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Motivation Arikan polar codes and their limitations

Polar Codes
+

+

+

+

=

=

=

=

+

+

+

+

=

=

=

=

+

+

+

+

=

=

=

=

G =









1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1









Let Am = K⊗m
l , where Kl is an l × l matrix

Encoding: cn−1
0 = un−1

0 Am, ui = 0, i ∈ F , where F is the set of

indices of low-capacity bit subchannels

A (n = lm, lm − |F |) linear code

The successive cancellation decoding algorithm

ûi =

{
0 i ∈ F
argmaxui

W
(i)
m (ûi−1

0 , ui |yn−1
0 ) i /∈ F

, i = 0, 1, . . . , lm − 1

Arikan kernel K2 = F =

(
1 0

1 1

)
:

W
(2ψ)
λ (u2ψ

0 |y2λ−1
0 ) =

1∑

u2ψ+1=0

W
(ψ)
λ−1(u

2ψ+1
0,even + u2ψ+1

0,odd |y2λ−1
0,even)W

(ψ)
λ−1(u

2ψ+1
0,odd |y2λ−1

0,odd )

W
(2ψ+1)
λ (u2ψ+1

0 |y2λ−1
0 ) = W

(ψ)
λ−1(u

2ψ+1
0,even + u

2ψ+1
0,odd |y2λ−1

0,even)W
(ψ)
λ−1(u
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Motivation Arikan polar codes and their limitations

Polar Codes: Weak and Powerful

SC decoding complexity is O(n log n)

SC algorithm is highly suboptimal

List SC decoding is needed with complexity O(Ln log n)

Polar codes achieve the capacity

Error probability O(2−
√

n), minimum distance O(
√

n)
Polar codes with CRC, polar subcodes

Highly regular encoder structure

High decoding latency

Poor hardware utilization
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Motivation Arikan polar codes and their limitations

Improved Polar Codes
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Polar codes with CRC

CRC is used to select codewords from the list

obtained by the Tal-Vardy decoder

Polar subcodes

Dynamic frozen symbols uij =
∑ij−1

s=0 usVjs, ij ∈ F
V is the constraint matrix

Polarization adjusted convolutional codes
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Motivation Arikan polar codes and their limitations

Performance issues
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The gain of polar (sub)codes with respect to LDPC diminishes with code length

The slope of the FER curve is inferior to LDPC
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Motivation Arikan polar codes and their limitations

Mediocre Subchannels
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m=10

6 (37.5%) mediocre subchannels 94 (9.2%) mediocre subchannels

The fraction of mediocre subchannels decreases with code length

The number of mediocre subchannels increases with code length

List size needed to cope with errors in mediocre subchannels grows exponentially with their

number

How to mitigate exponential growth of the decoding complexity needed for near-ML decoding of

polar (sub)codes?
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Motivation What is possible with large kernels?

Bit Subchannels

Consider a binary input memoryless channel with transition probability function

W (y |c)
Transition probability functions for synthetic bit subchannels

W
(i)
m (yn−1

0 ,u i−1
0 |ui) =

1

2n−1

∑

un−1
i+1

n−1∏

j=0

W (yj |(un−1
0 K⊗m

l )j)

With m →∞, the capacities of subchannels W
(i)
m converge to 0 and 1, and the

fraction of subchannels with capacity close to 1 converges to the capacity of W
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Motivation What is possible with large kernels?

The Bhattacharyya Parameter

Consider a binary input channel with transition probability function W (y |c)
An upper bound on BER for a maximum likelihood receiver is the Bhattacharyya

parameter

Z (W ) =
∑

y

√
W (y |0)W (y |1)

Symmetric capacity I(W ) and the Bhattacharyya parameter satisfy

I(W )2 + Z (W )2 ≤1

I(W ) + Z (W ) ≥1

With m →∞, the Bhattacharyya parameters of W
(i)
m converge to 0 and 1
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Motivation What is possible with large kernels?

Rate of Polarization

How good are subchannels W
(i)
m obtained by the polarization process?

Definition

Matrix Kl has rate of polarization E(Kl), if for any binary input channel W : 0 ≤ I(W ) < 1:

For any β < E(Kl)

lim inf
m→∞

P
{

Z (W
(i)
m ) ≤ 2−lmβ

}
= I(W )

For any β > E(Kl)

lim inf
m→∞

P
{

Z (W
(i)
m ) ≥ 2−lmβ

}
= 1

SC decoding error probability for an (n = lm, k) polar code based on Kl

P ≤ 2−lβ , β < E(Kl)

Arikan kernel: E(K2) = 0.5
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Motivation What is possible with large kernels?

Partial Distances

Definition

Partial distances Di ,0 ≤ i < l , of an l × l matrix K =




K [0]
...

K [l − 1]


 are defined as

Di = dH(K [i], 〈K [i + 1], . . . ,K [l − 1]〉),0 ≤ i < l − 1,

Dl−1 = wt(K [l − 1]),0 ≤ i < l − 1,

where 〈a1, . . . ,ak 〉 is an (l , k) linear code generated by vectors a1, . . . ,ak , and dH(a,C) is

the minimum Hamming distance between vector a and codewords of C.

Rate of polarization of kernel K is given by E(K ) =
1

l

l−1∑

i=0

logl Di
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Motivation What is possible with large kernels?

Scaling Exponent

Scaling exponent µ for a family of codes with rate R shows the length

n = O( 1
(I(W )−R)µ ) needed to achieve some fixed target FER on channel W

Random codes: µ = 2

Scaling assumption for polar codes: for any ǫ there exists

f = lim
m→∞

βml
m

µ(W ,Kl )
−m

,0 < f <∞,

where βm is the number of subchannels W
(i)
m : ǫ ≤ Z (W

(i)
m ) ≤ 1− ǫ

Arikan polar codes on BEC: µ(BEC,K2) = 3.627
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Motivation What is possible with large kernels?

Some Asymptotic Results

There exist l × l kernels Kl with rate of polarization1 E(Kl)
l→∞−−−→ 1

There exist kernels with scaling exponent2 µ(BEC,Kl)
l→∞−−−→ 2

For any E < 1 and µ > 2 there exist3 polar codes with sufficiently large kernels Kl of

rate R = I(W )− δ and length O( 1
δµ ) that enable reliable communication on a

binary-input memoryless symmetric channel W with quasi-linear time encoding and

decoding

For any discrete memoryless channel with capacity I(W ), any E , µ > 0 : E + 2/µ < 1

there exist polar codes4 with block error rate e−nE
, code rate R = I(W )− N−1/µ, and

decoding complexity O(n log n)
1

S. B. Korada, E. Sasoglu, and R. Urbanke, ”Polar codes: Characterization of exponent, bounds, and constructions,” IEEE Transactions on Information Theory,
vol. 56, no. 12, December 2010

2
A. Fazeli, H. Hassani, M. Mondelli and A. Vardy, ”Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels,” IEEE Transactions on

Information Theory, 87(9), September 2021
3

V. Guruswami, A. Riazanov M. Ye. Arikan meets Shannon: Polar codes with near-optimal convergence to channel capacity, In proc. of 52nd Annual ACM
Symposium on Theory of Computing, 2020.

