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Introduction

1/86

e |n this plenary talk we present our previous works on information
theoretic security consisting of three miscellaneous topics.

Relay channel with confidential messages (RCC)
Broadcast channel with confidential messages (BCC) with
randomness constraints

Information theoretic analysis of Shannon cipher system under
side-channel attacks
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e |n this plenary talk we present our previous works on information
theoretic security consisting of three miscellaneous topics.
e Those topics provide some specific but interesting problems arising
inherently in communication systems with security requirement.
|. Relay channel with confidential messages (RCC)
~ Interplay between the two roles of the relay as a “helper” and as

an “eavesdropper”
Il. Broadcast channel with confidential messages (BCC) with

randomness constraints
~ Relationship between randomness and security
lIl. Information theoretic analysis of Shannon cipher system under
side-channel attacks
~ Relationship between the privacy amplification and the strong
converse theorem for one helper source coding system
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‘ . Relay Channel with Confidential Messages I




Presentation Overview 4/86

1. Introduction
2. Definition of the Relay Channels with Confidential Messages(RCCs)

3. Capacity Results on the RCC
4. Some Comments
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-~ Security of Communication Systems

\
e ”S%?
9 Wire-tapper g
Insecu:re Channel g
\ Sender Reciever j
[] Information Theoretical Analysis of Secure Systems
e “Wire-Tap Channels”(Wyner, IT 75)
e “Broadcast Channels with Confidential Messages” (Csiszar and
Korner, IT 78)

4 N

Multiuser Communication Networks

U
Secure communication for unauthorized users

N /




Broadcast Channel

6,/86

Reciever
JZt
Xi—>| Pyzx Cl .
Sender L
Reciever

Let X', ), Z be finite sets. The broadcast channel is defined by a
discrete memoryless channel specified with

PYZ\X — {PYZ|X(ya Z\$)}(a;,y,z)e)(xy><z :
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Unauthorized
Reciever
___,///ZZt
Xi—>| Pyzx Cl .
Sender ¢
Reciever

Let X', ), Z be finite sets. The broadcast channel is defined by a
discrete memoryless channel specified with

PYZ\X — {PYZ|X(ya Z\x)}(x,y,z)e)cxyxz :
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Eve

JZt
Xt—><PYZ|X Cl .
Alice !

Bob

Let X', ), Z be finite sets. The broadcast channel is defined by a
discrete memoryless channel specified with

PYZ|X — {PYZ|X(:% Z|il3)}(x,y,z)e.>(><y><z :
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- BCC(Csiszar and Korner(IT 78)) ~
K, : Common Eve
L : Private Z" 7 A .
MniConﬁdential f n *Kn 'qu
K, —»
LZ-’JZ ﬁ<PYnZ|X <\l R g RSN
ol U, >
Mn —p- / n no n)
Alice Bob
- Y,

[] Information Leakage on Confidential Messages
o D, :=1(M,;7™)

lim sup = D,, = limsup +I(M,,; Z™) = 0, (weak secrecy criterion)
n—oo n—oo
limsup D,, = limsup I(M,,; Z") = 0. (strong secrecy criterion)

n—oo n—oo
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Reciever
JZt
Xi—>|( Pyzix Cl .
Sender L
Reciever

Let X', ), Z be finite sets. The broadcast channel is defined by a
discrete memoryless channel specified with

PYZ\X — {PYZ|X(?J7 Z\$)}(x,y,z)e)c><y><z -
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g l— Zl‘—l
St gt(Zt

Xi—|( P YZ|XS C
Sender
Rec1ever

Let X, S, ), Z be finite sets. The relay channel is defined by a discrete
memoryless channel specified with

Relay

PYZ|X :{PYZ|X (?J,Z\% )}(:c 1, 2)EXXSXYXZ
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g l— Zt—l
St gt(Zt

Xi—|( P YZ|XS C
Sender
Rec1ever

Let X, S, ), Z be finite sets. The relay channel is defined by a discrete
memoryless channel specified with

Relay

PYZ\X :{PYZ\X (y,z|a:, )}(az 1, 2)EXXSEXYXZ -
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‘1 Untrasted
8=~ Relay
S =g (7" 1)
Xi—|( P YZ|XS C y
Sender .
Rec1ever

Let X', S, ), Z be finite sets. The relay channel is defined by a discrete
memoryless channel specified with

PYZ|X :{PYZ|X (y,z|a:, )}(a: 1, 2)EXXSEXYXZ -



Security of Relay Channels
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Relay Channel (RC) -

/ R l N \
= — 7 M=,
* . can be known
Snl Z"  to the Relay!
X" (" o p
M,—{ Enc. —>< Py71xs (/ Y” Dec. _>A/\4n
\_ Sender Reciever )
[1 Coding strategy of Cover and EI Gamal(IT 79) for the RC
e Relay obtains all messages flowing through the channel.
[1 Security of RC should be studied.
" e Some messages should be confidential to the relay. N
e Comm. Syst. with Confidential Messages
|} Oohama (ITW 01, Cairns)
N Relay Channels with Confidential Messages (RCC) .




