
20/Octover/2021

Some Topics on Information Theoretic Security

Yasutada Oohama

University of Electro-Communications

Yasutada Oohama
テキストボックス

Yasutada Oohama
タイプライターテキスト
b



1/86Introduction
• In this plenary talk we present our previous works on information

theoretic security consisting of three miscellaneous topics.
• Those topics provide some specific but interesting problems arising

inherently in communication systems with security requirement.
I. Relay channel with confidential messages (RCC)

∼ Interplay between the two roles of the relay as a “helper” and as
an “eavesdropper”

II. Broadcast channel with confidential messages (BCC) with
randomness constraints

∼ Relationship between randomness and security
III. Information theoretic analysis of Shannon cipher system under

side-channel attacks
∼ Relationship between the privacy amplification and the strong

converse theorem for one helper source coding system
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I. Relay Channel with Confidential Messages



4/86Presentation Overview
1. Introduction
2. Definition of the Relay Channels with Confidential Messages(RCCs)
3. Capacity Results on the RCC
4. Some Comments



5/86Introduction
Security of Communication Systems� �

RecieverSender

Wire-tapper

Insecure Channel� �
□ Information Theoretical Analysis of Secure Systems
• “Wire-Tap Channels”(Wyner, IT 75)
• “Broadcast Channels with Confidential Messages” (Csiszár and

Körner, IT 78)� �
Multiuser Communication Networks

⇓
Secure communication for unauthorized users� �
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Let X ,Y, Z be finite sets. The broadcast channel is defined by a
discrete memoryless channel specified with

PY Z|X = {PY Z|X(y, z|x)}(x,y,z)∈X ×Y×Z .
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9/86Broadcast Channels with Confidential Messages
BCC(Csiszár and Körner(IT 78))� �

Kn

Ln
X
n

K n
Z
n

Y
n

K n Ln )
fn

n

n
^
,M
^
n

Mn

Mn

n

Alice Bob

Eve

�

gtPY |Z X

Kn
Ln
Mn

Common

Private

Confidential

: 

: 

: 

ψ ^

^̂

� �
□ Information Leakage on Confidential Messages
• Dn := I(Mn;Zn)

lim sup
n→∞

1
nDn = lim sup

n→∞
1
nI(Mn;Zn) = 0, (weak secrecy criterion)

lim sup
n→∞

Dn = lim sup
n→∞

I(Mn;Zn) = 0. (strong secrecy criterion)



10/86Broadcast Channel and Relay Channel
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14/86Security of Relay Channels
Relay Channel (RC)� �
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□ Coding strategy of Cover and El Gamal(IT 79) for the RC
• Relay obtains all messages flowing through the channel.
□ Security of RC should be studied.� �
• Some messages should be confidential to the relay.
• Comm. Syst. with Confidential Messages

⇓ Oohama (ITW 01, Cairns)
Relay Channels with Confidential Messages (RCC)� �



15/86Works on RCC or the Security of Relay Channels
• Relay Channels with Confidential Messages

by Oohama (ISIT 07, Nice)
by Liang and Poor (IT 08)

• Relay-Eavesdropper Channel
by Lai and El Gamal (IT 08)

• Cooperation with an Untrusted Relay: A Secrecy Perspective
by He and A. Yener (IT 10)

• Refine and extensions of Oohama (ITW 01, ISIT 07) by Oohama and
Watanabe (SITA 10)
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16/86Refine and Extensions of Oohama (ITW 01)
• Refine or extensions of Oohama (ITW 01) were given by Oohama

(ISIT 07), Oohama and Watanabe (SITA 10).
1. Definitions of rate equivocation regions in two cases;

deterministic/stochastic encoders
2. Inner bounds and outer bounds of the capacity regions
3. The case where inner and outer bounds match.

→ Reversely degraded relay channels, semi deterministic relay
channels

• Study of the Gaussian case
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18/86Problem Setting of RCC
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Encoder fn : Kn × Ln × Mn → X n,
Receiver Decoder ψn : Yn → Kn × Ln × Mn

Relay Encoder {gt}n
t=1, Sn =

{
gt(Zt−1)

}n

t=1
Relay Decoder φn : Zn → Kn

Receiver Error Prob. λ(n)
1 := Pr{(K̂n, L̂n, M̂n) ̸= (Kn, Ln,Mn)}

Relay Error Prob. λ(n)
2 := Pr{ ˆ̂

Kn ̸= Kn}
Security Dn := D(PMnZn ||PMn × PZn) = I(Mn;Zn)



19/86Relation between RCC and BCC
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RCC includes the BCC as a special case by letting |S| = 1.