4
H.P. Wang and I. M. Duursma, ”Polar Codes’ Simplicity, Random Codes’ Durability,” IEEE Transactions on Information Theory, 67(3), 2021
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Motivation What is possible with large kernels?

Some Constructions

Spatially coupled LDPC codes were heuristically shown to have scaling exponent5

µSC−LDPC ≈ 3

There exists6 a kernel of size l = 64 with scaling exponent µ ≈ 2.87. Already better

than SC-LDPC!

5
M. Mondelli, S. H. Hassani, and R. L. Urbanke, ”How to achieve the capacity of asymmetric channels,” IEEE Trans. Inf. Theory, vol. 64, no. 5, May 2018

6
H. Yao, A. Fazeli, A. Vardy. Explicit Polar Codes with Small Scaling Exponent. In Proc. of ISIT 2019
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Motivation What is possible with large kernels?

Some Simulation Results: (4096, 2048) Code, SCL Decoding
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Large kernel based codes require smaller list size to achieve the same performance as the

codes based on Arikan kernel

Lower decoding complexity compared to codes based on Arikan kernel to achieve target FER
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Decoding polar codes with large kernels Successive cancellation decoding

The Successive Cancellation Decoding Algorithm

For i = 0,1, . . . , lm − 1: ûi =

{
0 i ∈ F
argmaxui

W
(i)
m (yn−1

0 , û i−1
0 |ui) i /∈ F

Bit subchannels with transition probability function W
(i)
m (yn−1

0 ,u i−1
0 |ui)

It is convenient to use probabilities

W
(i)
m (u i

0|yn−1
0 ) =

W
(i)
m (yn−1

0 , û i−1
0 |ui)

2W (yn−1
0 )

=
∑

un−1
i+1

n−1∏

j=0

W ((un−1
0 K⊗m

l )j |yj )

Complexity O(n logl n) operations of kernel processing, i.e. computing

W
(li+s)
m (u li+s

0 |yn−1
0 ) =

∑

uli+l−1
li+s+1

l−1∏

j=0

W
(i)
m−1

(
(u

l(t+1)−1
lt Kl)j ,0 ≤ t ≤ i |yn−1

j ,l

)
, (1)

where rn−1
j ,l = (rj , rj+l , . . . , rj+n−l),0 ≤ s < l ,0 ≤ i < n

l
,W

(0)
0 (c|y) = W (c|y)
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Decoding polar codes with large kernels Successive cancellation decoding

Example: Arikan kernel F2 =

(
1 0

1 1

)

W (2i)
µ (u2i

0 |yn−1
0 ) =

∑

u2i+1

W
(i)
µ−1(u2t + u2t+1,0 ≤ t ≤ i |yn−1

0,2 )W
(i)
µ−1(u2t+1,0 ≤ t ≤ i |yn−1

1,2 )

W (2i+1)
µ (u2i+1

0 |yn−1
0 ) =W

(i)
µ−1(u2t + u2t+1,0 ≤ t ≤ i |yn−1

0,2 )W
(i)
µ−1(u2t+1,0 ≤ t ≤ i |yn−1

1,2 )

The same co-factors W
(i)
µ−1 are

used at phases 2i and 2i + 1.

They can be reused

Complexity O(n log2 n)

Memory size O(n)

y0 y1 y2 y3 y4 y5 y6 y7

+ + + + = = = =

u20 u21 u22 u23 u24 u25 u26 u27

+ + = = + + = =

u10 u11 u12 u13 u14 u15 u16 u17

+ = + = + = + =

u0 u1 u2 u3 u4 u5 u6 u7
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Decoding polar codes with large kernels Successive cancellation decoding

Example: K3 =




1 0 0

1 1 0

1 0 1




W
(3i)
µ (u

3i
0 |y

n−1
0

) =
∑

u2i+1,u2i+2

W
(i)
µ−1

(u3t + u3t+1 + u3t+2, 0 ≤ t ≤ i|y
n−1
0,3

)W
(i)
µ−1

(u3t+1, 0 ≤ t ≤ i|y
n−1
1,3

)W
(i)
µ−1

(u3t+2, 0 ≤ t ≤ i|y
n−1
2,3

)

W
(3i+1)
µ (u

3i+1
0 |y

n−1
0

) =
∑

u2i+2

W
(i)
µ−1

(u3t + u3t+1 + u3t+2, 0 ≤ t ≤ i|y
n−1
0,3

)W
(i)
µ−1

(u3t+1, 0 ≤ t ≤ i|y
n−1
1,3

)W
(i)
µ−1

(u3t+2, 0 ≤ t ≤ i|y
n−1
2,3

)

W
(3i+2)
µ (u

3i+2
0 |y

n−1
0

) =W
(i)
µ−1

(u3t + u3t+1 + u3t+2, 0 ≤ t ≤ i|y
n−1
0,3

)W
(i)
µ−1

(u3t+1, 0 ≤ t ≤ i|y
n−1
1,3

)W
(i)
µ−1

(u3t+2, 0 ≤ t ≤ i|y
n−1
2,3

)

u10 u11 u12

u0 u1 u2 u3 u4 u5 u6 u7 u8

u13 u14 u15 u16 u17 u18

y0 y1 y2 y3 y4 y5 y6 y7 y8

µ = 1

µ = 2

At layer µ ≥ 1 calculations are performed

in batches of size lm−µ

Reuse of probabilities and processor

state

Partial sums are supplied to the

processors
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Example: K3 =




1 0 0

1 1 0

1 0 1




W
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) =
∑

u2i+1,u2i+2
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(i)
µ−1

(u3t + u3t+1 + u3t+2, 0 ≤ t ≤ i|y
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0,3
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(i)
µ−1

(u3t+1, 0 ≤ t ≤ i|y
n−1
1,3

)W
(i)
µ−1

(u3t+2, 0 ≤ t ≤ i|y
n−1
2,3

)

W
(3i+1)
µ (u

3i+1
0 |y

n−1
0

) =
∑

u2i+2

W
(i)
µ−1

(u3t + u3t+1 + u3t+2, 0 ≤ t ≤ i|y
n−1
0,3

)W
(i)
µ−1

(u3t+1, 0 ≤ t ≤ i|y
n−1
1,3

)W
(i)
µ−1

(u3t+2, 0 ≤ t ≤ i|y
n−1
2,3

)

W
(3i+2)
µ (u

3i+2
0 |y

n−1
0

) =W
(i)
µ−1

(u3t + u3t+1 + u3t+2, 0 ≤ t ≤ i|y
n−1
0,3

)W
(i)
µ−1

(u3t+1, 0 ≤ t ≤ i|y
n−1
1,3

)W
(i)
µ−1

(u3t+2, 0 ≤ t ≤ i|y
n−1
2,3

)

u10 u11 u12

u0 u1 u2 u3 u4 u5 u6 u7 u8

u13 u14 u15 u16 u17 u18

c0 c1 c2 c3 c4 c5 c6 c7 c8

µ = 1

µ = 2

At layer µ ≥ 1 calculations are performed

in batches of size lm−µ

Reuse of probabilities and processor

state

Partial sums are supplied to the

processors
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Decoding polar codes with large kernels Successive cancellation decoding

Improved Decoding Methods

The successive cancellation decoding algorithm is highly suboptimal

List SC decoding: an immediate extension of the Tal-Vardy algorithm7

Shared memory data structures for probabilities/LLRs, partial sums, and processor state

Sequential/stack decoding8

Relies on Tal-Vardy data structures
The score function given in 9 provides substantial reduction of average complexity

Negligible performance degradation with respect to SCL decoding

7
I. Tal and A. Vardy, ”List decoding of polar codes,” IEEE Transactions On Information Theory, vol. 61, no. 5, May 2015.