Works on RCC or the Security of Relay Channels 15/86

e Relay Channels with Confidential Messages
by Oohama (ISIT 07, Nice)

e Relay-Eavesdropper Channel
by Lai and EI Gamal (IT 08)

e Cooperation with an | Untrusted | Relay: A Secrecy Perspective
by He and A. Yener (IT 10)

e Refine and extensions of Oohama (ITW 01, ISIT 07) by Oohama and
Watanabe (SITA 10)
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Refine and Extensions of Oohama (ITW 01)  16/86

e Refine or extensions of Oohama (ITW 01) were given by Oohama
(ISIT 07), Oohama and Watanabe (SITA 10).

1. Definitions of rate

deterministic/stochastic encoders

regions In two cases;

2. Inner bounds and outer bounds of the| re  |regions
3. The case where inner and outer bounds match.
— Reversely degraded relay channels, semi deterministic relay

channels
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e Refine or extensions of Oohama (ITW 01) were given by Oohama
(ISIT 07), Oohama and Watanabe (SITA 10).

1. Definitions of rate

deterministic/stochastic encoders

regions In two cases;

2. Inner bounds and outer bounds of the| re  |regions
3. The case where inner and outer bounds match.
— Reversely degraded relay channels, Semi deterministic relay

channels
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Problem Setting of RCC 18/86

K, : Common , Relay (Eve)
Ly ¢ Private 8- ] A " .
My : Confidential n > D K, M
K, =» 1
L, = n
MZ -> ' _><PYZXS C L Wn_’(]/\(nal/l\mﬁn)
Sender Reciever

Encoder f,, : IC,, x L,, x M,, — X",
Receiver Decoder 1, : V" — K,, x L,, X M,

Relay Encoder {g:};_,, = {gt(Zt_l)}?zl
Relay Decoder ¢, : Z2" — IC,,
Receiver Error Prob. )\(n) — Pr{(Kn,Ln,M ) #£ (K, Ly, M)}

Relay Error Prob. )\(”) — Pr{k, # K,}
Security D = D(PMnZ”HPMn X PZn) = I(Mn, Zn)



BQ'BI.IQD bQIWEED BCC and BCC 19/86
K; :Common

Ly ¢ Private Eve

AN N ’
M, : Confidential S*: Const —> % > K, M,
K, = :

n \
Ly, = fn X Pn o
M, - —*( YZ|XS* P Y v,

A\ VA /\
—> (Kl’l Y L nstz)
Alice Bob

—

RCC includes the BCC as a special case by letting |5| = 1.



Rate Region of RCC 20/86

K, : Common , Relay (Eve)
Ly Private k- ] A o
My : Confidential n P> Ki M,
K, =
Ln -> fn P I n A AA
M, = _>< YZ|XS <_Y> Vi = (K, L,,M),)
Sender Reciever
(Ro, R1, R.) is achievable < 3{(f,, {gt}t L n, on) 12 st
lim )\( ") — = 0,7 = 1,2, limsup 2= = 0 (weak secrecy criterion)
n—00 n— 00
lim inf % > Rp, lim &nﬁ”' = Ry, liminf log, |T/L\/l”| > Rs.
n—oo n—oo n—oo

For simplicity of notation set I' := Py 7| x 5.
chc(r) = {(RQ, Rl, RS) . (R(), Rl, RS) IS achievable.}



A Pair of Inner and Outer Bounds of R,..(I') 2!/%6

Pr={(U X, eUXxX xS Ul <|X||S|+3, U+ X5« YZY,
RN := {(Ry, R1, Rs) : (U, X, 5) € Py s.t.
Ro <min{I(Y;US5),I1(Z;U|5)},
Ry + Ry < I(X;Y|US),
Ry <|I(X; V|US) — I(X; Z|US) S
ROUNT) := {(Ry, R1, Ry) : (U, X, 5) € Py sit.
Ro <min{I(Y;US5),I(Z;U]5)},
Ri+ R, <I(X;YZ|US),
Ro+ Ry + Rs < I(X5;Y),
R <|I(X;Y|ZUS)|}.

Theorem 1 For any relay channel T',
RU(T) C Ryee(I') C ROW(T) .
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Reversely Degraded Relay Channel 22/86

An essential difference between ﬁéin) (T") and ﬁéom)(l“) is a gap A given
by

A= XY ZU9)-I(X;YUS) — 1(X; Z|US)]
— (X, ZY|US) — [(X;V|US) = [(X: Z|YUS).