20/86Rate Region of RCC
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λ
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log |Kn|
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n = R1, lim inf
n→∞
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For simplicity of notation set Γ := PY Z|XS .
Rrcc(Γ) = {(R0, R1, Rs) : (R0, R1, Rs) is achievable.}



21/86A Pair of Inner and Outer Bounds of Rrcc(Γ)
P1 := {(U,X, S) ∈ U × X × S : |U| ≤ |X ||S| + 3, U ↔ XS ↔ Y Z},

R̃(in)(Γ) := {(R0, R1, Rs) : ∃(U,X, S) ∈ P1 s.t.
R0 ≤ min{I(Y ;US), I(Z;U |S)},

R1 +Rs ≤ I(X;Y |US),
Rs ≤ I(X;Y |US) − I(X;Z|US)},

R̃(out)(Γ) := {(R0, R1, Rs) : ∃(U,X, S) ∈ P1 s.t.
R0 ≤ min{I(Y ;US), I(Z;U |S)},

R1 +Rs ≤ I(X;Y Z|US),
R0 +R1 +Rs ≤ I(XS;Y ),

Rs ≤ I(X;Y |ZUS)}.
Theorem 1 For any relay channel Γ,

R̃(in)(Γ) ⊆ Rrcc(Γ) ⊆ R̃(out)(Γ) .
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22/86Reversely Degraded Relay Channel
An essential difference between R̃(in)

d (Γ) and R̃(out)
d (Γ) is a gap ∆ given

by

∆ := I(X;Y |ZUS) − [I(X;Y |US) − I(X;Z|US)]
= I(X;ZY |US) − I(X;Y |US) = I(X;Z|Y US) .

Important Fact� �
∆ = 0 if Γ satisfies the following

Γ(z, y|x, s) = Γ(z|y, s)Γ(y|x, s), (x, s, y, z) ∈ X × S × Y × Z
⇐⇒ X ↔ SY ↔ Z .� �

Cover and El. Gamal(IT 81) called the above Γ reversely degraded relay
channel.
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23/86Degraded Relay Channel
Cover and El. Gamal(IT 81) called the relay channel is degraded if Γ
satisfies

Γ(z, y|x, s) = Γ(y|z, s)Γ(z|x, s), (x, s, y, z) ∈ X × S × Y × Z
⇐⇒ X ↔ SZ ↔ Y

Important Fact� �
If the relay channel is degraded, then I(X;Y |ZUS) = 0.� �

→ Rs must be zero.
→ No security on the private messages is guaranteed!
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24/86Two Degraded Relay Channels
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25/86Results on the Two Degraded Cases
Corollary 1 For the reversely degraded relay channel Γ,

R̃(in)(Γ) = Rrcc(Γ) = R̃(out)(Γ) .

Corollary 2 When the relay channel Γ is degraded, no security on
the private messages is guaranteed.

Some remarks on the two corollaries:

• Corollary 1 implies that the coding strategy attaining R̃(in)
d (Γ) in

Theorem 1 is optimal in the case of reversely degraded relay channels.
• Corollary 2 meets our intuition in the sense that if the relay channel is

degraded, the relay can do anything that the destination can.



26/86Another Pair of Inner and Outer Bounds of Rrcc(Γ)
Q1 := {(U, V,X, S) : |U| ≤ |X ||S| + 3, |V| ≤ (|X ||S|)2 + 4|X ||S| + 3,

U ↔ V ↔ XS ↔ Y Z, US ↔ V ↔ X},
Q2 := {(U, V,X, S) : |U| ≤ |Z||X ||S| + 3,

|V| ≤ (|Z||X ||S|)2 + 4|Z||X ||S| + 3,
U ↔ V ↔ XSZ ↔ Y ,
US ↔ V X ↔ Z, US ↔ V ↔ X}.

R(in)(Γ) := {(R0, R1, Rs) : ∃(U, V,X, S) ∈ Q1 s.t.
R0 ≤ min{I(Y ;US), I(Z;U |S)} ,

R0 +R1 +Rs ≤ I(V ;Y |US) + min{I(Y ;US), I(Z;U |S)},
Rs ≤ I(V ;Y |US) − I(V ;Z|US)}.

Theorem 2 For any relay channel Γ,
R(in)(Γ) ⊆ Rrcc(Γ)⊆ R(out)(Γ).
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28/86Semi Deterministic Relay Channels
We say that Γ is semi deterministic if Z is a function of (X,S).

Corollary 3 If Γ is semi deterministic

R(in)(Γ) = Rrcc(Γ) = R(out)(Γ) .



29/86Some Comments (1/2)
1. For derivations of the inner bounds we use the decode and forward

scheme. Derivations of the ourter bounds are standard.
2. If Γ is semi deterministic, then

Crcc(Γ) := supRs : (0, 0, Rs) ∈ Rrcc(Γ)
= max

(U,V,X,S)∈Q1
[I(V ;Y |US) − I(V ;Z|US)] .

a) We can show that Crcc(Γ) can be attained by S = s∗, where s∗ ∈ S
is the best input alphabet which maximizes the secrecy rate

max
(V,U,X,S=s∗)∈Q1

{I(V ;Y |US = s∗) − I(V ;Z|US = s∗)} .

b) This implies that the improvement of Crcc(Γ) limited when Γ is semi
deterministic.

c) We have a similar result when Γ is reversely degraded.



