Codes on graphs and iterative decoding

Bane Vasić

Error Correction Coding Laboratory
University of Arizona

Prelude

Information transmission

Information transmission

Noisy memoryless channels

$$p \quad y_1, \dots, y_n \mid x_1, \dots, x_n = \prod_{i=1}^n p \quad y_i \mid x_i$$

Simple memoryless channels

Binary symmetric channel (BSC)

Binary erasure channel (BEC)

• Binary input additive white Gaussian noise (AWGN) channel, σ^2

Channel capacity - BSC

Channel capacity - BEC

Channel capacity - BAWGN

Error correction coding

- Message $m = (m_1, ..., m_k)$
- Codeword $x = (x_1, ..., x_n)$
- Received word $y = (y_1, ..., y_n)$
- Code rate $R = \frac{k}{n}$
- The decoder tries to find x (or m) from y so that the probability of bit/codeword error is minimal.
- In other words, decoder tries to find a codeword "closest" to y.

Error rate performance

Maximum likelihood decoding

Protecting information by coding

Protecting information by coding

Minimum distance

Protecting information by coding

Linear block codes

Dimension of a linear block code

Encoding

$$x = m_1 g_1 + m_2 g_2 + \dots + m_k g_k$$

$$x = (m_1, m_2, \dots, m_k) \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_k \end{bmatrix} \qquad m = (0, 0) \qquad x = (0, 0, 0, 0, 0)$$

$$m = (0, 1) \qquad x = (1, 0, 1, 0, 1)$$

$$m = (1, 0) \qquad x = (0, 0, 1, 1, 0)$$

$$m = (1, 1) \qquad x = (1, 0, 0, 1, 1)$$

Linear block codes as subspaces

- Given a GF(2) (ground field), we define the vector space

 the n-tuple v=(v₁, v₂, ... v_n) of elements from the ground filed is a type of vector.
- Elias and Golay: A binary linear (n,k) code C is a k -dimensional subspace of a vector space Galois Field, GF(2).

Parity check

Parity check

Parity check

Syndrome

Dual code C^{\(\triangle\)}

Let x be a codeword

$$xh_1^{\mathtt{T}}=0$$
 $xh_2^{\mathtt{T}}=0$ $xh_{n-k}^{\mathtt{T}}=0$
$$H=\begin{bmatrix}h_1\\h_2\\\vdots\\h_{n-k}\end{bmatrix} \text{ parity check matrix }$$
 $xH^{\mathtt{T}}=0$

 A received vector which is not a codeword results in a nonzero <u>syndrome</u>.

$$y \neq x \Rightarrow yH^{\mathsf{T}} \neq 0$$

Linear constraints

- A codeword x satisfies $v \cdot H^T = 0$
- n-k equations in n variables
- Example:

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix} \qquad \begin{array}{c} c_1: \\ c_2: \\ c_3: \\ c_3: \\ \end{array} \qquad \begin{array}{c} x_1 + x_4 + x_6 + x_7 = 0 \\ x_2 + x_4 + x_5 + x_6 = 0 \\ x_3 + x_5 + x_6 + x_7 = 0 \end{array}$$

Side observations

- Since $xH^{\mathtt{T}}=0$ for any codeword x.
- and since x = mG it follows $GH^{T} = 0$
 - H can be found from G.
- For any $a,b \in \{0,1\}$ $x(ah_i^{\mathtt{T}} + bh_i^{\mathtt{T}}) = 0$

$$H' = \left[\begin{array}{c} H \\ ah_i + bh_j \end{array} \right]$$

$$xH'^{\mathrm{T}}=0$$

- The parity check matrix can be modified by adding linear combinations of its rows.
- The ranks of any such new parity matrix is still n-k.