- Important Fact ~
A = 0 if I' satisfies the following

U(z,y|x,s) =T(z|y, s)T'(y|x, s), (x,5,y,2) EXXEXY X Z
. <= X & 5Y & 7. )

Cover and El. Gamal(IT 81) called the above I' reversely degraded relay
channel.
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Degraded Relay Channel 23/86

Cover and EI. Gamal(IT 81) called the relay channel is degraded if T’
satisfies

U(z,y|lx,s) =T(y|z, s)['(z|x, s), (x,5,y,2) EX XEXY X Z
= X HZY

Important Fact
(If the relay channel is degraded, then||I(X; Y |ZUS5) = 0. ]

— R, must be zero.
— No security on the private messages is guaranteed!
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Two Degraded Relay Channels 24/86

Reversely g l—2z""
Degraded: S,=g (7'

(0

Y; Reciever

Relay

Degraded: g J— 71!

Z;
Sender v \_L "\ Reciever
X; —><PZ|XS </ <PYZS (7 Y,




Results on the Two Degraded Cases 25/86

Corollary 1 For the reversely degraded relay channel T,

RU(T) = Ryee(I) = ROW(T) .

Corollary 2 When the relay channel I' is degraded, no security on
the private messages is guaranteed.

Some remarks on the two corollaries:

e Corollary 1 implies that the coding strategy attaining ﬁém)(l“) in
Theorem 1 is optimal in the case of reversely degraded relay channels.

e Corollary 2 meets our intuition in the sense that if the relay channel is
degraded, the relay can do anything that the destination can.



Another Pair of Inner and Outer Bounds of R.(I") 26/86

Q1 :={(U,V, X, 5) : | <|X||S]+3,V| < (|X||S])* + 4] X]||5] + 3,
UV XS YZ USV & X

Qo :={(U,V, X, 5) : [U] < |Z]|X]|5] + 3,
VI < (1ZI1X]S)* + 4 2[1X]15] + 3,

UV XS5Z&Y,
US> VX Z US+ Ve XL

RU(DY := {(Ry, R1, R.) : 3(U,V, X, 5) € Oy s.t.
Ry <min{I(Y;U5),1(Z;U|5)},
Ro+ R+ R < I(V; Y|US) + min{I(Y;US5), I(Z;U|5)},
R, < I(V;Y|US) — I(V; Z|US)}.

Theorem 2 For any relay channel T',
RUM(T) C Ryee(T)




Another Pair of Inner and Outer Bounds of R.(I") 27/86

Q1 :={(U,V, X, 5) : | <|X||S]+3,V| < (|X||S])* + 4] X]||5] + 3,
UV XS YZ USV & X

Qo :={(U,V, X, 5) : [U] < |Z]|X]|5] + 3,
VI < (1ZI1X]S)* + 4 2[1X]15] + 3,

UV XS5Z&Y,
US> VX Z US+ Ve XL

RN := {(Ry, Ry, R) : (U, V, X, 5) € Qy s.t.
Ry <min{I(Y;U5),1(Z;U|5)},
Ro+ R + R < I(V;YV|US) +min{I(Y;U5), I(Z;U|5)},
R, < I(V:Y|US) = I(V; Z|US)}.

Theorem 2 For any relay channel T,
RU(T) C Ryee(T) C REOW(T).




Semi Deterministic Relay Channels 28/86

We say that I" is semi deterministic if Z is a function of (X, 5).

Corollary 3 If I' is semi deterministic

RU(T) = Ryeo(I) = ROW(T) .




Some Comments (1/2) 29/86

1. For derivations of the inner bounds we use the decode and forward
scheme. Derivations of the ourter bounds are standard.
2. If I' is semi deterministic, then

Cree(T) :=sup R : (0,0, Ry) € Ryce(T)
— I(V:Y|\US)—I1(V; Z{U5)|.
oV o) (V5 Y|US) = I(V; ZIUS)|

a) We can show that C,..(I") can be attained by 5 = s*, where s* €
is the best input alphabet which maximizes the secrecy rate

(VUXmi}g*)te {I(V;Y|US =s")—I(V; Z|US = s%)}.

b) This implies that the improvement of Ci..(I") limited when I is semi
deterministic.

c) We have a similar result when T is reversely degraded.



Some Comments (2/2) 30/86

3. Cover and El Gamal (IT 81) introduced the compress-and-forward
scheme, where the relay transmits a quantized version of its received
signal.