8
V. Miloslavskaya and P. Trifonov, ”Sequential decoding of polar codes with arbitrary binary kernel,” in Proceedings of IEEE Information Theory Workshop.

Hobart, Australia: IEEE, 2014
9

P. Trifonov, ”A score function for sequential decoding of polar codes,” in Proceedings of IEEE ISIT, Vail, USA, 2018.
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Decoding polar codes with large kernels Successive cancellation decoding

Kernel Processing: An Approximation

W
(i)
m (u i

0|yn−1
0 ) =

∑

un−1
i+1

n−1∏

j=0

W
(
(un−1

0 K⊗m
l

)j |yj

)
≈ W(i)

m (u i
0|yn−1

0 ) = max
un−1

i+1

n−1∏

j=0

W
(
(un−1

0 K⊗m
l

)j |yj

)

Performance loss is negligible

W(li+s)
m (u li+s

0 |yn−1
0 ) = max

uli+l−1
li+s+1

l−1∏

j=0

W(i)
m−1

(
(u

l(t+1)−1

lt
Kl)j ,0 ≤ t ≤ i |yn−1

j ,l

)

W(i)
m (u i

0|yn−1
0 ) is the probability of the most likely continuation of vector u i

0, not taking into

account any freezing constraints on uj , j < i
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Decoding polar codes with large kernels Kernel processing (marginalization)

Kernel Processing Problem

Assume m = 1 for the sake of simplicity. Assume that W (y |c) is a symmetric channel

W(s)
1 (us

0|y l−1
0 ) = max

ul−1
s+1

l−1∏

j=0

W ((u l−1
0 K )j |yj) = max

ul−1
s+1

l−1∏

j=0

W
(
(u l−1

s+1Ks+1..l−1)j |yj(−1)(u
s
0
K0..s)j

)

Ka..b is the submatrix of K given by rows a, . . . ,b

If all ui are equiprobable, computingW (s)
1 (us

0|y l−1
0 ) is equivalent to ML decoding of

y l−1
0 in the coset given by us

0K0..s of the code generated by Ks+1..l−1
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Decoding polar codes with large kernels Kernel processing (marginalization)

LLR-domain Kernel Processing

The log-likelihood ratio S
(i)
µ (u i−1

0 , y lµ−1
0 ) = ln

W
(i)
µ (ui−1

0
,0|y lµ−1

0
)

W
(i)
µ (ui−1

0
,1|y lµ−1

0
)
, µ ≥ 0

Let ĉi be the hard decision value corresponding to yi

S
(i)
1 (ui−1

0 , y l−1
0 ) = log

max
ul−1

s+1

∏l−1
j=0 W ((ui−1

0 , 0, ul−1
i+1 )K )j |yj)

max
ul−1

s+1

∏l−1
j=0 W ((ui−1

0 , 1, ul−1
i+1 )K )j |yj)

=max
ul−1

s+1




l−1∑

j=0

(
logW ((ui−1

0 , 0, ul−1
i+1 )K )j |yj)

)
− logW (ĉj |yj)




−max
ul−1

s+1




l−1∑

j=0

(
logW ((ui−1

0 , 1, ul−1
i+1 )K )j |yj)

)
− logW (ĉj |yj)




=max
ul−1

s+1

M((ui−1
0 , 0, ul−1

i+1 )K ,Sl−1
0 )−max

ul−1
s+1

M((ui−1
0 , 1, ul−1

i+1 )K ,Sl−1
0 )
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Decoding polar codes with large kernels Kernel processing (marginalization)

LLR-domain Kernel Processing

Hard decision ĉj = argmaxc∈{0,1} W (c|yj )

logW (cj |yj )− logW (ĉj |yj) =

{
0, ĉj = cj

−
∣∣∣log W (0|yj )

W (1|yj )

∣∣∣ , ĉj 6= cj

Input LLRs Sj = log
W (0|yj )

W (1|yj )

Correlation discrepancy10

M(c l−1
0 ,Sl−1

0 ) = −
∑

j :(−1)
cj Sj<0

|Sj |

Kernel input LLRs

S
(i)
1 (u i−1

0 , y l−1
0 ) = max

ul−1
s+1

M((u i−1
0 ,0,u l−1

i+1)K ,Sl−1
0 )−max

ul−1
s+1

M((u i−1
0 ,1,u l−1

i+1)K ,Sl−1
0 )

10
Sometimes it is defined without the − sign
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Decoding polar codes with large kernels Trellis representation of linear codes

Trellis Representation of Linear Codes

Any binary linear code of length l can be represented by a minimal trellis11

Codewods correspond to distinct paths in a trellis from the start to the end nodes

If two codewords y l−1
0 , z l−1

0 satisfy y i
0 = z i

0, then they pass through the same nodes in

the minimal trellis up to symbol i

If two codewords y l−1
0 , z l−1

0 satisfy al−1
i = bl−1

i , then they pass through the same

nodes in the minimal trellis starting from symbol i

Viterbi algorithm can be used to implement ML decoding

s a

b

a

b

c

d

a

b

c

d

a

b

c

d

a

b

e

11
A. Vardy, ”Trellis structure of codes,” in Handbook of Coding Theory, Elsevier Science, 1998
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Decoding polar codes with large kernels Trellis representation of linear codes

Minimum Span Form of the Generator Matrix

A vector c l−1
0 starts in position b = b(c l−1

0 ) if cb 6= 0, ci = 0,0 ≤ i < b

A vector c l−1
0 ends in position e = e(c l−1

0 ) if ce 6= 0, ci = 0,e < i < l

One can transform the generator matrix of the code so that its rows start and end in

distinct columns (minimum span form)

Vector c l−1
0 is active from position b(c l−1

0 ) till position e(c l−1
0 )− 1

Trellis nodes at level i are labeled by the values of information symbols xj

corresponding to generator matrix rows active in position i

Edges are labeled with (xG)i

G =




1 1 0 1 0 0

0 1 1 1 1 0

0 0 0 1 1 1




s 0

1

00

01

11

10

00

01

11

10

00

01

10

11

0

1

e

x0 x0, x1 x0, x1 x1, x2 x2
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Decoding polar codes with large kernels Trellis representation of linear codes

Extended Kernel Codes

t-th extended12 kernel code CK
(t)

is generated by

K
(t)

=




K [t] 1

K [t + 1] 0
...