LDPC code basics

Applications of LDPC codes

Wireless networks, satellite communications, deep-space communications, power line communications are among applications where the low-density parity check (LDPC) codes are the standardized. Standards include: Digital video broadcast over satellite (DVB-S2 Standard) and over cable (DVB-C2 Standard), terrestrial television broadcasting (DVB-T2, DVB-T2-Lite Standards), GEO-Mobile Radio (GMR) satellite telephony (GMR-1 Standard), local and metropolitan area networks (LAN/MAN) (IEEE 802.11 (WiFi)), wireless personal area networks (WPAN) (IEEE 802.15.3c (60 GHz PHY)), wireless local and metropolitan area networks (WLAN/WMAN) (IEEE 802.16 (Mobile WiMAX), near-earth and deep space communications (CCSDS), wire and power line communications (ITU-T G.hn (G.9960)), utra-wide band technologies (WiMedia 1.5 UWB), magnetic hard disk drives, optical communications, flash memories.

Outline

Basics

- Error correction codes, linear block codes, parity check matrices, code graphs
- Decoding using local information, iterative decoders
- Decoders as finite-state dynamical systems, basins of attraction and decoding failures

Failures of iterative decoders

- Correcting number of errors linear in code length
- Finite length analysis
- Trapping sets

Code design

- Combinatorial designs and codes
- Quasi-cyclic codes designed from group-theoretic transforms,
 Latin squares, difference families, finite geometries

Graphical model for a linear block code

Definitions

- LDPC codes belong to the class of linear block codes which can be defined by sparse bipartite graphs.
- The Tanner graph of an LDPC code ^C is a bipartite graph G with two sets of nodes:
 - the set of variable nodes $V = \{1, 2, \dots, n\}$
 - and the set of check nodes $C = \{1, 2, \dots, m\}$

Definitions

- The check nodes (variable nodes resp.) connected to a variable node (check node resp.) are referred to as its neighbors.
- The set of neighbors of a node u is denoted by $\mathcal{N}(u)$
- The degree d_u of a node u is the number of its neighbors.

 $\mathcal{N}(v) \quad d_v = 3$

v $d_c = 5$

Definitions

- A vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a codeword if and only if for each check node, the modulo two sum of its neighbors is zero.
- An (n, γ, ρ) regular LDPC code has a Tanner graph with n variable nodes each of degree γ and $n\gamma/\rho$ check nodes each of degree ρ .
- This code has length n rate $r \ge 1 \gamma/\rho$
- The Tanner graph is not uniquely defined by the code and when we say the Tanner graph of an LDPC code, we only mean one possible graphical representation.

An example of a regular $n=25 \gamma=3$, $\rho=5$ code

	10000	10000	10000	10000	10000
$H = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	0 1 0 0 0	01000	01000	01000	0 1 0 0 0
	0 0 1 0 0	0 0 1 0 0	0 0 1 0 0	0 0 1 0 0	0 0 1 0 0
	0 0 0 1 0	0 0 0 1 0	0 0 0 1 0	0 0 0 1 0	0 0 0 1 0
	0 0 0 0 1	00001	00001	00001	00001
	1 0 0 0 0	00001	00010	0 0 1 0 0	0 1 0 0 0
	0 1 0 0 0	10000	00001	00010	0 0 1 0 0
	0 0 1 0 0	01000	10000	00001	0 0 0 1 0
	0 0 0 1 0	0 0 1 0 0	01000	10000	0 0 0 0 1
	0 0 0 0 1	00010	00100	01000	10000
	1 0 0 0 0	00010	01000	00001	00100
	0 1 0 0 0	0 0 0 0 1	0 0 1 0 0	10000	0 0 0 1 0
	0 0 1 0 0	10000	00010	01000	00001
	0 0 0 1 0	01000	0 0 0 0 1	0 0 1 0 0	1 0 0 0 0
	0 0 0 0 1	0 0 1 0 0	10000	0 0 0 1 0	01000

Iterative decoding

Message Passing Example: 1

Message Passing Example: 1

Done!

An unresolvable configuration

Stucked!