30/86Some Comments (2/2)
3. Cover and El Gamal (IT 81) introduced the compress-and-forward

scheme, where the relay transmits a quantized version of its received
signal.

4. He and Yener (IT 10) derived lower bound of Crcc(Γ) for general Γ in
the case where the relay employs the compress-and-forward scheme to
show that the relay may improve the secrecy capacity.
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II. Broadcast Channel with Confidential Messages
(BCC) with Randomness Constraints



32/86Contents
1. Ordinary Problem Setting and Coding of BCC
2. New Problem Setting by Watanabe and Oohama (IT 15)
3. Main Theorem and Ides of a Proof
4. Consequences if Main Theorem
5. Numerical Examples
6. Conclustions
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35/86Coding Theorem of BCC

Theorem [Csiszár and Körner (IT 78)] (R0, R1, Rs) is achievable
iff. ∃PUV X s.t.

U ↔ V ↔ X ↔ (Y ,Z)
R0 ≤ min{I(Y ;U), I(Z;U)}

R0 +R1 +Rs ≤ I(V ;Y |U) + min{I(Y ;U), I(Z;U)}
Rs ≤ I(V ;Y |U) − I(V ;Z|U)



36/86R0 = R1 = 0 Wiretap Channel

Corollary [Csiszár and Körner (IT 78), Wyner (IT 75) ] Rs is
achievable iff.

Rs ≤ Cs = max
V ↔X↔(Y ,Z)

[I(V ;Y ) − I(V ;Z)]



Achievability Scheme of Cs

Channel Prefixing

Bob decodes     and      .

If                                    , then              .

Stochastic Encoding
with dummy

dummy
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Require randomness
at rate                for simulation.
[Steinberg-Verdu ’94] 

Channel Prefixing

Bob decodes     and      .

If                                    , then              .

Stochastic Encoding
with dummy

dummy

Achievability Scheme of Cs
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Channel Prefixing

Huge amount of randomness is needed for the stochastic 
encoding and for simulating the channel prefixing.
What is the optimal scheme if we take in to account the 
amount of randomness.

Stochastic Encoding
with dummy

dummy

Achievability Scheme of Cs
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41/86New Problem Setting by W.O. (IT 15)
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42/86New Problem Setting by W.O. (IT 15)
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(Rd, R0, R1, Rs) is achievable def⇔ ∃{(fn, gn, ϕn)}∞
n=1 s.t.

lim
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43/86Main Theorem()

Theorem [Watanabe and Oohama (IT 15)] (Rd, R0, R1, Rs) is
achievable iff. ∃PUV X s.t.

U ↔ V ↔ X ↔ (Y ,Z)
R0 ≤ min{I(Y ;U), I(Z;U)}

R0 +R1 +Rs ≤ I(V ;Y |U) + min{I(Y ;U), I(Z;U)}
Rs ≤ I(V ;Y |U) − I(V ;Z|U)

R1 +Rd ≥ I(X;Z|U)
Rd ≥ I(X;Z|V )

}
(New Inequalities)
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Ideas of Coding Scheme
Superposition coding scheme proposed by Chia 
and El Gamal is employed instead of the channel 
simulation.

1. For common message     , randomly generate 
code word     according to     .
2. For each    and for private and confidential 
messages          , randomly generate         
according to                .
3. For each               and for dummy randomness    , 
randomly generate             according to                     .       

Yasutada Oohama
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Error Analysis
1. Bob decodes               by looking for unique

2. Eve decodes     by looking for unique

Analysis of error probability is almost same as that of 
the BC with degraded message set.
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Security Analysis
The channel resolvability with the superposition 
coding is used to analyze the security.
Lemma (Superposition Resolvability) 
If                    and                      ,  

Note that                                            , which is the    
randomness needed to simulate     via       . 
The lemma shows the strong security of Chia and El Gamal’s 
superposition scheme.
The lemma is proved by extending a result in [Hayashi ’11]. 
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48/86When Rd = ∞
Main Theorem implies ...

Corollary [Csiszár and Körner (IT 78)] (∞, R0, R1, Rs) is achiev-
able iff. ∃PUV X s.t.

U ↔ V ↔ X ↔ (Y ,Z)
R0 ≤ min{I(Y ;U), I(Z;U)}

R0 +R1 +Rs ≤ I(V ;Y |U) + min{I(Y ;U), I(Z;U)}
Rs ≤ I(V ;Y |U) − I(V ;Z|U)



49/86When Rd = 0

Corollary [Oohama and Watanabe (SITA 10)] (0, R0, R1, Rs) is
achievable iff. ∃PUV X s.t.

U ↔ V ↔ X ↔ (Y ,Z)
R0 ≤ min{I(Y ;U), I(Z;U)}

R0 +R1 +Rs ≤ I(V ;Y |U) + min{I(Y ;U), I(Z;U)}
Rs ≤ I(V ;Y |U) − I(V ;Z|U)
R1 ≥ I(X;Z|U)



50/86When R0 = R1 = 0
Main Theorem implies ...

Corollary [Watanabe and Oohama (IT 15)] (Rd, Rs) is achievable
iff. ∃PUV X s.t.