...

K [l − 1] 0




Assume that yl is erased. Given y l
0, find most probable

codewords (c0, . . . , cl−1,ut),ut ∈ F2 of code C
(t)
K generated

by K
(t)

Arikan kernel K =

(
1 0

1 1

)
: K

(0)
=

(
1 0 1

1 1 0

)
,

K
(1)

=
(
1 1 1

)

12
H. Griesser, V. R. Sidorenko, ”A posteriory probability decoding of nonsystematically encoded block codes,” Problems of Information Transmission, 38(3), 2002
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Decoding polar codes with large kernels Trellis representation of linear codes

Extended Kernel Codes

t-th extended12 kernel code CK
(t)

is generated by

K
(t)

=




K [t] 1

K [t + 1] 0
...

...

K [l − 1] 0




Assume that yl is erased. Given y l
0, find most probable

codewords (c0, . . . , cl−1,ut),ut ∈ F2 of code C
(t)
K generated

by K
(t)

Arikan kernel K =

(
1 0

1 1

)
: K

(0)
=

(
1 0 1

1 1 0

)
,

K
(1)

=
(
1 1 1

)

s

W
(0)
1

(0|y1
0 )

W
(0)
1

(1|y1
0 )

e

0

1

0

1

1
0

0

1

Extended trellis for C
(0)
K

s

W
(1)
1

(u0, 0|y1
0 )

W
(1)
1

(u0, 1|y1
0 )

e

0

1

0

1

0

1

Extended trellis for C
(1)
K

12
H. Griesser, V. R. Sidorenko, ”A posteriory probability decoding of nonsystematically encoded block codes,” Problems of Information Transmission, 38(3), 2002
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Decoding polar codes with large kernels Recursive trellis processing

Recursive Maximum Likelihood Decoding of Linear Codes: the Idea

Viterbi algorithm is not optimal in terms of

complexity

Partition the noisy vector y l−1
0 into a number

of sections

Find the most probable codeword

subvectors for each section

Combine short codeword subvectors into

longer subvectors

Do this recursively13

00

10

00

01
10

11

00

11

0000

1001
1100

1111

10011100

y l−1
0

13
T. Fujiwara, H. Yamamoto, T. Kasami, and S. Lin, “A trellis-based recursive maximum-likelihood decoding algorithm for binary linear block codes,” IEEE

Transactions On Information Theory, vol. 44, no. 2, March 1998.
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Decoding polar codes with large kernels Recursive trellis processing

Sectionalized Trellis of a Linear Block Code

Given a linear code C, let Ca,b be its subcode, such that all

its codewords have non-zero symbols only in positions

a ≤ i < b

Let pa,b(C) be a linear code obtained by puncturing all

symbols, except those in positions a ≤ i < b, from
codewords of C

Let sa,b(C) = pa,b(Ca,b), i.e. a code obtained from C by
shortening it on all symbols except those with indices

a ≤ i < b.

Trellis paths from time a to time b correspond to cosets in

pa,b(C)/sa,b(C). The same coset may occur several times

in a trellis

C : G =




1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0



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Decoding polar codes with large kernels Recursive trellis processing

Sectionalized Trellis of a Linear Block Code

Given a linear code C, let Ca,b be its subcode, such that all

its codewords have non-zero symbols only in positions

a ≤ i < b

Let pa,b(C) be a linear code obtained by puncturing all

symbols, except those in positions a ≤ i < b, from
codewords of C

Let sa,b(C) = pa,b(Ca,b), i.e. a code obtained from C by
shortening it on all symbols except those with indices

a ≤ i < b.

Trellis paths from time a to time b correspond to cosets in

pa,b(C)/sa,b(C). The same coset may occur several times

in a trellis

C : G =




1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0




p0,4(C) : G
(p)
0,4 =




1 1 1 1

1 1 0 0

1 0 1 0



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Decoding polar codes with large kernels Recursive trellis processing

Sectionalized Trellis of a Linear Block Code

Given a linear code C, let Ca,b be its subcode, such that all

its codewords have non-zero symbols only in positions

a ≤ i < b

Let pa,b(C) be a linear code obtained by puncturing all

symbols, except those in positions a ≤ i < b, from
codewords of C

Let sa,b(C) = pa,b(Ca,b), i.e. a code obtained from C by
shortening it on all symbols except those with indices

a ≤ i < b.

Trellis paths from time a to time b correspond to cosets in

pa,b(C)/sa,b(C). The same coset may occur several times

in a trellis

C : G =




1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0




p0,4(C) : G
(p)
0,4 =




1 1 1 1

1 1 0 0

1 0 1 0




s0,4(C) : G
(s)

0,4 =
(
1 1 1 1

)
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Decoding polar codes with large kernels Recursive trellis processing

Sectionalized Trellis of a Linear Block Code

Given a linear code C, let Ca,b be its subcode, such that all
its codewords have non-zero symbols only in positions

a ≤ i < b

Let pa,b(C) be a linear code obtained by puncturing all
symbols, except those in positions a ≤ i < b, from

codewords of C

Let sa,b(C) = pa,b(Ca,b), i.e. a code obtained from C by

shortening it on all symbols except those with indices
a ≤ i < b.

Trellis paths from time a to time b correspond to cosets in

pa,b(C)/sa,b(C). The same coset may occur several times
in a trellis

C : G =




1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0




p0,4(C) : G
(p)
0,4 =




1 1 1 1

1 1 0 0

1 0 1 0




s0,4(C) : G
(s)

0,4 =
(
1 1 1 1

)

s

0000

1010

1100

0110

e

0000

1111

00001111

0101

1010

1010

0101

1100

0011

1100

0011

1001

0110 0110

1001
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Decoding polar codes with large kernels Recursive trellis processing

Recursive Trellis Decoding of Linear Block Codes

For each coset D ∈ pa,b(C)/sa,b(C) find the most probable element l(D), and

m(D) = M(l(D), yb−1
a )

Composite branch table Ta,b stores (l(D),m(D))

ML decoding of (n, k) code C: p0,n(C)/s0,n(C) contains a single element, so T0,n

contains the solution of the ML decoding problem

Construction14 of Ta,b: b − a ≥ 2:

Let z : a < z < b − 1 be a subsection boundary
Consider all combinations of cosets D′ ∈ pa,z(C)/sa,z(C),
D′′ ∈ pz,b(C)/sz,b(C), such that D′ • D′′ = D ∈ pa,b(C)/sa,b(C),
i.e. concatenation of any their representatives is in

D ∈ pa,b(C)/sa,b(C)
m(D) = maxD′,D′′(m(D′) + m(D′′)), l(D) = l(D′) • l(D′′)

s

0000

1010

1100

0110

e

0000

1111

00001111

0101

1010

1010

0101
1100

0011

1100

0011

1001

0110 0110

1001

14
T. Fujiwara, H. Yamamoto, T. Kasami, and S. Lin, ”A trellis-based recursive maximum-likelihood decoding algorithm for binary linear block codes,” IEEE