Iterative decoders for BEC

Iterative decoding on BEC

- erased bit
- correct bit

Decoding simulation

BEC decoding simulation

- a check involving a <u>single</u> erased bit
- other check

a check satisfied after correction

Success!

Another example BEC simulation - 1

Another example BEC simulation - 2

BEC simulation -final

Stuck!

Decoding failures

 A BEC iterative decoder fails to converge to a codeword (correct or wrong) if at any iteration there is no check node connected to less than one erased variable node.

 A graph induced by such set of check nodes is called a stopping set.

Combinatorial definition of a stopping set

- Consider a set S of variable nodes.
- Let N(S) be a set of all checks nodes connected to S.
- If smallest outdegree of nodes in N(S) is two, then S is a stopping set.

 Other channels such as BSC, AWGN do not have such combinatorial definition of a decoding failure.

Iterative decoders for BSC

Decoding on graphs on BSC

- Two basic types of algorithms:
 - Bit flipping
 - Message passing

Bit flipping

- If more checks are unsatisfied than satisfied, flip the bit.
- Continue until all checks are satisfied

Message passing

Steps:

- A variable node sends his value to all neighboring checks.
- A check computes XOR of all incoming messages and sends this along the edges, but it excludes the message on the edge the result is send along!
- Variable takes a majority vote of incoming messages and sends this along, if tie, sends its original value

Gallager A/B algorithm

- The Gallager A/B algorithms are hard decision decoding algorithms in which all the messages are binary.
- With a slight abuse of the notation, let $|\varpi_{*\to i} = m|$ denote the number of incoming messages to i which are equal to $m \in \{0,1\}$. Associated with every decoding round k and variable degree d_i is a threshold b_{k,d_i} .
- The Gallager B algorithm is defined as follows.

$$\omega_{i \to \alpha}^{(0)} = y_i
\varpi_{\alpha \to i}^{(k)} = \left(\sum_{j \in \mathcal{N}(\alpha) \setminus i} \omega_{j \to \alpha}^{(k-1)}\right) \mod 2
\omega_{i \to \alpha}^{(k)} = \begin{cases}
1, & \text{if } |\varpi_{* \setminus \alpha \to i}^{(k)} = 1| \ge b_{k, d_i} \\
0, & \text{if } |\varpi_{* \setminus \alpha \to i}^{(k)} = 0| \ge b_{k, d_i} \\
y_i, & \text{otherwise}
\end{cases}$$

Gallager A/B algorithm

- The Gallager A algorithm is a special case of the Gallager B algorithm with $b_{k,d_i} = d_i 1$ for all k.
- At the end of each iteration, a decision on the value of each variable node is made based on all the incoming messages and possibly the received value.

General iterative decoders

• An iterative decode ${\mathbb D}$ is defined as a 4-tuple given by

$$\mathrm{D} = (\mathcal{M}, \mathcal{Y}, \Phi_v, \Phi_c)$$

- ${\mathcal M}$ is a set the message values are confined to
- $\mathcal Y$ is the set of channel values
- The function $\Phi_c: \overline{\mathcal{M}^{d_c-1}} \to \overline{\mathcal{M}}$ used for update at a check node with degree d_c .
- The function $\Phi_v: \mathcal{Y} \times \mathcal{M}^{d_v-1} \to \mathcal{M}$ is the update function used at a variable node with degree d_v .

Decoders as dynamical systems

• Let $\mathbf{v}^{(k)}$ be the vector of messages along all edges in the Tanner graph in the k-th iteration, and \mathbf{y} the received vector, then an iterative decoder \mathbf{D} on the Tanner graph G can be seen as a dynamical system

$$\mathbf{v}^{(k)} = F(\mathbf{v}^{(k-1)}, \mathbf{y})$$

- Such dynamical system may have a chaotic behavior
- When alphabets are finite, a decoder is a finite state machine, with a very large state space.
- The trajectory $\mathbf{v}^{(0)}, \mathbf{v}^{(1)}, \mathbf{v}^{(2)} \dots$ converge either to a fixed point or exhibits oscillations around attractor points in the state space.
- The attractor structure is defined by G and D.