U ↔ V ↔ X ↔ (Y ,Z)
Rs ≤ I(V ;Y |U) − I(V ;Z|U)
Rd ≥ I(X;Z|U)

U is just a time-sharing R.V..



51/86When R0 = R1 = 0
Region achieved by channel simulation is...

Proposition (Rd, Rs) is achievable iff. ∃PUV X s.t.
U ↔ V ↔ X ↔ (Y ,Z)
Rs ≤ I(V ;Y |U) − I(V ;Z|U)

Rd ≥ I(V ;Z|U) + H(X|V )

Note that
I(X;Z|U) = I(V ;Z|U) + I(X;Z|V ) < I(V ;Z|U) + H(X|V )

in general.



52/86When R0 = R1 = 0
When PY |X is more capable than PZ|X ...

Corollary (Rd, Rs) is achievable iff. ∃PUX s.t.
U ↔ X ↔ (Y ,Z)
Rs ≤ I(X;Y |U) − I(X;Z|U)
Rd ≥ I(X;Z|U)

• Independently solved by Bloch and Kliewer (Arxiv 12).
• Channel prefixing is not needed.



Numerical Example 1
When                         and                         ...

pair (Rd,Rs) for which there exist auxiliary random variables (U,V)
such that U ↔ V ↔ X ↔ (Y,Z) and

Rs <= I(V; Y |U) − I(V; Z|U), (15)

Rd >= I(X;Z|U). (16)

Then we have Rds = R∗ds.

Remark 3 The auxiliary random variable U in Corollary 4 only
plays a role of time-sharing. Thus, the range of U may be assumed
to satisfy |U| <= 2. The same remark is also applied for Corollary 5.

Let

Cs = sup{Rs : (Rd,Rs) ∈ Rds}

be the secrecy capacity, which can be characterized by the supre-
mum of the rate Rs for which there exists auxiliary random variable
V such that V ↔ X ↔ (Y,Z) and

Rs <= I(V; Y) − I(V; Z). (17)

To achieve the rate given by the right hand side of Eq. (17), we con-
ventionally used the following coding scheme. First, we construct
a wire-tap channel code for channel pairs PY |V and PZ|V . Then, the
code word in Vn is transmitted over prefixing channel PnX|V . If we
simulate channel PnX|V by using the channel simulation method [4],
then we need randomness with rate H(X|V)ʢ4ʣ. By using this argu-
ment, we can derive the following inner bound on Rds that can be
achieved by combining the ordinary wire-tap channel coding and
the channel prefixing by the channel simulation method.

Proposition 1 Let R∗sim be a closed convex set consisting of those
rate pair (Rd,Rs) for which there exist auxiliary random variables
(U,V) such that U ↔ V ↔ X ↔ (Y, Z) and

Rs <= I(V; Y |U) − I(V; Z|U), (18)

Rd >= I(V; Z|U) + H(X|V). (19)

Then we have R∗sim ⊂ Rds.

Since I(X;Z|U) = I(V;Z|U) + I(X; Z|V) < I(V;Z|U) + H(X|V) in
general, the region R∗ds is strictly broader than the region R∗sim, i.e.,
the straightforward combination of the ordinary wire-tap channel
coding and the channel prefixing by the channel simulation is sub-
optimal.

Corollary 5 Suppose that the channel PY |X is more capable than
PZ|X . Then the region Rds = R∗ds is a closed convex set consisting of
those rate pair (Rd,Rs) for which there exists an auxiliary random
variable U such that U ↔ X ↔ (Y, Z) and

Rs <= I(X;Y |U) − I(X; Z|U),

ʢ4ʣɿWe are implicitly assuming that the empirical distributions of almost every code
words are close to PV , which is true if we use the random coding method.

0.00 0.05 0.10 0.15 0.20
Rd0.00

0.05

0.10

0.15

0.20

Rs

Figure 2 The achievable region Rds when PY |X is BSC(0.1) and PZ|X is
BSC(0.2).

Rd >= I(X;Z|U).

Moreover, it may be assumed that the ranges of U may be assumed
to satisfy |U| <= 2.

As we can find from Corollary 5, we do not need auxiliary ran-
dom variable V when the channel PY |X is more capable than PZ|X .
Thus, two regions R∗ds and R∗sim coincide.
2. 3 Numerical Examples
First, we consider an example such that R∗ds and R∗sim coincide.