4. He and Yener (IT 10) derived lower bound of C,..(I") for general T" in
the case where the relay employs the compress-and-forward scheme to
show that the relay may improve the secrecy capacity.
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Il. Broadcast Channel with Confidential Messages
(BCC) with Randomness Constraints
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Ordinary Problem Setting and Coding of BCC

New Problem Setting by Watanabe and Oohama (IT 15)
Main Theorem and ldes of a Proof

Consequences if Main Theorem

Numerical Examples

Conclustions

A
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K, : Common

L. Pri Eve
n+ Private z" A .
S n: Confidential — 0> K, S
K, = N
Xn 1
én :fn _><P;ZX (_Y> 8n->([/\< 7 §
n . / nsLons n)
Alice Bob

(Stochastic) Encoder f, : [C,, x £, x S, = &A™
Bob's Decoder g, : V" — IC,, X L,, X &,
Eve's Decoder ¢, : Z2™ — IC,,
Bob's. Error Prob. A\ := Pr{(K,,, L., 5,) # (K., Ln, S,)}

Eve's Error Prob. A" := Pr{K, # K,
Security D,, := D(Ps, zn||Ps, X Pzn)=1(5,;2")



Problem Setting of BCC 34/86

K, : Common

L. P . Eve
n+ Private z" A .
Sn:COllﬁdential —> ¢n —> Kn 'S:n‘
K, = N
X" n -
én :fn _,<Psz (_Y> 8n->([/\< f 3:
1 . / n»e e n)
Alice Bob

(Ro, R1, R.) is achievable € 3{(Fn, gn, ¢n)}>; s.t.

lim )\,En) = 0,7 =1, 2, limsup D,, = 0 (strong secrecy criterion)

n— 00 n— 00

.. o log |k, . log|Ln .. o log|Sn
hmmf% > Ry, lim ©8ltel — R hmmf%‘g| > ..

n— 00 n— 00 n n— 00



Coding Theorem of BCC 35/86

Theorem [Csiszar and Kérner (IT 78)]  (Rg, R1, Rs) is achievable
iff. 3Pyv x s.t.

U-Ve X (Y, 72)
Ry <min{I(Y;U),I(Z;U)}

Ro+ R+ R < I(V;Y|U) +min{I(Y;U),I[(Z;U)}
R <I(V;Y|U) - I(V; Z|U)




Ry = Ry = 0 Wiretap Channel 36/86

Corollary [Csiszar and Korner (IT 78), Wyner (IT 75) | Ry is
achievable iff.

Rs<Co= max [I(V;Y)—=I(V;2)]
Ve X (Y,2)




Achievability Scheme of C,

Stochastic Encoding
with dummy

M, Cn c V"

2—"" Vn‘OP)TéWO ®P$Z|XO
: /é> Channel Prefixing
Snl J

Bob decodes S,,and M/, .

1
If —log|M,|>1(V;Z),then D, — 0.
mn
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Achievability Scheme of C,

Stochastic Encoding
with dummy

n

M, Cn CV
1 %
= | D
: Channel Prefixing
’ Require randomness

at rate |H (X |V') [for simulation.
Snl

[Steinberg-Verdu ’94]

Bob decodes S, and M, .

1
If ﬁlog‘M”‘ > I[(V;Z),then D, — 0.
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Achievability Scheme of C,

Stochastic Encoding
with dummy

M CnCVn

1 %
VRAOP)%W O ®P$Z|X O
: /@ Channel Prefixing
Snl J

Huge amount of randomness is needed for the stochastic

encoding and for simulating the channel prefixing.
What is the optimal scheme if we take in to account the

amount of randomness.
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Old Problem Setting 40/86

i Eve R
7 A .
—> ¢I’l —> Kn 'A:Sa:ﬂs
K, =» P o \
Ly =»|Jn < PI’;Z|X y" 2 AA A
Sn = g Bl *(KnoLnaSn)
Alice Bob

(Stochastic) Encoder f, : [C,, x £, X §,, = &A™
Bob's Decoder g, : V" — IC,, X L,, X &,

Eve's Decoder ¢, : 2" — IC,,
Bob's. Error Prob. )\gn) = Pr{(K,, Ln,5,) # (K., Lyn,5,)}
Eve's Error Prob. Aé”) = Pr{K, # K,}
Security Dy, := D(Ps, zn||Ps, X Pzn)=1(5,;2")



New Problem Setting by W.O. (IT 15) 41/86

Ay :Dummy

Eve
Ay Randomness 7" A o
l > ¢7l —> Kn 'Sb’l’ﬂ
K, = ;
Sn = > 8nf> (K, Ly, S )
Alice Bob

(Deterministic) Encoder f,, : IC,, X L,, X &,, X — X"
Bob's Decoder g, : V" — IC,, X L,, X &,
Eve's Decoder ¢, : Z2" — IC,
Bob's. Error Prob. A\ := Pr{(K,,, Ln,5,) # (Kp, Ly, S0)}
Eve's Error Prob. A" := Pr{K, # K,,}
Security D,, := D(PSnZ”HPSn X Pzn) = [(Sn, Zn)