Attractors of iterative decoders

Trajectory examples

Bit flipping decoder

Trajectory types

Fixed point

Cyclic

Cyclic with a large period

An example of a trajectory

Failures of iterative decoders

Error floor

Locality of decoding

A motivating example

- Consider a six cycle in a 3-variable regular Tanner Graph.
- Assume the channel introduces three errors exactly on the variable nodes in the cycle.
- Also the assume that the neighborhood of the subgraph does not influence the messages propagated within the subgraph (condition to be explained later)
- Gallager A fails for such error pattern.
- By adding an extra bit in the message, the decoder can succeed.

Gallager – A iteration 1

Gallager – A iteration 2

A trapping set illustration

- Corrupt variable
- O Correct variable
- Variable decoded correctly
- Variable decoded wrongly

A trapping set illustration

- Corrupt variable
- O Correct variable
- Variable decoded correctly
- Variable decoded wrongly

- Correct variable
- Variable decoded correctly
- Variable decoded wrongly

Concept of a trapping set

Some ways to construct LDPC codes

LDPC codes - combinatorial designs

- Affine partial geometry $L = \{(x, y) : 0 \le x \le k 1, 0 \le y \le m 1\}$
- *m* a prime
- Blocks: the lines starting at points (0,a) with slopes s
 - (0 ≤a,s ≤m-1)
 - each point incident with exactly m blocks
 - m² blocks
- Example: *k*=3, *m*=5

	s=0			s=1			s=2			s=3			s=4	
1	6	11	1	7	13	1	8	15	1	9	12	1	10	14
2	7	12	2	8	14	2	9	11	2	10	13	2	6	15
3	8	13	3	9	15	3	10	12	3	6	14	3	7	11
4	9	14	4	10	11	4	6	13	4	7	15	4	8	12
5	10	15	5	6	12	5	7	14	5	8	11	5	9	13

Integer lattice codes

	s=0			s=1			s=2			s=3			s=4	
1	6	11	1	7	13	1	8	15	1	9	12	1	10	14
2	7	12	2	8	14	2	9	11	2	10	13	2	6	15
3	8	13	3	9	15	3	10	12	3	6	14	3	7	11
4	9	14	4	10	11	4	6	13	4	7	15	4	8	12
5	10	15	5	6	12	5	7	14	5	8	11	5	9	13

	1 0 0 0 0	10000	10000	10000	10000
	0 1 0 0 0	01000	01000	01000	01000
	0 0 1 0 0	0 0 1 0 0	0 0 1 0 0	0 0 1 0 0	0 0 1 0 0
	0 0 0 1 0	0 0 0 1 0	0 0 0 1 0	0 0 0 1 0	0 0 0 1 0
	0 0 0 0 1	0 0 0 0 1	0 0 0 0 1	0 0 0 0 1	0 0 0 0 1
	1 0 0 0 0	00001	0 0 0 1 0	0 0 1 0 0	0 1 0 0 0
	0 1 0 0 0	10000	00001	0 0 0 1 0	0 0 1 0 0
H =	0 0 1 0 0	01000	10000	0 0 0 0 1	0 0 0 1 0
	0 0 0 1 0	00100	01000	10000	0 0 0 0 1
	0 0 0 0 1	0 0 0 1 0	0 0 1 0 0	01000	10000
	1 0 0 0 0	00010	01000	00001	0 0 1 0 0
	0 1 0 0 0	00001	0 0 1 0 0	10000	00010
	0 0 1 0 0	10000	00010	01000	0 0 0 0 1
	0 0 0 1 0	01000	00001	00100	10000
	0 0 0 0 1	00100	10000	0 0 0 1 0	0 1 0 0 0