Transactions On Information Theory, vol. 44, no. 2, March 1998
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Decoding polar codes with large kernels Recursive trellis processing

Generator Matrices of Section Codes

Generator matrix of pa,b(C) is G
(p)
a,b =




G
(s)
a,z 0

0 G
(s)
z,b

G
(00)
a,b G

(01)
a,b

G
(10)
a,b G

(11)
a,b




Generator matrix of sa,b(C) is G
(s)
a,b =




G
(s)
a,z 0

0 G
(s)
z,b

G
(00)
a,b G

(01)
a,b




G
(00)
a,b ,G

(01)
a,b are some k ′′

a,b × (z − a) and k ′′
a,b × (b − z) matrices

G
(10)
a,b ,G

(11)
a,b are some k ′

a,b × (z − a) and k ′
a,b × (b − z) matrices

One-to-one correspondence between vG′
a,b, where G′

a,b =
(

G
(10)
a,b G

(11)
a,b

)
, and cosets

D ∈ pa,b(C)/sa,b(C). CBT entries are indexed by v ∈ F
k ′

a,b

2
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Decoding polar codes with large kernels Recursive trellis processing

Merging the Composite Branch Tables

CBTa,b[v ].m = max
w∈F

k′′
a,b

2

(CBTa,z [A].m + CBTz,b[B].m) , v ∈ F
k ′

a,b

2

where A and B are indices of the cosets D′ ∈ pa,z(C)/sa,z(C) and D′′ ∈ pz,b(C)/sz,b(C),

such that
(
w v

)
(

G
(00)
a,b

G
(10)
a,b

)
∈ D′ and

(
w v

)
(

G
(01)
a,b

G
(11)
a,b

)
∈ D′′

Such values A,B can be identified from

(
A′ A

)(G
(s)
a,z

G′
a,z

)
=
(
w v

)
(

G
(00)
a,b

G
(10)
a,b

)
(
B′ B

)
(

G
(s)
z,b

G′
z,b

)
=
(
w v

)
(

G
(01)
a,b

G
(11)
a,b

)
,

where A′,B′ are the vectors not used elsewhere

The solutions are A =
(
w v

)
Ĝa,b and B =

(
w v

)
G̃a,b for some Ĝa,b and G̃a,b

Complexity is O(2k ′

a,b+k ′′

a,b)
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Recursive Trellis Processing of Polarization Kernels

Let Sl−1
0 be the input LLR vector, i.e. Sj = log

W (0|yj )

W (1|yj )

SC decoding requires computing

S
(i)
1 (ui−1

0 , y l−1
0 ) = max

ul−1
i+1

M((ui−1
0 , 0, ul−1

i+1 )K ,Sl−1
0 )−max

ul−1
i+1

M((ui−1
0 , 1, ul−1

i+1 )K ,Sl−1
0 ), i = 0, 1, . . . , l−1

Successive decoding in the cosets of extended kernel codes K

The recursive trellises for cosets of a linear code have the same structure as the recursive

trellis of the code itself

Section codes pa,b(C
(t)
), sa,b(C

(t)
) may be identical for several phases t
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Recursive Binary Kernel Processing

t-th extended kernel code C
(t)

is generated by K
(t)

=




K [t] 1

K [t + 1] 0
...

...

K [l − 1] 0




Due to invertibility of kernel K , one has |p0,l(C
(t)
)/s0,l(C

(t)
)| = 2

Composite branch table for section [0, l), denoted T
(t)
0,l , contains

M((u i−1
0 ,ui ,u

l−1
i+1)K ,Sl−1

0 ),ui ∈ F2

No need to store l(D), only correlation discrepancies m(D) should be computed
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Reusing CBTs Across Phases

Cosets pa,b(C
(t)
)/sa,b(C

(t)
) may be identical for different phases t . Re-use the CBTs

from prior phases to obtain further complexity savings

Even if section codes are different, the CBT at phase t may be a subvector of the

CBT at phase t − 1
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Example: 2-iterated Arikan Kernel K4 = B2,2F⊗2
2 =

(
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

)
I

1 K
(0)

=




1 0 0 0 1

1 0 1 0 0
1 1 0 0 0

1 1 1 1 0


 s e

00

11

01

10

00

11

0110

00

11

10

01

0

1

M(i,Sj ) = wij =

{
0, i = ĉj

−|Sj |, i 6= ĉj

Sj = ln
W (0|yj )

W (1|yj )

p0,4(C
(0)

) is a (4, 4, 1) code, s0,4(C
(0)

) is a (4, 3, 2) code

Coset representatives of p0,4(C
(0)

)/s0,4(C
(0)

): (0, 0, 0, 0) and (1, 0, 0, 0)

p0,2(C
(0)

), p2,4(C
(0)

) are (2, 2, 1) codes, s0,2(C
(0)

) and s2,4(C
(0)

), are (2, 1, 2) codes. Hence,

T
(0)
0,2 =[max(w00 + w01,w10 + w11),max(w10 + w01,w00 + w11)]

T
(0)
2,4 =[max(w02 + w03,w12 + w13),max(w12 + w03,w02 + w13)]

T
(0)
0,4 =[max(T

(0)
0,2 [0] + T

(0)
2,4 [0],T

(0)
0,2 [1] + T

(0)
2,4 [1]),max(T

(0)
0,2 [0] + T

(0)
2,4 [1],T

(0)
0,2 [1] + T

(0)
2,4 [0])]
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Example: 2-iterated Arikan Kernel K4 = B2,2F⊗2
2 =

(
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

)
II

2 K
(0)

=




1 0 1 0 1

1 1 0 0 0
1 1 1 1 0


 s e

00

11
01

10

00

11

01

10

0

1

px,x+2(C
(1)

) = px,x+2(C
(0)

) and sx,x+2(C
(1)

) = sx,x+2(C
(0)

) for x ∈ {0, 2}
p0,4(C

(1)
) is a (4, 3, 2) code, while s0,4(C

(1)
) is a (4, 2, 2) code generated by two last rows of K4

Consider the cosets of the latter code given by vectors (0, 0, 0, 0) and (1, 0, 1, 0). Assuming
u0 = 0, one obtains

T
(1)
0,4 = [T

(0)
0,2 [0] + T

(0)
2,4 [0],T

(0)
0,2 [1] + T

(0)
2,4 [1]].