Suppose that PY |X and PZ|X are binary symmetric channels with
crossover probabilities ε1 and ε2 respectively, where ε1 < ε2. In this
case, PZ|X is degraded version of PY |X , which also implies that PY |X
is more capable than PZ|X . Thus, we can apply Corollary 5. Since
the auxiliary random variable U only plays a role of time sharing,
region Rds is the convex hull of the rates (Rd,Rs) satisfying

Rs <= [h(p ∗ ε1) − h(ε1)] − [h(p ∗ ε2) − h(ε2)],

Rd >= h(p ∗ ε2) − h(ε2)

for some input distribution 0 <= PX(0) = p <= 1, where h(·) is the
binary entropy functionʢ5ʣand x ∗ y = x(1 − y) + (1 − x)y is the bi-
nary convolution. In Fig. 2, for the case with ε1 = 0.1 and ε2 = 0.2
respectively, the region Rds is plotted. The input distribution achiev-
ing Cs is the uniform distribution, and thus Rs is constant when
Rd >= log 2 − h(0.2). By using a biased input distribution, Rs can
be positive even if Rd is smaller than log 2 − h(0.2).
Next, we consider an example such that R∗ds and R∗sim do not

coincide. Suppose that PY |X is a binary symmetric channel with
crossover probability ε and PZ|X is a binary erasure channel with
erasure probability δ. When 4ε(1 − ε) log 2 < δ log 2 <= h(ε), it is
known that PY |X is not more capable than PZ|X [23]. For this exam-
ple, we can compute the regions Rds = R∗ds as follows. Since R∗ds is
a convex set, for each Rd, we can calculate max{Rs : (Rd,Rs) ∈ R∗ds}
by minimizing

max
PUVX

[I(V;Y |U) − I(V; Z|U) − µ(I(X; Z|U) − Rd)] (20)

ʢ5ʣɿNote that the base of the logarithm is e.
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Numerical Example 2
When                          and                          ...

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Rd0.000

0.002

0.004

0.006

0.008

0.010

Rs

Figure 3 The achievable region Rds = R∗ds (solid line) and suboptimal in-
ner bound R∗sim (dashed line) when PY |X is BSC(0.11) and PZ|X is
BEC(0.45).

with respect to µ >= 0, where µ is the slope of the supporting line of
R∗ds. Since U only plays the role of the times sharing in Eq. (20),
we can take U to be constant. Furthermore, by using the support
lemma [6], we can assume that |V| <= |X| = 2. Thus, Eq. (20)
can be calculated by exhaustive search of three parameters PV (0),
PX|V (0|0), and PX|V (1|1). Since PV (0) = 1

2 is not necessarily opti-
malʢ6ʣfor Rd < (1 − δ) log 2, further reduction of parameters seems
difficult. The region R∗sim can be computed in a similar manner.
In Fig. 3, for the case with ε = 0.11 and δ = 0.45 respectively,

the region Rds = R∗ds and R∗sim are plotted.
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55/86Conclusions
• New setting of BCC was proposed.
• Optimal region was clarified.
• The channel simulation scheme turned out to be suboptimal



56/86

III. Information Theoretic Analysis of Shannon
Cipher System under Side-channel Attacks



57/86Basic Definitions and Notations (Part 1/2)
Random Source of Information and Key:
X : Finite set, X ∈ X , X ∼ pX = {pX(x)}x∈X
{Xt}∞

t=1: Stationary Discrete Memoryless Source(SDMS),
Xt ∼ pX , t = 1, 2, . . . The SDMS {Xt}∞

t=1 is specified with pX .
K ∈ X , K ∼ pK = {pK(k)}k∈X
{Kt}∞

t=1: SDMS, Kt ∼ pK . We assume that pK is the uniform
distribution over X .
Random Variables and Sequences:
We write Xn := X1X2 · · ·Xn ∈ X n. Similarly, we write
xn := x1x2 · · ·xn ∈ X n. For xn ∈ X n, pXn(xn) stands for the
probability of the occurrence of xn. Since {Xt}∞

t=1 is SDMS specified
with pX , we have

pXn(xn) =
n∏

t=1
pX(xt).

In this case we write pXn(xn) as pn
X(xn). Similar notations are used for

other random variables and sequences.



58/86Basic Definitions and Notations (Part 2/2)
Finite Field and the Addition Operation:

• We assume that X is a finite field.
• The notation ⊕ is used to denote the field addition operation, while

the notation ⊖ is used to denote the field subtraction operation, i.e.,
a⊖ b = a⊕ (−b) for any elements a, b ∈ X .



59/86Shannon Cipher System



60/86Side-Channel Attacks to Shannon Cipher System



61/86Leakage of Key Data by Side-Channel Attacks
• Let W : K → Z be noisy channel.
• Let Z be a channel output r.v. from W for the input r.v. K.
• We consider the discrete memoryless channel(DMC) specified with W .

Let Zn ∈ Zn be a random variable from W the channel output by
connecting Kn ∈ X n to the input of channel. We write a conditional
distribution on Zn given Kn as

Wn = {Wn(zn|kn)}(kn,zn)∈Kn×Zn .

Since the channel is memoryless, we have

Wn(zn|kn) =
n∏

t=1
W (zt|kt). (1)



62/86Assumption on the Adversary A
Let

φ
(n)
A : Zn → M(n)

A , R
(n)
A := 1

n
log |M(n)

A |.

For RA > 0, we set F (n)
A (RA) := {φ(n)

A : R(n)
A ≤ RA}.

• The adversary A, having accessed Zn, obtains φ(n)
A (Zn). For each

n = 1, 2, · · · , the adversary A can design φ(n)
A .