Affine and projective planes-example

Affine Plane

Projective Plane

Cyclic difference families

- We can think of the actions of the group V as a partitioning B into classes or orbits.
- Example: (13,3,1) CDF, Z₁₃
- Base blocks $B_1 = \{0,1,4\}$ and $B_2 = \{0,2,7\}$

	B_1 orbits			B_2 orbits			
$b_{11} + g$	$b_{12} + g$	$b_{13} + g$	$b_{21} + g$	$b_{22} + g$	$b_{23} + g$		
0	1	4	0	2	7		
1	2	5	1	3	8		
2	3	6	2	4	9		
3	4	7	3	5	10		
4	5	8	4	6	11		
5	6	9	5	7	12		
6	7	10	6	8	0		
7	8	11	7	9	1		
8	9	12	8	10	2		
9	10	0	9	11	3		
10	11	1	10	12	4		
11	12	2	11	0	5		
12	0	3	12	1	6		

	1000000001001	1000001000010
	11000000000100	0100000100001
	01100000000010	101000010000
	0 0 1 1 0 0 0 0 0 0 0 0 1	0101000001000
	10011000000000	0 0 1 0 1 0 0 0 0 0 1 0 0
	01001100000000	0 0 0 1 0 1 0 0 0 0 0 1 0
H =	0 0 1 0 0 1 1 0 0 0 0 0 0	0 0 0 0 1 0 1 0 0 0 0 0 1
	0 0 0 1 0 0 1 1 0 0 0 0 0	1000010100000
	0 0 0 0 1 0 0 1 1 0 0 0 0	0100001010000
	0 0 0 0 0 1 0 0 1 1 0 0 0	0010000101000
	0 0 0 0 0 0 1 0 0 1 1 0 0	0 0 0 1 0 0 0 0 1 0 1 0 0
	0000000100110	0 0 0 0 1 0 0 0 0 1 0 1 0
	_0 0 0 0 0 0 0 0 1 0 0 1 1	0000010000101

Protograph based codes

- A protograph is a small Tanner graph.
- Example (Thorpe):
 - -|V|=4 variable nodes and |C|=3 check nodes, connected by |E|=8 edges.

- In this case Tanner graph of an (n = 4, k = 1) LDPC code (in this case, a repetition code).
- Double edges are allowed

Protograph codes

$$H = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Parity check masking

 Start from a quasi-cyclic code and force some blocks to be zeros (in the Tanner graph, disconnect groups of checks and variables)

	10000	10000	10000	10000	1 0 0 0 0
	01000	01000	01000	01000	0 1 0 0 0
	0 0 1 0 0	0 0 1 0 0	0 0 1 0 0	00100	0 0 1 0 0
	0 0 0 1 0	00010	0 0 0 1 0	00010	0 0 0 1 0
	0 0 0 0 1	00001	00001	00001	0 0 0 0 1
	10000	0 0 0 0 1	0 0 0 1 0	0 0 1 0 0	0 1 0 0 0
	01000	10000	00001	00010	0 0 1 0 0
H =	0 0 1 0 0	01000	10000	00001	0 0 0 1 0
	0 0 0 1 0	0 0 1 0 0	01000	10000	0 0 0 0 1
	0 0 0 0 1	00010	00100	01000	10000
	10000	00010	01000	00001	0 0 1 0 0
	0 1 0 0 0	00001	0 0 1 0 0	10000	0 0 0 1 0
	0 0 1 0 0	10000	0 0 0 1 0	01000	0 0 0 0 1
	0 0 0 1 0	01000	0 0 0 0 1	0 0 1 0 0	1 0 0 0 0
	0 0 0 0 1	0 0 1 0 0	10000	0 0 0 1 0	0 1 0 0 0