Assuming u0 = 1, one obtains

T
(1)
0,4 = [T

(0)
0,2 [1] + T

(0)
2,4 [0],T

(0)
0,2 [0] + T

(0)
2,4 [1]].
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Example: 2-iterated Arikan Kernel K4 = B2,2F⊗2
2 =

(
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

)
III

3 K
(0)

=

(
1 1 0 0 1

1 1 1 1 0

)
s e

00

11

00

1100

11

0

1

wij =

{
0, i = ĉj

−|Sj |, i 6= ĉj

Sj = ln
W (0|yj )

W (1|yj )

p0,2(C
(2)

) and p2,4(C
(2)

) are (2, 1, 2) codes, while s0,2(C
(2)

) and s2,4(C
(2)

) are (2, 0,∞) codes.

p0,4(C
(2)

) is a (4, 2, 2) code, s0,4(C
(2)

) is a (4, 1, 4) code. Cosets of s0,4(C
(2)

) are given by

(0, 0, 0, 0) and (1, 1, 0, 0). For u0 = u1 = 0 one has

T
(2)
0,2 =[w00 + w01,w10 + w11];T

(2)
2,4 = [w02 + w03,w12 + w13]

T
(2)
0,4 =[max(T

(2)
0,2 [0] + T

(2)
2,4 [0],T

(2)
0,2 + T

(2)
2,4 [1]),max(T

(2)
0,2 [0] + T

(2)
2,4 [1],T

(2)
0,2 [1] + T

(2)
2,4 [0])].
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Example: 2-iterated Arikan Kernel K4 = B2,2F⊗2
2 =

(
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

)
IV

4 p0,2(C
(3)

) = p0,2(C
(2)

) = p2,4(C
(2)

) = p2,4(C
(3)

) are (2, 1, 2) codes, while s0,2(C
(2)

) and

s2,4(C
(2)

) are (2, 0,∞) codes. p0,4(C
(3)

) is a (4, 1, 4) code, s0,4(C
(4)

) is a (4, 0,∞) code.

T
(3)
0,4 = [T

(2)
0,2 [0] + T

(2)
2,4 [0],T

(2)
0,2 [1] + T

(2)
2,4 [1]].

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels October 17, 2021 39 / 102



Decoding polar codes with large kernels Recursive trellis processing

A Simplification

Consider computing T = [max(w00 + w01,w10 + w11),max(w10 + w01,w00 + w11)],

wij =

{
0, i = ĉj

−|Sj |, i 6= ĉj ,

ĉj is the hard decision corresponding to LLR Sj = ln
W (0|yj )

W (1|yj )

The final result of kernel processing does not change if the same value is subtracted

from all CBT entries at any section

T̃ =[max(w00 + w01,w10 + w11)− w10 − w11,max(w10 + w01,w00 + w11)− w10 − w11]

=[max(w00 − w10 + w01 − w11,0),max(w01 − w11,w00 − w10)]

=[max(S0 + S1,0),max(S1,S0)]

T̂ =[max(S0 + S1,0)−max(S1,S0),0] = [sgn(S0) sgn(S1)min(|S0|, |S1|),0]

Complexity: 6 operations→ 1 operation
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Yet Another Simplification

T
(1)
0,4 =

{
[T

(0)
0,2 [0] + T

(0)
2,4 [0],T

(0)
0,2 [1] + T

(0)
2,4 [1]], u0 = 0

[T
(0)
0,2 [1] + T

(0)
2,4 [0],T

(0)
0,2 [0] + T

(0)
2,4 [1]], u0 = 1

The final result of kernel processing does not change if the same value is subtracted from

all CBT entries at any section

T̂
(1)
0,4 =

{
[T

(0)
0,2 [0]− T

(0)
0,2 [1] + T

(0)
2,4 [0]− T

(0)
2,4 [1],0], u0 = 0

[T
(0)
0,2 [1]− T

(0)
0,2 [0] + T

(0)
2,4 [0]− T

(0)
2,4 [1],0], u0 = 1

T̂
(1)
0,4 = [(−1)u1(T

(0)
0,2 [0]− T

(0)
0,2 [1]) + (T

(0)
2,4 [0]− T

(0)
2,4 [1]),0]

If we know that T
(0)
a,b [1] = 0, this simplifies to

T̂
(1)
0,4 = [(−1)u1T

(0)
0,2 [0] + T

(0)
2,4 [0],0]
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Example: 2-iterated Arikan Kernel K4 = B2,2F⊗2
2 =

(
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

)

phase0

[0-3:complexity1]

[0-1:complexity1][2-3:complexity1]

phase1

[0-3:complexity1]

[0-1:complexity1][2-3:complexity1]

phase2

[0-3:complexity1]

[0-1:complexity1][2-3:complexity1]

phase3

[0-3:complexity1]

[0-1:complexity1][2-3:complexity1]

0 1

s

0

0

1

1

0 1 1 0

0 1

s

00 11 0110

0 1

s

00 11 01 10

0 1

s

0

0

1

1

0 1

0 1

s

00 11 0110

0 1

s

00 11 01 10

0 1

s

0

0

1

1

0 1 1 0

0 1

s

00 11

0 1

s

00 11

0 1

s

0

0

1

1

0 1

0 1

s

00 11

0 1

s

00 11

For the Arikan matrix B2,mF⊗m
2 , changes of section codes follow the same pattern as in the

successive cancellation algorithm

Min-Sum SC algorithm for an Arikan polar code of length 2m is a special case of the recursive
trellis processing algorithm for kernel B2,mF⊗m

2
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Successive Maximization

Ta,b[v ].m = max

w∈F
k′′
i,a,b

2

(
Tx,z [A].m + Tz,y [B].m

)

= max
wk′′

i,a,b
−1

. . .max
w1

max
w0

(
Tx,z [A].m + Tz,y [B].m

)
,

where A =
(
w v

)
Ĝa,b and B =

(
w v

)
G̃a,b

Keep intermediate results of maximization

Re-use saved intermediate results at later phases
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Sorted Arikan Kernel: Maximization Forest

K8 =























1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1























has scaling exponent 3.577

s

0000

1010

1100

0110

00000000

11000000

0000

1111

0000
111111000011

0101

1010

1010
0101

0110

1001

1100

0011
1100

0011

0000

1111

1001

0110

01
10

10
01

1010

0101

s

0000

1010

1100

0110

00000000

10101010

0000

1111

0000
1111

0101

1010

0101

1010

1100

0011
1100

0011

1001

0110

0110

1001

Trellis for K
(3)

Trellis for K
(4)
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Sorted Arikan Kernel: Maximization Forest

K8 =























1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1























has scaling exponent 3.577

s

0000

1010

1100

0110

00000000

11000000

0000

1111

0000
111111000011

0101

1010

1010
0101

0110

1001

1100

0011

1100
0011

0000

1111

1001

0110
01

10

10
01 1010

0101

s
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1010

1100

0110

00000000

10101010

0000

1111

0000
1111

0101

1010

0101

1010

1100

0011
1100

0011
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0110

0110

1001

Trellis for K
(3)

Trellis for K
(4)
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Sorted Arikan Kernel K8: Recursive Trellises for Section Codes
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Special Trellises

Type Trellis Simplified expression Complexity Mj

1 s

0

1

0

1

1

0

Ta,b[0] = sgn(Ta,z [0]) sgn(Tz,b[0])min(|Ta,z [0]|, |Tz,b[0]|)
Ta,b[1] =0

1

2 s

0

1

0

1

Ta,b[0] =(−1)c′

Ta,z [0] + (−1)c′′

Tz,b[0]

Ta,b[1] =0
1

3 s

0

1

0

1

0

1

Let ĉ0, ĉ1 be the hard decisions for Ta,z [0],Tz,b[1]

