sends this 

along the edges, but it excludes the message on the edge the 

result is send along! 

– Variable takes a majority vote of incoming messages and sends 

this along,  if tie, sends its original value 



Gallager A/B algorithm 

• The Gallager A/B algorithms are hard decision decoding 

algorithms in which all the messages are binary.  

• With a slight abuse of the notation, let                    denote 

the number of incoming messages to   which are equal 

to                  . Associated with every decoding round    

and variable degree     is a threshold        .  

• The Gallager B algorithm is defined as follows. 

 

 



Gallager A/B algorithm 

• The Gallager A algorithm is a special case of the 

Gallager B algorithm with                       for all     .  

• At the end of each iteration, a decision on the value of 

each variable node is made based on all the incoming 

messages and possibly the received value. 



General iterative decoders 

• An iterative decode     is defined as a 4-tuple given by  

 

•     is a set the message values are confined to 

•     is the set of channel values 

• The function                             used for update at a 

check node with degree     . 

• The function                                     is the update function 

used at a variable node with degree     . 

 



Decoders as dynamical systems 

• Let       be the vector of messages along all edges in the 

Tanner graph in the   -th iteration, and    the received 

vector, then an iterative decoder    on the Tanner graph    

can be seen as a dynamical system 

 

• Such dynamical system may have a chaotic behavior 

• When alphabets are finite, a decoder is a finite state 

machine, with a very large state space. 

• The trajectory                            converge either to a fixed 

point or exhibits oscillations around attractor points in the 

state space.  

• The attractor structure is defined by     and    . 

 



Attractors of iterative decoders 

adapted using www.sussex.ac.uk and 

www.metafysica.nl 



Trajectory examples 

• Bit flipping decoder 
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Trajectory types  

• Fixed point 

 

 

• Cyclic 

 

 

• Cyclic with a large period 

                                                                                                                                                                                                                                                                                                             
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                                                                                             
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                      

                                    



An example of a trajectory 

 



Failures of iterative decoders 



Error floor 
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Locality of decoding 

 



A motivating example 

• Consider a six cycle in a 3-variable regular Tanner 

Graph. 

• Assume the channel introduces three errors exactly on 

the variable nodes in the cycle. 

• Also the assume that the neighborhood of the subgraph 

does not influence the messages  propagated within the 

subgraph (condition to be explained later) 

• Gallager – A fails for such error pattern.  

• By adding an extra bit in the message, the decoder can 

succeed.  

 

 



Gallager – A  iteration 1 
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Odd-degree check node 

 Even-degree check node 



Gallager – A iteration 2 
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1 1 1 1 1 1 

 Corrupt variable 

Variable decoded correctly 

Variable decoded wrongly 

Correct variable 

A trapping set illustration 



1 1 1 1 1 1 

 Corrupt variable 

Variable decoded correctly 

Variable decoded wrongly 

Correct variable 

A trapping set illustration 



1 1 1 1 1 1 

 Corrupt variable 

Variable decoded correctly 

Variable decoded wrongly 

Correct variable 

1 1 1 

Oscillations in the decoder 
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 Corrupt variable 
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Variable decoded wrongly 
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Oscillations in the decoder 



1 1 1 1 1 1 

 Corrupt variable 

Variable decoded correctly 

Variable decoded wrongly 

Correct variable 
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Oscillations in the decoder 



1 1 1 1 1 1 

 Corrupt variable 

Variable decoded correctly 

Variable decoded wrongly 

Correct variable 

1 1 1 

Oscillations in the decoder 
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 Corrupt variable 

Variable decoded correctly 

Variable decoded wrongly 

Correct variable 
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Oscillations in the decoder 



Concept of a trapping set 

(3,3) trapping set (5,3) trapping set 

(8,0) Trapping Set 



Some ways to construct LDPC codes 



LDPC codes - combinatorial designs 

• Affine partial geometry                                                                    

•  m - a prime 

• Blocks: the lines starting at points (0,a) with slopes s  

– (0 a,s m-1) 

– each point incident with exactly m blocks 

– m2 blocks 

• Example: k=3,  m=5 

{ ( , ) : 0 1, 0 1 }L x y x k y m

s=0 s=1 s=2 s=3 s=4 

1 6 11 1 7 13 1 8 15 1 9 12 1 10 14 

2 7 12 2 8 14 2 9 11 2 10 13 2 6 15 

3 8 13 3 9 15 3 10 12 3 6 14 3 7 11 

4 9 14 4 10 11 4 6 13 4 7 15 4 8 12 

5 10 15 5 6 12 5 7 14 5 8 11 5 9 13 
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1  
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Integer lattice codes 