ſ					. 7
	1 0 0 0 0	10000		10000	10000
ĺ	0 1 0 0 0	01000		01000	01000
	0 0 1 0 0	0 0 1 0 0	0	0 0 1 0 0	0 0 1 0 0
	0 0 0 1 0	00010		0 0 0 1 0	0 0 0 1 0
	0 0 0 0 1	0 0 0 0 1		0 0 0 0 1	0 0 0 0 1
		00001	0 0 0 1 0		0 1 0 0 0
		10000	0 0 0 0 1		0 0 1 0 0
<i>I</i> =	0	01000	10000	0	0 0 0 1 0
		0 0 1 0 0	01000		0 0 0 0 1
		0 0 0 1 0	0 0 1 0 0	: : :	10000
	1 0 0 0 0		01000	00001	
	0 1 0 0 0		0 0 1 0 0	10000	
	0 0 1 0 0	0	0 0 0 1 0	01000	0
	0 0 0 1 0		00001	0 0 1 0 0	
	0 0 0 0 1		10000	0 0 0 1 0	

Decoding by belief propagation

Crossword puzzles

Iterate!

Across:

- 4 Animal with long ears and a short tail.
- 10 Person who is in charge of a country.
- 12 In no place.

Down:

- 5 Pointer, weapon fired from a bow.
- 6 Accept as true.
- 7 A place to shoot at; objective.

Decoders for channels with soft outputs

 In addition to the channel value, a measure of bit reliability is also provided

• Bit log-likelihood ratio given y_{i}

$$\lambda(x_{i}) = \log \frac{P(x_{i} = 0 | y_{i})}{P(x_{i} = 1 | y_{i})}$$

$$= \log \frac{P(y_{i} | x_{i} = 0)P(x_{i} = 0)}{P(y_{i})}$$

$$= \log \frac{P(y_{i} | x_{i} = 1)P(x_{i} = 1)}{P(y_{i} | x_{i} = 1)P(x_{i} = 1)} = \log \frac{P(y_{i} | x_{i} = 0)P(x_{i} = 0)}{P(y_{i} | x_{i} = 1)P(x_{i} = 1)}$$

$$= \log \frac{P(y_{i} | x_{i} = 0)}{P(y_{i} | x_{i} = 0)} + \log \frac{P(x_{i} = 0)}{P(x_{i} = 1)}$$

Log-likelihood ratio

Without prior knowledge on x_i

$$\gamma_i = \lambda_{(x_i)} = \log \frac{p(y_i | x_i = 0)}{p(y_i | x_i = 1)}$$

• For AWGN ($y_i = x_i + n_i, n_i \sim N(0, \sigma^2)$)

$$\gamma_i = \log \frac{p(y_i | x_i = 0)}{p(y_i | x_i = 1)} = \frac{1}{2\sigma^2} - (y_i - 1)^2 + (y_i + 1)^2 = \frac{y_i}{2\sigma^2}$$

• For BSC with parameter α

$$\gamma_{i} = \begin{cases} \log \frac{1-\alpha}{\alpha} & \text{if } y_{i} = 0\\ \log \frac{\alpha}{1-\alpha} & \text{if } y_{i} = 1 \end{cases}$$

Message-passing

- Soft outputs (x_i, λ_i)
 - $-x_i$ an estimate of the ith bit
 - $-\lambda_{\Gamma}$ belief, reliability, likelihood, likelihood ratio

Example:

Soft decoding example

$$M_1 = \min(|-6|, |+2|, |-5|) = 2$$

 $S_1 = sign(-6) \cdot sign(+2) \cdot sign(-5) = +1$
 $A_1 = S_1 \cdot M_1$

$$A_0 = A_0 + A_1 + A_2 + A_3$$

Side remark: some bits "voted" twice

The min-sum update rule

$$\mu_{f \to x}(x) = \prod_{y \in n(f) \setminus \{x\}} \operatorname{sgn}(\mu_{y \to f}) \min_{y \in n(f) \setminus \{x\}} |\mu_{y \to f}|$$

$$g_{i}(x_{i}) = \lambda_{(x_{i})} + \sum_{h \in n(x_{i})} \mu_{h \to x_{i}}$$

THE UNIVERSITY OF ARIZONA

Derivation of the check update rule

• Given the log-likelihoods of $(x_j)_{1 \le j \le m}$ find the log-likelihood of y, L(y).