New Problem Setting by W.O. (IT 15) 42/86

Ay :Dummy Eve
Ay Randomness 7" A .
l > ¢n —> K, 'S'm
K, = "
Ly -/ L P{}Z|X ) y" A A A
Sn => —| &n *(KnaLnaSn)
Alice Bob

(174, Ro, R1, R.) is achievable €S 3{(fu, gn, dn) 1, s.t.
lim )\( n) = 0,7 = 1,2, limsup D,, = 0 (strong secrecy criterion)

n— 00 n— 00
.. elogliC, . log |l .. rloglS,
lim inf % > Ry, lim % = Ry, liminf % > R

el
lim inf % <
n—oo



Main Theorem 43/86

Theorem [Watanabe and Oohama (IT 15)] (/4, Ry, Ry, Ry) is
achievable iff. 3Py x s.t.

UV e X (Y, 7)
Ro <min{I(Y;U),I(Z;U)}
Ro+ R+ R < I(V;Y|U) +min{I(Y;U),1(Z;U)}
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Theorem [Watanabe and Oohama (IT 15)] (/4, Ry, Ry, Ry) is
achievable iff. 3Py x s.t.

UV e X (Y, 7)
Ro <min{I(Y;U),I(Z;U)}
Ro+ R+ R < I(V;Y|U) +min{I(Y;U),1(Z;U|))}
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ldeas of Coding Scheme

Superposition coding scheme| proposed by Chia

and El Gamal is employed instead of the channel
simulation.

1. For common message &, , randomly generate
code word u;; according to P/;.

2. For eachk, and for private and confidential
messages (4., s»), randomly generate vz, ¢,
according to Py (-|uy,, ).

3. For each(k,,¢,, s,)and for dummy randomness a,,,
randomly generatezy, , s, .,according toPy . (-|vi e, s, ).
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Error Analysis
1. Bob decodes (k.. ¢, s,) by looking for unique

(Ulgnﬁnsn7yn) S 71”
2. Eve decodes k, by looking for unigue

(ug,>2") € Ty"

Analysis of error probability is almost same as that of
the BC with degraded message set.
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Security Analysis

The channel resolvability with the superposition
coding is used to analyze the security.

Lemma (Superposition Resolvability)
If R, > I(V:Z) and Ry > I(X; Z|V),

lim D(Pyos, (1s)|[P4) = 0

Note that 1(V; 2) + I(X; Z|V) = I(X; Z), which is the
randomness needed to simulate Pz via ry .

The lemma shows the strong security of Chia and El Gamal’s
superposition scheme.

The lemma is proved by extending a result in [Hayashi "11].
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When — OO 48/86

Main Theorem implies ...

Corollary [Csiszar and Korner (IT 78)] (oo, Ro, R1, Rs) is achiev-
able iff. dPyv x s.t.

UV e X (Y, 7)
Ry <min{I(Y;U),1(Z;U)}

Ro+ R+ R < I(V;Y|U) +min{I(Y;U),I[(Z;U)}
R. < I(V;Y|U) = I(V; Z|U)




When 77,; = 0 49/86

Corollary [Oohama and Watanabe (SITA 10)] (0, Ry, Ry, Rs) is
achievable iff. 3Py x s.t.

UV e X (Y,7)
Ro <min{I(Y;U),I1(Z;U)}
Ro+ R+ R < I(V;Y|U) +min{I(Y;U),I[(Z;U)}
R. < I(V;Y|U) — I(V: Z|U)
Ry > I(X; Z|U)




When Ry = Ry = 0 50/86

Main Theorem implies ...

Corollary [Watanabe and Oohama (IT 15)]  (/74, Rs) is achievable
iff. 3Pyv x s.t.

UV e Xe (Y, 2)
ke < I(V;Y|U) = I(V; Z|U)
> 1(X; Z|U)

U is just a time-sharing R.V..



When Ry = Ry = 0 51/86

Region achieved by channel simulation is...

Proposition (/7.4, Rs) is achievable iff. 3Py x s.t.

UV e Xe(Y,7)
Ry < I(V;Y|U) = I(V; Z|U)

>I(V; Z|U)+ H(X|V)

Note that
I(X;Z\0)=1(V; ZIU)+ I(X; Z|V) < I(V; Z|U) + | H(X|V)

in general.



When Ry = R; = 0 52/86

When Py x is more capable than Pz x...

Corollary (74, Ry) is achievable iff. APy x s.t.

U+ X+ (V,2)
e < I(X5Y|U) = I(X; Z)|U)
> I(X; Z|U)

e Independently solved by Bloch and Kliewer (Arxiv 12).
e Channel prefixing is not needed.



Numerical Example 1

When Py x = BSC(0.1) and Pz x = BSC(0.2) ...

R
0.20

0.15
0.10
0.05

0.00
0.00 0.05 0.10 0.15 0.20
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Numerical Example 2

When Py x = BSC(0.11)and P x = BEC(0.45)...