1 0  0  0  0 1 0  0  0  0 1 0  0  0  0 1 0  0  0  0 1 0  0  0  0

0  1 0  0  0 0  1 0  0  0 0  1 0  0  0 0  1 0  0  0 0  1 0  0  0

0  0  1 0  0 0  0  1 0  0 0  0  1 0  0 0  0  1 0  0

0  0  0  1 0 0  0  0  1 0 0  0  0  1 0 0  0  0  1 0

0  0  0  0  1 0  0  0  0  1 0  0  0  0  1 0  0  0  0  1

H

0  0  1 0  0

0  0  0  1 0

0  0  0  0  1

1 0  0  0  0 0  0  0  0  1 0  0  0  1 0 0  0  1 0  0

0  1 0  0  0 1 0  0  0  0 0  0  0  0  1 0  0  0  1 0

0  0  1 0  0 0  1 0  0  0 1 0  0  0  0 0  0  0  0  1

0  0  0  1 0 0  0  1 0  0 0  1 0  0  0 1 0  0  0  0

0  0  0  0  1 0  0  0  1 0 0  0  1 0  0 0  

0  1 0  0  0

0  0  1 0  0

0  0  0  1 0

0  0  0  0  1

1 0  0  0 1 0  0  0  0

1 0  0  0  0 0  0  0  1 0 0  1 0  0  0 0  0  0  0  1

0  1 0  0  0 0  0  0  0  1 0  0  1 0  0 1 0  

0  0  1 0  0 1 0  0  0  0 0  0  0  1 0

0  0  0  1 0 0  1 0  0  0 0  0  0  0  1

0  0  0  0  1 0  0  1 0  0 1 0  0  0  0

0  0  1 0  0

0  0  0 0  0  0  1 0

0  1 0  0  0 0  0  0  0  1

0  0  1 0  0 1 0  0  0  0

0  0  0  1 0 0  1 0  0  0

s=0 s=1 s=2 s=3 s=4 

1 6 11 1 7 13 1 8 15 1 9 12 1 10 14 

2 7 12 2 8 14 2 9 11 2 10 13 2 6 15 

3 8 13 3 9 15 3 10 12 3 6 14 3 7 11 

4 9 14 4 10 11 4 6 13 4 7 15 4 8 12 

5 10 15 5 6 12 5 7 14 5 8 11 5 9 13 

 



Affine and projective planes-example 
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Cyclic difference families 

• We can think of the actions of the group V as a 

partitioning B into classes or orbits.  

• Example: (13,3,1) CDF, Z13  

• Base blocks B1={0,1,4} and B2={0,2,7} 

B1 orbits  B2 orbits 

b11+g b12+g b13+g  b21+g b22+g b23+g 

0 1 4  0 2 7 

1 2 5  1 3 8 

2 3 6  2 4 9 

3 4 7  3 5 10 

4 5 8  4 6 11 

5 6 9  5 7 12 

6 7 10  6 8 0 

7 8 11  7 9 1 

8 9 12  8 10 2 

9 10 0  9 11 3 

10 11 1  10 12 4 

11 12 2  11 0 5 

12 0 3  12 1 6 

 

1 0 0 0 0 0 0 0 0 1 0 0 1

1 1 0 0 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 1

1 0 0 1 1 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0 0 0

            

            

            

            

            

            

H             

           

1 0 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0 0 1

1 0 1 0 0 0 0 0 1 0 0

0

0 0 0 0 1 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0 1 0 0 1 1

             

             

          

 

            

            

            

            

            

0 0

0 1 0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 1 0 0 0

0 0 0 1 0 0 0

   

             

             

             

             

             

             

             

      0 1 0 1 0 0

0 0 0 0 1 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0 1 0 1

       

             

             



Protograph based codes 

• A protograph is a small Tanner graph.  

• Example (Thorpe): 

– |V | = 4 variable nodes and |C| = 3 check nodes, connected by 

|E| = 8 edges.  

 

 

 

– In this case Tanner graph of an (n = 4, k = 1) LDPC code (in this 

case, a repetition code). 