$$L(y) = \log \frac{\Pr\{y = 0\}}{\Pr\{y = 1\}} = \log \frac{\Pr\{\# "1" \text{ in } x \text{ is even}\}}{\Pr\{\# "1" \text{ in } x \text{ is odd}\}}$$
$$L(y) \cong \prod_{1 \le j \le m} \operatorname{sgn}(\lambda_j) \cdot \sum_{1 \le j \le m} |\lambda_j|$$

Derivation of the check update rule

Bernoulli trials:
$$\Pr\{x = 0\} = q, \quad \Pr\{x = 1\} = p$$

$$q + p^{-m} = \sum_{0 \le j \le m} {}^{m}_{j} p^{j} \cdot q^{m-j}$$

$$q - p^{-m} = \sum_{0 \le j \le m} (-1)^{j} {}^{m}_{j} p^{j} \cdot q^{m-j}$$

$$\Pr\{\# "1" \text{ in } x \text{ is even}\} = \frac{1}{2} q + p^{-m} + q - p^{-m}$$

$$\Pr\{\# "1" \text{ in } x \text{ is odd}\} = \frac{1}{2} q + p^{-m} - q - p^{-m}$$

Generalization:

$$\begin{split} &\Pr\{x_{j} = 0\} = q_{j}, \quad \Pr\{x_{j} = 0\} = p_{j}, \quad 0 \leq j \leq m \\ &\Pr\{\# "1" \ in \ x \ is \ even\} = \frac{1}{2} \Biggl(\prod_{1 \leq j \leq m} q_{j} + p_{j} + \prod_{1 \leq j \leq m} q_{j} - p_{j} \Biggr) = \frac{1}{2} \Biggl(1 + \prod_{1 \leq j \leq m} q_{j} - p_{j} \Biggr) \\ &\Pr\{\# "1" \ in \ x \ is \ odd\} = \frac{1}{2} \Biggl(\prod_{1 \leq j \leq m} q_{j} + p_{j} - \prod_{1 \leq j \leq m} q_{j} - p_{j} \Biggr) = \frac{1}{2} \Biggl(1 - \prod_{1 \leq j \leq m} q_{j} - p_{j} \Biggr) \end{split}$$

Derivation of the check update rule

$$L(y) = \log \frac{\Pr\{y = 0\}}{\Pr\{y = 1\}} = \log \frac{\Pr\{\#"1" \text{ in } x \text{ is even}\}}{\Pr\{\#"1" \text{ in } x \text{ is odd}\}}$$

$$= \log \frac{1 + \prod_{1 \le j \le m} \left(\frac{e^{\lambda_j}}{1 + e^{\lambda_j}} - \frac{1}{1 + e^{\lambda_j}}\right)}{1 - \prod_{1 \le j \le m} \left(\frac{e^{\lambda_j}}{1 + e^{\lambda_j}} - \frac{1}{1 + e^{\lambda_j}}\right)}$$

$$= \log \frac{1 + \prod_{1 \le j \le m} \left(\frac{e^{\lambda_j}}{1 + e^{\lambda_j}} - \frac{1}{1 + e^{\lambda_j}}\right)}{1 - \prod_{1 \le j \le m} \frac{e^{\lambda_j} - 1}{e^{\lambda_j} + 1}}$$

$$= \log \frac{1 + \prod_{1 \le j \le m} \frac{e^{\lambda_j} - 1}{e^{\lambda_j} + 1}}{1 - \prod_{1 \le j \le m} \frac{e^{\lambda_j} - 1}{e^{\lambda_j} + 1}}$$