R,
0.010
0.008 :
Optimal Pie
0.006 7
0.004 -,

0.002 P

0.000 R,
0.0 0.1 0.2 0.3 0.4 0.5 0.6
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Conclusions 55/86

e New setting of BCC was proposed.
e Optimal region was clarified.
e The channel simulation scheme turned out to be suboptimal
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lll. Information Theoretic Analysis of Shannon
Cipher System under Side-channel Attacks




Basic Definitions and Notations (Part 1/2) 57/86

Random Source of Information and Key:

X: Finiteset, X €¢ X, X ~px = {px(x)}recx

{X;}72,: Stationary Discrete Memoryless Source(SDMS),

X ~px,t=1,2,... The SDMS {X;}2, is specified with px.
K eX, K ~pr={pr(k)rex

{K:}22,: SDMS, K; ~ px. We assume that py is the uniform
distribution over X.

Random Variables and Sequences:

We write X" .= X1 X5 ---X,, € X™. Similarly, we write

x" = x1T9 - xy, € X" For 2™ € X, pxn(x™) stands for the
probability of the occurrence of z™. Since {X;}72, is SDMS specified

with px, we have n
pxn(z™) = ][ px (z0).
t=1

In this case we write pxn(z™) as p’x(z™). Similar notations are used for
other random variables and sequences.




Basic Definitions and Notations (Part 2/2)  58/86

Finite Field and the Addition Operation:

e \We assume that X is a finite field.
e The notation @ is used to denote the field addition operation, while

the notation © is used to denote the field subtraction operation, i.e.,
a©b=a® (—b) for any elements a,b € X.



Shannon Cipher System
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Side-Channel Attacks to Shannon Cipher Systerf’/8
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Leakage of Key Data by Side-Channel Attacks °!/%6

o Let W : K — Z be noisy channel.

e Let Z be a channel output r.v. from W for the input r.v. K.

e \We consider the discrete memoryless channel(DMC) specified with .
Let Z™ € Z™ be a random variable from W the channel output by
connecting K™ € X" to the input of channel. We write a conditional

distribution on Z™ given K™ as

— {Wn(zn’kn)}(k”,z”)elC” X Zm

Since the channel is memoryless, we have

(2"[E"™) = | | W (2| k). (1)

::]:

t=1



Assumption on the Adversary A 62/86

Let

n n ]_
o zr 5 MY RUY = 10g|/\/l ).

For R4 > 0, we set ]-"( )(RA) = {gp(n) R(n) < Ra}.

e The adversary A, having accessed Z"™, obtains ¢%>(Z”). For each

n=1,2,---, the adversary A can design gpff).

e The adversary A must use gp(n) such that for some R 4 and for any
sufficiently large n, gp( ) ]:(n>(RA).

Validity of Our Theoretical Model:

e As a real situation of side channel attacks we have often the case
where the noisy version Z" of K™ can be regarded as almost an

analog random signal.
e In this case, | Z| is sufficiently large. The adversary A can not obtain

Z™ in a lossless form.



Affine Encoder
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Affine Encoder as Privacy Amplifier 64/86

For each n=1,2,---, let (™ : X™ — X™ be a linear mapping. Define
the mapping o™ : X" — X™ by

SD(n)(kn) ::¢(n)(kn) DO =kE"ADb™, for K" € X", (2)

where A is a matrix with n rows and m columns. Entries of A are from
X. We fix b™ € X™. By the definition (2) of ©(™), those satisfy the
following affine structure:

P B E") = (" B E)API =2"AD (KA B ™)
= o™ () |® o (E™), for 2", k™ € X" (3)

Let /("™ be the corresponding decoder for ¢(™) such that
) xm s X,
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Affine Encoder as Privacy Amplifier 65/86

Description of Proposed Procedure:

1. Encoding of Ciphertext: First, we use gp(”) to encode the ciphertext
Cr = X"@® K" Let O™ = 90(”)(0”). Then, instead of sending C",
we send C"™ to the public communication channel. By the affine
structure (3) of encoder we have that

=X @ oM (K" = X" @ K (4)

where we set

~ ~

X =M (X™), K =M (K™).



Affine Encoder as Privacy Amplifier 66/86

2. Decoding at Sink Node D: First, using the linear encoder cp(”), D
encodes the key K™ received through private channel into

K" —(o™ (K™). Receiving C™ from public communication channel,

D computes X™ in the following way. From (4), we have that the
decoder D can obtain X™ = ¢(™ (X™) by subtracting

K = o™ (K™) from cm. Finally, D outputs Xn by applying the
decoder (™ to X™ as follows:

X = t(X™) = M (g (X)), (5)



Error Probability and Information Leakage 67/86

When | (™) is an affine map , we have the following result.
On Reliability:

pe i=Pr[X"™ # X"] = Prlp(™ (6™ (X™)) # X"]. (6)

On Security:

AP =1(x™; O™, oW (2™))

=1(X" "M (X" @ K), 030 (Z7) D (pm oo [Py 9y o)

v

where MEZ’) P= cpff)(Z”) and pym is the uniform distribution on A™.
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Analysis of pe — Pr[X” # X"

When ¢(™) is an affine map, we have the following result.