Ta,b[ĉ0, ĉ1] = 0;Ta,b[1⊕ ĉ0, 1⊕ ĉ1] = −|Ta,z [0]| − |Tz,b[0]|
Ta,b[1⊕ ĉ0, ĉ1] = −|Ta,z [0]|;Ta,b[ĉ0, 1⊕ ĉ1] = −|Tz,b[0]|

1
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Complexity

Total complexity of kernel processing C =
∑l−1

i=0(δi + ci ,0,l)

δi ∈ {0,1} is the complexity of computing the final LLR from the obtained CBT

Complexity of construction of the CBT for section [a,b) at phase i

ci ,a,b =

{
miab, if CBTs for subsections can be reused

miab + ci ,a,z + ci ,z,b, otherwise,

Complexity of computations at section [a,b) on phase i

mixy =





0, if forest reuse is possible

Mj , if type-j special trellis is encountered,

2k ′
iab

+k ′′
iab

−fiab + 2k ′
iab(2k ′′

iab
−fiab − 1),otherwise,

fiab ∈ {0,1} shows if an extra simplification is possible
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Optimizing Sectionalization

The complexity strongly depends on sectionalization, i.e. selection of z : a < z < b

A dynamic programming algorithm with complexity O(l4) for finding an optimal

sectionalization

Example: 24× 24 kernel

Uniform sectionalization (z = (a + b)/2): 715 summations, 449 comparisons

Optimized: 250 summations and 124 comparisons
[0, 24) splits into [0, 16) and [16, 24) with further uniform sectionalization
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Complexity of Kernel Processing

Kernel Kl E(Kl ) µ(Kl )
State of the art Recursive trellis

Method Add Comp. Add Comp.

K16B4 0.51828 3.45 window15 95 86 131 105

K32B5 0.521936 3.417 window 297 274 406 262

K r
32 0.52194 3.42111 Viterbi 4536 9072 355 191

K bch
32 0.53656 3.1221 Viterbi 99745 199490 31079 28337

K enbch′

32 0.53656 3.1221 window 2864420 32183 29873

K ∗
20 0.506169 3.43827 Viterbi 7524 15054 2893 2001

K20 0.49943 3.64931 Viterbi 1866 3756 289 189

K ∗
24 0.51577 3.3113 Viterbi 9922 19860 1621 1207

K24 0.502911 3.61903 Viterbi 2102 4218 241 124

Pipelined implementation

Latency O(log2 l)

15
G.Trofimiuk, P. Trifonov. Window Processing of Binary Polarization Kernels. IEEE Transactions on Communications, 2021
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Kernel Processing

Successive cancellation of (n = lm, k) polar code
with polarizing transform K⊗m requires

computing the probabilities W
(i)
m (u i

0|yn−1
0 ) for

each i ∈ [n]

For non-frozen symbol ui one should compute

W
(i)
m (ûi−1

0 .0|yn−1
0 ) and W

(i)
m (ûi−1

0 .1|yn−1
0 )

ûi−1
0 are already determined by SC decoder

The vector u i
0 is referred to as a path

W
(i)
m (u i

0|yn−1
0 ) is computed recursively

We consider computing the probabilities

W
(i)
1 (u i

0|y l−1
0 ) of only one layer of polarizing

transform K

y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

K

K

K

K

K
W

(0)
2

W
(1)
2

W
(2)
2

W
(3)
2

K
W

(4)
2

W
(5)
2

W
(6)
2

W
(7)
2

K
W

(8)
2

W
(9)
2

W
(10)
2

W
(11)
2

K
W

(12)
2

W
(13)
2

W
(14)
2

W
(15)
2

W
(0)
1

W
(1)
1

W
(2)
1

W
(3)
1
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The Idea of Window Processing Algorithm

We consider processing of l × l , l = 2t , kernel K

Let W̃
(i)
t (v i

0|y l−1
0 ) be a probability of input symbols v i

0 for Arikan kernel F⊗t
2

The main idea of window processing is to compute W
(φ)
1 (uφ0 |y l−1

0 ) using several values

W̃
(i)
t (v i

0|y l−1
0 ) for some i ≥ φ

Motivation: the probabilities W̃
(i)
t (v i

0|y l−1
0 ) are very easy to calculate

W̃
(2ψ)
λ (u2ψ

0 |y
2λ−1
0 ) =

∑

u2ψ+1∈F2

W̃
(ψ)
λ−1(u

2ψ+1
0,even + u

2ψ+1
0,odd |y

2λ−1
0,even)W̃

(ψ)
λ−1(u

2ψ+1
0,odd |y

2λ−1
0,odd )

W̃
(2ψ+1)
λ (u2ψ+1

0 |y2λ−1
0 ) = W̃

(ψ)
λ−1(u

2ψ+1
0,even + u

2ψ+1
0,odd |y

2λ−1
0,even)W̃

(ψ)
λ−1(u

2ψ+1
0,odd |y

2λ−1
0,odd )
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Transition Matrix

We need to establish the relation between the input vectors u and v of polarizing

transforms K and F⊗t
2 respectively

We can write TK = F⊗t
2 , where T is referred to as the transition matrix.

c l−1
0 = v l−1

0 F⊗t
2 = u l−1

0 K

This implies that u l−1
0 = v l−1

0 T , or

uφ =
l−1∑

s=0

vsT [s, φ] =

τφ∑

s=0
T[s,φ]=1

vs

τφ denotes the position of the last non-zero symbol in the φ-th column of T

We will also need hφ = max
0≤φ′≤φ

τφ′
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Decoding polar codes with large kernels Window processing

Relations Between Input vectors

We also need the expression for each component of v l
0,

vτφ = uφ +

τφ−1∑

s=0
T[s,φ]=1

vs (2)

Some τφ might be equal, so, we transform (2)
1 Θ′ = (T I), T is obtained by transposing T−1 and reversing the order of columns
2 Transform Θ′ into a minimum-span form Θ, φ-th row starts in φ and ends in zφ column
3 Compute

uφ =

φ−1∑

s=0

usΘl−1−φ,l−1−s +

ωφ∑

j=0

vjΘl−1−φ,l+j

where ωφ = zl−1−φ − l

vωφ =

φ∑

s=0

usΘl−1−φ,l−1−s +

ωφ−1∑

j=0

vjΘl−1−φ,l+j.
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Example of Transition Matrix

K ′
16 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




, F⊗4
2 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



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Example of Transition Matrix

T =







0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u0 = v0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u1 = v1
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 u2 = v2
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 u3 = v4
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 u4 = v8
5 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 u5 = v6 ⊕ v9
6 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 u6 = v5 ⊕ v6 ⊕ v10
7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 u7 = v3
8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 u8 = v12
9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 u9 = v5
10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 u10 = v6
11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 u11 = v7
12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 u12 = v11
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 u13 = v13
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 u14 = v14
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 u15 = v15
τ = 0 1 2 4 8 9 10 3 12 5 6 7 11 13 14 15
h = 0 1 2 4 8 9 10 10 12 12 12 12 12 13 14 15
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Decoding polar codes with large kernels Window processing