$$L(y) = 2 \operatorname{artanh} \left(\prod_{1 \le j \le m} \tanh \left(\frac{\lambda}{2} \right) \right)$$

$$L(y) = \log \frac{1 + \prod_{1 \le j \le m} \frac{e^{\lambda_j/2} - e^{-\lambda_j/2}}{e^{\lambda_j/2} + e^{-\lambda_j/2}}}{1 - \prod_{1 \le j \le m} \frac{e^{\lambda_j/2} - e^{-\lambda_j/2}}{e^{\lambda_j/2} + e^{-\lambda_j/2}}}{1 - \prod_{1 \le j \le m} \tanh \left(\frac{\lambda_j}{2}\right)}$$

$$= \log \frac{1 + \prod_{1 \le j \le m} \tanh \left(\frac{\lambda_j}{2}\right)}{1 - \prod_{1 \le j \le m} \tanh \left(\frac{\lambda_j}{2}\right)}$$

$$= 2 \cdot \frac{1}{2} \cdot \log \frac{1 + \prod_{1 \le j \le m} \tanh \left(\frac{\lambda_j}{2}\right)}{1 - \prod_{1 \le j \le m} \tanh \left(\frac{\lambda_j}{2}\right)}$$

$$= 2 \operatorname{artanh} \left(\prod_{1 \le j \le m} \tanh \left(\frac{\lambda_j}{2}\right)\right)$$

Min-sum approximation

• $\phi(x) = -\log \tanh(x/2) = \log((e^x+1)/(e^x-1)) = \phi^{-1}(x)$

$$\phi\left(\sum_{i}\phi\mid\mu_{i\rightarrow f}\mid\right)\approx\phi\phi\min_{i}|\mu_{i\rightarrow f}|=\min_{i'}|\mu_{i\rightarrow f}|$$
The University of Arizona.

Sum-product algorithm (Kschischang et. al.)

$$\mu_{x \to f}(x) = \prod_{h \in n(x) \setminus \{f\}} \mu_{h \to x}(x)$$

$$\mu_{f \to x}(x) = \sum_{x \in X} \left(f(X) \prod_{h \in n(f) \setminus \{x\}} \mu_{y \to f}(y) \right)$$

$$g_{i}(x_{i}) = \prod_{h \in n(x_{i})} \mu_{h \to x_{i}}(x_{i})$$

The sum-product algorithm

The update rule

$$\omega_{i \to \alpha}^{(0)} = \gamma_{i}$$

$$\varpi_{\alpha \to i}^{(k)} = 2 \tanh^{-1} \left(\prod_{j \in \mathcal{N}(\alpha) \setminus i} \tanh \left(\frac{1}{2} \omega_{j \to \alpha}^{(k-1)} \right) \right)$$

$$\omega_{i \to \alpha}^{(k)} = \gamma_{i} + \sum_{\delta \in \mathcal{N}(i) \setminus \alpha} \varpi_{\delta \to i}^{(k)}$$

- The result of decoding after k iterations, denoted by $\mathbf{x}^{(k)}$
- · is determined by the sign of

$$m_i^{(k)} = \gamma_i + \sum_{\alpha \in \mathcal{N}(i)} \varpi_{\alpha \to i}^{(k)}$$

• If $m_i^{(k)} > 0$ then $x_i^{(k)} = 0$ otherwise $x_i^{(k)} = 1$

The min-sum algorithm

• In the limit of high SNR, when the absolute value of the messages is large, the sum-product becomes the minsum algorithm, where the message from the check β to the bit i looks like:

$$\varpi_{\beta \to i}^{(k)} = \min \left| \omega_{* \setminus i \to \beta}^{(k-1)} \right| \cdot \prod_{j \in \mathcal{N}(\beta) \setminus i} \operatorname{sign}(\omega_{j \to \beta}^{(k-1)})$$