• The adversary A must use φ(n)
A such that for some RA and for any

sufficiently large n, φ(n)
A ∈ F (n)

A (RA).

Validity of Our Theoretical Model:

• As a real situation of side channel attacks we have often the case
where the noisy version Zn of Kn can be regarded as almost an
analog random signal.

• In this case, |Z| is sufficiently large. The adversary A can not obtain
Zn in a lossless form.



63/86Affine Encoder as Privacy Amplifier
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64/86Affine Encoder as Privacy Amplifier
For each n = 1, 2, · · · , let ϕ(n) : X n → X m be a linear mapping. Define
the mapping φ(n) : X n → X m by

φ(n)(kn) :=ϕ(n)(kn) ⊕ bm = knA⊕ bm, for kn ∈ X n. (2)

where A is a matrix with n rows and m columns. Entries of A are from
X . We fix bm ∈ X m. By the definition (2) of φ(n), those satisfy the
following affine structure:

φ(n)(xn ⊕ kn) = (xn ⊕ kn)A⊕ bm = xnA⊕ (knA⊕ bm)

= ϕ(n)(xn) ⊕ φ(n)(kn), for xn, kn ∈ X n. (3)

Let ψ(n) be the corresponding decoder for ϕ(n) such that
ψ(n) : X m → X n.
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65/86Affine Encoder as Privacy Amplifier
Description of Proposed Procedure:

1. Encoding of Ciphertext: First, we use φ(n) to encode the ciphertext
Cn = Xn ⊕Kn Let C̃m = φ(n)(Cn). Then, instead of sending Cn,
we send C̃m to the public communication channel. By the affine
structure (3) of encoder we have that

C̃m = φ(n)(Xn ⊕Kn)

= ϕ(n)(Xn) ⊕ φ(n)(Kn) = X̃m ⊕ K̃
m
, (4)

where we set

X̃m := ϕ(n)(Xn), K̃
m

:= φ(n)(Kn).



66/86Affine Encoder as Privacy Amplifier
2. Decoding at Sink Node D: First, using the linear encoder φ(n), D

encodes the key Kn received through private channel into
K̃

m
=(φ(n)(Kn). Receiving C̃m from public communication channel,

D computes X̃m in the following way. From (4), we have that the
decoder D can obtain X̃m = ϕ(n)(Xn) by subtracting
K̃

m
= φ(n)(Kn) from C̃m. Finally, D outputs X̂n by applying the

decoder ψ(n) to X̃m as follows:

X̂n = ψ(n)(X̃m) = ψ(n)(ϕ(n)(Xn)). (5)



67/86Error Probability and Information Leakage
When φ(n) is an affine map , we have the following result.
On Reliability:

pe := Pr[X̂n ̸= Xn] = Pr[ψ(n)(ϕ(n)(Xn)) ̸= Xn]. (6)

On Security:

∆(n) :=I(Xn; C̃m, φ
(n)
A (Zn))

=I(Xn;φ(n)(Xn ⊕Kn), φ(n)
A (Zn)) ≤ D(p

K̃
m|M(n)

A
||pV m |p

M
(n)
A

),

where M (n)
A := φ

(n)
A (Zn) and pV m is the uniform distribution on X m.
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68/86Analysis of pe = Pr[X̂n ̸= Xn]

When φ(n) is an affine map, we have the following result.

pe = Pr[X̂n ̸= Xn] = Pr[ψ(n)(ϕ(n)(Xn)) ̸= Xn]. (7)
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69/86Analysis of ∆n = I(Xn; C̃m, φ
(n)
A (Zn))

∆(n) = I(Xn;ϕ(n)(Xn) ⊕ K̃
m
,M

(n)
A ) = I(Xn;ϕ(n)(Xn) ⊕ K̃

m|M (n)
A )

= H(ϕ(n)(Xn) ⊕ K̃
m|M (n)

A ) −H(K̃m|M (n)
A )

≤ m log |X | −H(K̃m|M (n)
A ) = D(p

K̃
m|M(n)

A
||pV m |p

M
(n)
A

).
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70/86Definition for Upper Bound of Error Prob.
Let X be an arbitrary random variable over X and has a probability
distribution pX . Let P(X ) denote the set of all probability distributions
on X . For R ≥ 0 and pX ∈ P(X ), we define the following function:

E(R|pX) : = min
p

X
∈P(X )

{[R−H(X)]+ +D(pX ||pX)}.

By definition we have

R > H(X) ⇐⇒ E(R|pX) > 0.