• Double edges are allowed  

                                                          

1                  2                   3 



Protograph codes 

 

1 1 0 0

0 1 1 0

1 1 1 1

H

A1   A2   A3 B1   B2   B3 C1   C2   C3 

1     2   3  1     2   3  1     2   3  1   2    3  

1     2   3  1     2   3  1     2   3  1   2    3  

                                                          

A                  B                  C 

A1   A2   A3 B1   B2   B3 C1   C2   C3 

1

2

3

1

2

3

1

2

3

1 0 0

0 0 1

0 1 0

1 0 0

0 1

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

1 0 0

0 1 0

0

0 0 1

1

1

0 0

0 0

0 0 1

0

0 1 0

1 0

0 1 0

0 0 10

0 0 1

0 0

0 0

0 00 1 1

A

A

A

B

H B

B

C

C

C

1 2 3 1 2 3 1 2 3 1 2 3



Parity check masking 

• Start from a quasi-cyclic code and force some blocks to 

be zeros (in the Tanner graph, disconnect groups of 

checks and variables) 

 1 0  0  0  0 1 0  0  0  0 1 0  0  0  0 1 0  0  0  0 1 0  0  0  0

0  1 0  0  0 0  1 0  0  0 0  1 0  0  0 0  1 0  0  0 0  1 0  0  0

0  0  1 0  0 0  0  1 0  0 0  0  1 0  0 0  0  1 0  0

0  0  0  1 0 0  0  0  1 0 0  0  0  1 0 0  0  0  1 0

0  0  0  0  1 0  0  0  0  1 0  0  0  0  1 0  0  0  0  1

H

0  0  1 0  0

0  0  0  1 0

0  0  0  0  1

1 0  0  0  0 0  0  0  0  1 0  0  0  1 0 0  0  1 0  0

0  1 0  0  0 1 0  0  0  0 0  0  0  0  1 0  0  0  1 0

0  0  1 0  0 0  1 0  0  0 1 0  0  0  0 0  0  0  0  1

0  0  0  1 0 0  0  1 0  0 0  1 0  0  0 1 0  0  0  0

0  0  0  0  1 0  0  0  1 0 0  0  1 0  0 0  

0  1 0  0  0

0  0  1 0  0

0  0  0  1 0

0  0  0  0  1

1 0  0  0 1 0  0  0  0

1 0  0  0  0 0  0  0  1 0 0  1 0  0  0 0  0  0  0  1

0  1 0  0  0 0  0  0  0  1 0  0  1 0  0 1 0  

0  0  1 0  0 1 0  0  0  0 0  0  0  1 0

0  0  0  1 0 0  1 0  0  0 0  0  0  0  1

0  0  0  0  1 0  0  1 0  0 1 0  0  0  0

0  0  1 0  0

0  0  0 0  0  0  1 0

0  1 0  0  0 0  0  0  0  1

0  0  1 0  0 1 0  0  0  0

0  0  0  1 0 0  1 0  0  0

1 0  0  0  0 1 0  0  0  0 1 0  0  0  0 1 0  0  0  0
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0  0  0  0  1

1 0  0  0  0

0  1 0  0  0 0

 1 0  0  1 0  0

1 0  0  0  0 0  0  0  1 0



Decoding by belief propagation 



Math. Seminar Tucson 

Crossword puzzles 

• Iterate! 

Across: 

 

4  Animal with long ears and a short tail. 

10 Person who is in charge of a country. 

12 In no place. 

 

 

Down: 

 

5  Pointer, weapon fired from a bow. 

6  Accept as true. 

7  A place to shoot at; objective. 

4 5 6 7 

10 

12 

14 15 

13 

16 

25 



Decoders for channels with soft outputs 

• In addition to the channel value, a measure of bit 

reliability is also provided 

 

 

• Bit log-likelihood ratio given yi. 

Encoder 
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Log-likelihood ratio 

• Without prior knowledge on xi  

 

 

• For AWGN (yi = xi + ni, ni ~ N( 0, 2
 ) ) 

 

 

• For BSC with parameter   
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Message-passing 

• Soft outputs (xi, i) 

– xi – an estimate of the ith bit 

– i- belief, reliability, likelihood, likelihood ratio 

Example: 

  1        1        0        0       1        0       1 
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Soft decoding example 

  

 -6        1        0      +2       1         ?       -5 
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Side remark: some bits “voted” twice 

 

 -6        1        0      +2       1         ?       -5 
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The min-sum update rule 
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Derivation of the check update rule 

• Given the log-likelihoods of (xj)1 j m find the log-

likelihood of y, L(y). 
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P r{ 0} P r{ # "1 " }
( ) lo g lo g

P r{ 1} P r{ # "1 " }

y  in  x  is  e v e n
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Derivation of the check update rule 
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Derivation of the check update rule 
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Min-sum approximation 

• (x) = -log tanh(x/2) = log( (ex+1)/(ex-1) )= -1(x) 
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Sum-product algorithm (Kschischang et. al.) 
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The sum-product algorithm 

• The update rule  

 

 

 

 

• The result of decoding after    iterations, denoted by  

• is determined by the sign of  

 

• If                                      otherwise    



The min-sum algorithm 

• In the limit of high SNR, when the absolute value of the 

messages is large, the sum-product becomes the min-

sum algorithm, where the message from the check     to 

the bit    looks like: 

 