De

= Pr[X" # X"

= Priy™)(

P (X™)

)+ X7).

(7)
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Analysis of A, = I(X"; 5"7%790.(2)(271)) 69/86

C™m= " x"® e (K"
= ¢()(X)@Km

N

= H(p™(x™) & K™ M) — HE™ M)

< mlog |X| = H(K"[MY)) = D(p gm0 |lpv py o).
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Definition for Upper Bound of Error Prob. 70/86

Let X be an arbitrary random variable over X and has a probability
distribution psr. Let P(X’) denote the set of all probability distributions
on X. For R >0 and px € P(X), we define the following function:

E(Rlpx): = min {[R—HX)" + Dpxllpx)}-

By definition we have

R> H(X) <= E(R|px) > 0.




Definition for Upper Bound of Security 71/86

=(R,Ry) := int max Y
( A) n>0 SO?EF(n)(RA)pMEA)Z K {
1 1 )
=~ log —np e " (8)
pK”|MEI’)(K M y”7) |




Key Proposition 72/86

Proposition 1 For any R4, R > 0, and any (pg, W), there exists

a sequence of mappings {(©(™, (")} . such that for any px €
P(X),

1 1
—log\Xm|:E10g]X| S [R——,R],
n n n

pe(¢™, v |p%) < e(n+ 1) (n+1)1* +1}
« o~ NE(R|px)] (9)

and for any eavesdropper A with ¢ 4 satisfying gpff) e f(n>(RA),

AW (o™, o P e, W) SID(p ey llpym Py )
<{(n+ D¥ + 1} (nR)E(R, R4). (10)
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There exists {(¢™, (™) },,>1 with (n/m)log|X| < R such that for
any {(9054 (n))}n with g0< n) ¢ ]:(”)(RA),

A < D gmpyollpvm|pye) < (nR)E(R, Ra), (11)

Pr{K"™ = (K", M)} < Z(R, Ra). (12)
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Definition of the Region 74/86

Let U be an auxiliary random variable taking values in a finite set /. We
assume that the joint distribution of (U, Z, K) is

puzr(u, z, k) = pu(u)pziw(zlu)pi 2 (k|z).

The above condition is equivalent to U < Z < K. Define the set of
probability distribution p = pyz K by

Ppr, W) ={pvzx : U| < |Z|+1,U < Z < K}.
Set
R(p) :={(Ra,R): R4, R>0, R4 >1(Z;U),R > H(K|U)},

Rpx. W)= | R®).
PEP(pr , W)



Property of R(px, W) 75/86

Property 1

a) The region R(px,W) is a closed convex subset of R .
b) For any (px, W), we have

R(pr,W) C{(Ra,R): Ra+ R > H(K)} NRZ.

Furthermore, the point (0, H(K')) always belongs to R(px, W).

Property 1 part a) is a well known property. Proof of Property 1 part b)
is easy. Proofs of Property 1 parts a) and b) are omitted.



Form of R(py, W) 76/86

R

H (K)

H (X)
H(K|Z)

0 e HZ)



Definitions for Upper Bounds of Z(R, R 4) 77/86

Set
Qprz) =la=quzr : U| < |Z2|,U & Z < K,pr1z = qk |z}

For (1, ) € [0,1]?, and for ¢ = quzx € Q(px|z), define

(1,a) _ qZ(Z) [ QZ|U(Z‘U’) 1 ]
W z,klu) == alo +a |plo + log )
dlpz (25 Klw) 50z 1% ) 4o (KJu)
QU (glpz) := —log E, {GXP {—wéﬁ;j)(Z,K\U)H ’

Q(u,a)(p[ﬁ W):= min Q(“’O‘)(q|pz),
q€Q(PK|z)

QW (pr, W) — a(uRa + R)
B 24+ au

P (uR 4 + Rlpr, W) :

)

F(RA, Rlpr, W)= sup FW)N(R4, Rlpx, W).