71/86Definition for Upper Bound of Security

Ξ(R,RA) := inf
η>0

 max
φ

(n)
A ∈F(n)(RA)

p
M

(n)
A ZnKn

{

R ≥ 1
n

log 1
p

Kn|M(n)
A

(Kn|M (n)
A )

− η

}
+ e−nη

. (8)



72/86Key Proposition

Proposition 1 For any RA, R > 0, and any (pK ,W ), there exists
a sequence of mappings {(φ(n), ψ(n))}∞

n=1 such that for any pX ∈
P(X ),

1
n

log |X m| = m

n
log |X | ∈

[
R− 1

n
,R

]
,

pe(ϕ(n), ψ(n)|pn
X) ≤ e(n+ 1)2|X |{(n+ 1)|X | + 1}

× e−n[E(R|pX )] (9)

and for any eavesdropper A with φA satisfying φ(n)
A ∈ F (n)

A (RA),

∆(n)(φ(n), φ
(n)
A |pn

X , p
n
K ,W

n) ≤ D(p
K̃

m|M(n)
A

||pV m |p
M

(n)
A

)

≤ {(n+ 1)|X | + 1}(nR)Ξ(R,RA). (10)
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73/86Ξ(R, RA) and One Helper Source Coding Problem

There exists {(φ(n), ψ(n))}n≥1 with (n/m) log |X | ≤ R such that for
any {(φ(n)

A , ψ
(n)
A )}n≥1 with φ(n)

A ∈ F (n)(RA),

∆(n) ≤ D(p
K̃

m|M(n)
A

||pV m |p
M

(n)
A

) ≤ (nR)Ξ(R,RA), (11)

Pr{Kn = ψ
(n)
A (K̃m

,M
(n)
A )} ≤ Ξ(R,RA). (12)

Yasutada Oohama
長方形

Yasutada Oohama
多角形

Yasutada Oohama
多角形

Yasutada Oohama
多角形



74/86Definition of the Region
Let U be an auxiliary random variable taking values in a finite set U . We
assume that the joint distribution of (U,Z,K) is

pUZK(u, z, k) = pU (u)pZ|U (z|u)pK|Z(k|z).

The above condition is equivalent to U ↔ Z ↔ K. Define the set of
probability distribution p = pUZK by

P(pK ,W ) := {pUZK : |U| ≤ |Z| + 1, U ↔ Z ↔ K}.

Set

R(p) := {(RA, R) : RA, R ≥ 0, RA ≥ I(Z;U), R ≥ H(K|U)},

R(pK ,W ) :=
∪

p∈P(pK ,W )

R(p).



75/86Property of R(pK , W )
Property 1

a) The region R(pK ,W ) is a closed convex subset of R2
+.

b) For any (pK ,W ), we have

R(pK ,W ) ⊆{(RA, R) : RA +R ≥ H(K)} ∩ R2
+.

Furthermore, the point (0,H(K)) always belongs to R(pK ,W ).

Property 1 part a) is a well known property. Proof of Property 1 part b)
is easy. Proofs of Property 1 parts a) and b) are omitted.



76/86Form of R(pK , W )



77/86Definitions for Upper Bounds of Ξ(R, RA)
Set

Q(pK|Z) :={q = qUZK : |U| ≤ |Z|, U ↔ Z ↔ K, pK|Z = qK|Z}.

For (µ, α) ∈ [0, 1]2, and for q = qUZK ∈ Q(pK|Z), define

ω
(µ,α)
q|pZ

(z, k|u) := ᾱ log qZ(z)
pZ(z)

+ α

[
µ log

qZ|U (z|u)
pZ(z)

+ log 1
qK|U (k|u)

]
,

Ω(µ,α)(q|pZ) := − log Eq

[
exp

{
−ω(µ,α)

q|pZ
(Z,K|U)

}]
,

Ω(µ,α)(pK ,W ) := min
q∈Q(pK|Z )

Ω(µ,α)(q|pZ),

F (µ,α)(µRA +R|pK ,W ) := Ω(µ,α)(pK ,W ) − α(µRA +R)
2 + αµ̄

,

F (RA, R|pK ,W ) := sup
(µ,α)

∈[0,1]2

F (µ,α)(RA, R|pK ,W ).
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78/86Property of F (RA, R|pK , W )(1/2)

Property 2

a) The cardinality bound |U| ≤ |Z| in Q(pK|Z) is sufficient to de-
scribe the quantity Ω(µ,α)(pK ,W ).

b) Fix any p = pUZK ∈ Psh(pK ,W ) and µ ∈ [0, 1]. Define

ω̃(µ)
p (z, k|u) := µ log

pZ|U (z|u)
pZ(z)

+ log 1
pK|U (K|U)

.

For λ ∈ [0, 1/2], define a probability distribution p(λ) = p
(λ)
UZK by

p(λ)(u, z, k) :=
p(u, z, k) exp

{
−λω̃(µ)

p (z, k|u)
}

Ep

[
exp

{
−λω̃(µ)

p (Z,K|U)
}] .



79/86Property of F (RA, R|pK , W )(2/2)

Property 2

b) (Cont.) For (µ, λ) ∈ [0, 1] × [0, 1/2], define
ρ(µ,λ)(pK ,W ) := max

(ν,p)∈[0,λ]
×Psh(pK ,W ):

Ω̃(µ,λ)(p)
=Ω̃(µ,λ)(pK ,W )

Varp(ν)

[
ω̃(µ)

p (Z,K|U)
]
,

and set
ρ = ρ(pK ,W ) := max

(µ,λ)∈[0,1]×[0,1/2]
ρ(µ,λ)(pK ,W ).

Then we have ρ(pK ,W ) < ∞. Furthermore, for every τ ∈
(0, (1/2)ρ(pK ,W )), (RA, R + τ) /∈ R(pK ,W ) implies

F (RA, R|pK ,W ) > ρ(pK ,W )
4 · g2

(
τ

ρ(pK ,W )

)
> 0,

where g is the inverse function of ϑ(a) := a+ (3/2)a2, a ≥ 0.
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80/86Upper Bound of Ξ(R, RA) (1/2)
Lemma 1 For any η > 0 and for any eavesdropper A with φA
satisfying φ(n)

A ∈ F (n)
A (RA), we have

Ξ(R,RA) ≤ p
M

(n)
A ZnKn

{
0 ≥ 1

n
log qZn(Zn)

pZn(Zn)
− η, (13)

0 ≥ 1
n

log
q̂

M
(n)
A ZnKn(M (n)

A , Zn,Kn)

p
M

(n)
A ZnKn(M (n)

A , Zn,Kn)
− η, (14)

RA ≥ 1
n

log
p

Zn|M(n)
A

(Zn|M (n)
A )

pZn(Zn)
− η,

R ≥ 1
n

log 1
p

Kn|M(n)
A

(Kn|M (n)
A )

− η

}
+ 4e−nη. (15)



81/86Upper Bound of Ξ(R, RA) (2/2)

Lemma 1(Cont.) The probability distributions appearing in the
two inequalities (13) and (14) in the right members of (15) have a
property that we can select them arbitrary. In (13), we can choose
any distribution qZn on Zn. In (14), we can choose any probability
distribution q̂

M
(n)
A ZnKn on M(n)

A ×Zn×X n.

In a manner similar to the derivation of the exponential upper bound of
the correct probability of decoding for one helper source coding problem
we can derive the same exponential upper bound of Ξ(R,RA). This
result is shown in the following proposition.

Proposition 2 For any R,RA ≥ 0, we have
Ξ(R,RA) ≤ 5 · e−nF (RA,R|pK ,W ). (16)

From Propositions 1, 2, and Lemma 1 we immediately obtain the
following result. Theorem 1.
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82/86Main Result
Theorem 1（Santoso and Oohama (Entropy, 19)） For any
RA, R > 0, and any (pK ,W ) with (RA, R) ∈ Rc(pZ ,W ), there
exists a sequence of mappings {(φ(n), ψ(n))}∞

n=1 satisfying
1
n

log |X m| = m

n
log |X | ∈

[
R− 1

n
,R

]
,

such that for any pX with R > H(X),

pe(ϕ(n), ψ(n)|pn
X) ≤ e−n[E(R|pX )−δ1,n] (17)

and for any eavesdropper A with φA satisfying φ(n)
A ∈ F (n)

A (RA),

∆(n)(φ(n), φ
(n)
A |pn

X , p
n
K ,W

n) ≤ e−n[F (RA,R|pK ,W )−δ2,n], (18)
where δi,n, i = 1, 2 are positive numbers satisfying δi,n → 0 as
n → ∞.



83/86Implications of Theorem 1 (1/2)
We set

R(in)
Sys (pX , pK ,W ) :={R ≥ H(X)} ∩ cl [Rc(pK ,W )] ,

where cl [Rc(pK ,W )] stands for the closure of the complement of
R(pK ,W ).



84/86Implications of Theorem 1 (2/2)
By Theorem 1, under

(RA, R) ∈ int
[
R(in)

Sys (pX , pK ,W )
]
,

we have the followings:

• On the reliability, pe(ϕ(n), ψ(n)|pn
X) goes to zero exponentially as n

tends to infinity, and its exponent is lower bounded by the function
E(R|pX).

• On the security, for any φA satisfying φ(n)
A ∈ F (n)(RA), the

information leakage ∆(n)(φ(n), φ
(n)
A |pn

X , p
n
K ,W

n) on Xn goes to zero
exponentially as n tends to infinity, and its exponent is lower bounded
by the function F (RA, R|pK ,W ).

• The code that attains the exponent functions E( R|pX) is the
universal code that depends only on R not on the value of the
distribution pX .



85/86Conclusions
Our Contribution:

1. We have formulated the problem of information theoretical analysis of
side-channel attacks to the Shannon cipher system.

2. We have derived a sufficient condition of reliable and secure
communication under the side-channel attacks.

3. To prove the exponential decrease of the information leakage we have
used the author’s technique of proving exponential strong converse to
one helper source coding problem.

Future Works:

1. Derivation of the necessary and sufficient condition.
2. Extension to the case where Z is an analog random signal.
3. Extension to the case where we have several distributed side-channel

attacks.



86/86Finally...
• We have presented three topics in information theoretical security.
• Those are specific but provide new interesting problems which raising

in communication systems with security requirement.
• We think that in this fields we may have several such other interesting

problems which remains to be investigated!
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