(1,)

€[0,1]?
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Property of F(R4, Rlpr, W)(1/2) 78/86

Property 2

a) The cardinality bound || < |Z] in Q(pk)z) is sufficient to de-
scribe the quantity Q%) (py, W).
b) Fix any p=puzx € Psn(px,W) and p € [0,1]. Define

paw(ele)
p2() T o (KDY

(IJZ(?M)(Z, klu) := plog

For A € [0,1/2], define a probability distribution p(*) = pg‘%K by

X plu, 2, k) exp { ~Aaf (2, klu) |
p( )(u, 2, k) =

E, [exp {—A@fﬁ) “ K|U)H




Property of F(R4, Rlpr, W)(2/2) 79/86

Property 2
b) (Cont.) For (u, \) € [0,1] x [0,1/2], define
(N (. T Var, o [~<u> ZKU}
P (pK, ) (V,gl‘gfé,/\] aryw) |Wy ( ; \ ) ;
XPSh(pK,W):
Q(u,k)(p)
:Q(“’A)(pK,W)
and set
p=plpx, W)=  max plN(pg, W),

(1,A)€[0,1]x[0,1/2]

Then we have p(prx,W) < oo. Furthermore, for every 7 €
(0, (1/2)p(pr; W)), (Ra, R+ 7) ¢ R(px, W) implies

F(R.A7R|pK7W) > P(pIZaW) . 92 (p(p;,W)) >0,

where g is the inverse function of ¥(a) := a + (3/2)a’,a > 0.
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Upper Bound of Z(R, R 4) (1/2) 80/86

Lemma 1 For any n > 0 and for any eavesdropper A with ¢4
satisfying goff) S F;n)(RA), we have

_ 1. qzn(27)
=R, Ry) < n 0> —1 — 13
A (n) n n
1 q;r(n) oy n(MA 7Z 7K )
0> — log P AR (n) — 1, (14)
n pME:')ZnKn(MA ’Zn’KTL)
A= pzn(Z™) !
1 1 _
R > —log ON 77} + 4e™ "1, (15)
N P (KM )




Upper Bound of Z(R, R 4) (2/2) 81/86

Lemma 1(Cont.)  The probability distributions appearing in the
two inequalities (13) and (14) in the right members of (15) have a
property that we can select them arbitrary. In (13), we can choose
any distribution gz~ on Z™. In (14), we can choose any probability

on ON M%)XZ”XX”.

distribution ¢, .(n) .,
A

In a manner similar to the derivation of the exponential upper bound of
the correct probability of decoding for one helper source coding problem
we can derive the same exponential upper bound of Z(R, R 4). This
result is shown in the following proposition.

Proposition 2 For any R, R4 > 0, we have
=(R,R4) < 5-e FHALRPEW) (16)

From Propositions 1, 2, and Lemma 1 we immediately obtain the
following result.
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Main Result 52/8¢

Theorem 1 (Santoso and Oohama (Entropy, 19))  For any
R4, R > 0, and any (px, W) with (R4, R) € R(pz, W), there
exists a sequence of mappings {(p™, (™)} satisfying

1 1
—log])c'm|:@10g\)(|€ R——,R],
n n n
such that for any px with R > H(X),
pe(@™, ™ |ph) < e~ nlEEIPx)=01,4] (17)

and for any eavesdropper A with ¢ 4 satisfying gpff) SV (n )(R A),

AT (o, QL |5 ple, W) < T W) =020 (1)
where 0; ,,% = 1,2 are positive numbers satistying 9;, — 0 as
n — OQ.




Implications of Theorem 1 (1/2) 83/86
We set

Reye (px,pic; W) :={R > H(X)} Nl [R(pre, W)

where cl [R¢(px, W)] stands for the closure of the complement of
R(pK, W)

H (K)

H(X)
H(K|Z)

0



Implications of Theorem 1 (2/2) 84/86

By Theorem 1, under

(R.Aa R) € int {R(m) (anpKa W)} )

Sys

we have the followings:

On the reliability, p.(¢(™, (™) |p%) goes to zero exponentially as n
tends to infinity, and its exponent is lower bounded by the function
E(R[px).

On the security, for any ¢ 4 satisfying gpff) e F(”)(RA), the

information leakage A (™), cpff) p%, p%, W™) on X™ goes to zero
exponentially as n tends to infinity, and its exponent is lower bounded
by the function F(R 4, Rlpx, W).

The code that attains the exponent functions E( R|px) is the
universal code that depends only on R not on the value of the
distribution px.



Conclusions 85/86

Our Contribution:

1. We have formulated the problem of information theoretical analysis of
side-channel attacks to the Shannon cipher system.

2. We have derived a sufficient condition of reliable and secure
communication under the side-channel attacks.

3. To prove the exponential decrease of the information leakage we have
used the author’s technique of proving exponential strong converse to
one helper source coding problem.

Future Works:

1. Derivation of the necessary and sufficient condition.

. Extension to the case where Z is an analog random signal.

3. Extension to the case where we have several distributed side-channel
attacks.

No



Finally... 86/86

e \We have presented three topics in information theoretical security.

e Those are specific but provide new interesting problems raising
in communication systems with security requirement.

e We think that in this fieIdD we may have several such other interesting
problems which remain[]to be investigated!
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