Decoding Window

We are able to reconstruct u
φ
0 from v

hφ
0

If hφ > φ, then some values of v
hφ
0 are independent from u

φ
0 and, therefore, unknown

By decoding window we denote the set

Dφ = [hφ + 1] \ {ω0, ω1, . . . , ωφ}

of indices of independent (from u
φ
0 ) components of v

hφ
0

W
(φ)
1 (uφ0 |y l−1

0 ) =
∑

v
hφ
0

∈Z
(uφ)

φ

W̃
(hφ)
t (v

hφ
0 |y l−1

0 )

Z(b)
φ is the set of vectors v

hφ
0 , such as vs ∈ F2, s ∈ Dφ, the values of

vt , t ∈ [hφ + 1]\Dφ, are obtained according to the transition matrix T and uφ = b

|Dφ| = hφ − φ

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels October 17, 2021 55 / 102



Decoding polar codes with large kernels Window processing

Decoding Window

We are able to reconstruct u
φ
0 from v

hφ
0

If hφ > φ, then some values of v
hφ
0 are independent from u

φ
0 and, therefore, unknown

By decoding window we denote the set

Dφ = [hφ + 1] \ {ω0, ω1, . . . , ωφ}

of indices of independent (from u
φ
0 ) components of v

hφ
0

W
(φ)
1 (uφ0 |y l−1

0 ) =
∑

v
hφ
0

∈Z
(uφ)

φ

W̃
(hφ)
t (v

hφ
0 |y l−1

0 )

Z(b)
φ is the set of vectors v

hφ
0 , such as vs ∈ F2, s ∈ Dφ, the values of

vt , t ∈ [hφ + 1]\Dφ, are obtained according to the transition matrix T and uφ = b

|Dφ| = hφ − φ

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels October 17, 2021 55 / 102



Decoding polar codes with large kernels Window processing

Decoding Window. Example

φ
K ′

16

uφ Dφ
0 v0 {}

1 v1 {}

2 v2 {}

3 v4 {3}

4 v8 {3, 5,6, 7}

5 v6 ⊕ v9 {3, 5,6, 7}

6 v5 ⊕ v6 ⊕ v10 {3, 5,6, 7}

7 v3 {5, 6,7}

8 v12 {5, 6, 7,11}

9 v5 {6, 7, 11}

10 v6 {7, 11}

11 v7 {11}

12 v11 {}

13 v13 {}

14 v14 {}

15 v15 {}
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Decoding polar codes with large kernels Window processing

Probability Computation Example

Consider window processing of φ = 6 of K ′
16 kernel

W
(6)
1 (u6

0 |y15
0 ) =

∑

u15
7 ∈F9

2

W
(15)
1 (u15

0 |y15
0 ) =

∑

u15
7 ∈F9

2

n−1∏

i=0

W ((u15
0 K ′

16)i |y15
0 )

We have the constraint u6 = v5 ⊕ v6 ⊕ v10 ⇒ τ6 = h6 = 10⇒ we should consider

paths v10
0 and their probabilities W̃

(10)
4 (v10

0 |y15
0 )

How to construct paths v10
0 from already estimated by SC decoding symbols û5

0?

v0 = û0, v1 = û1, v2 = û2, v4 = û3, v8 = û4

v3, v5, v6, v7 are not defined by û5
0 ⇒ decoding window D6 = {3, 5, 6, 7}

We should consider all (v3, v5, v6, v7) ∈ F
4
2

For given values v5, v6 and u6, we have v9 = û5 ⊕ v6 and v10 = u6 ⊕ v5 ⊕ v6
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Decoding polar codes with large kernels Window processing

Probability Computation Example

Set of considered Arikan SC paths v10
0 :

Z(u6)
6 =

[û0, û1, û2, 0, û3, 0, 0, 0, û4, û5, u6 ],
[û0, û1, û2, 0, û3, 0, 0, 1, û4, û5, u6 ],
[û0, û1, û2, 0, û3, 0, 1, 0, û4, û5, u6 ⊕ 1 ],
[û0, û1, û2, 0, û3, 0, 1, 1, û4, û5, u6 ⊕ 1 ],
[û0, û1, û2, 0, û3, 1, 0, 0, û4, û5 ⊕ 1, u6 ⊕ 1 ],
[û0, û1, û2, 0, û3, 1, 0, 1, û4, û5 ⊕ 1, u6 ⊕ 1 ],
[û0, û1, û2, 0, û3, 1, 1, 0, û4, û5 ⊕ 1, u6 ],
[û0, û1, û2, 0, û3, 1, 1, 1, û4, û5 ⊕ 1, u6 ],
[û0, û1, û2, 1, û3, 0, 0, 0, û4, û5, u6 ],
[û0, û1, û2, 1, û3, 0, 0, 1, û4, û5, u6 ],
[û0, û1, û2, 1, û3, 0, 1, 0, û4, û5, u6 ⊕ 1 ],
[û0, û1, û2, 1, û3, 0, 1, 1, û4, û5, u6 ⊕ 1 ],
[û0, û1, û2, 1, û3, 1, 0, 0, û4, û5 ⊕ 1, u6 ⊕ 1 ],
[û0, û1, û2, 1, û3, 1, 0, 1, û4, û5 ⊕ 1, u6 ⊕ 1 ],
[û0, û1, û2, 1, û3, 1, 1, 0, û4, û5 ⊕ 1, u6 ],
[û0, û1, û2, 1, û3, 1, 1, 1, û4, û5 ⊕ 1, u6 ]

Subchannel probability:

W
(6)
1 (u6

0 |y15
0 ) =

∑

v10
0
∈Z

(u6)

6

W̃
(10)
4 (v10

0 |y15
0 )

For one K ′
16 probability we need to

calculate 16 probabilities for Arikan

matrix F⊗4
2
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Decoding polar codes with large kernels Window processing

Log-Likelihood Ratios for Arikan Matrix

Approximate bit subchannel probabilities

W̃(i)

t (v i
0|y l−1

0 ) = max
v l−1

i+1
∈Fl−i−1

2

W̃
(l−1)
t (v l−1

0 |y l−1
0 )

Modified log-likelihood ratios

S̃
(i)
t (v i−1

0 , y l−1
0 ) = log

W̃ (i)

t (v i−1
0 .0|y l−1

0 )

W̃ (i)

t (v i−1
0 .1|y l−1

0 )

Recursive computation

S̃
(2i)
λ (v2i−1

0 , yN−1
0 ) =Q(a,b) = sgn(a) sgn(b)min(|a|, |b|)

S̃
(2i+1)
λ (v2i

0 , yN−1
0 ) =P(a,b, v2i) = (−1)v2i a + b,

a = S̃
(i)
λ−1(v

2i−1
0,even ⊕ v2i−1

0,odd , y
N−1
0,even),b = S̃

(i)
λ−1(v

2i−1
0,odd , y

N−1
0,odd ),
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Decoding polar codes with large kernels Window processing

Path Score

The log-likelihood of a path v i
0 can be obtained

Ry (v
i
0) = R(v i

0|y l−1
0 ) = log W̃ (i)

t (v i
0|y l−1

0 ) = Ry (v
i−1
0 ) + τ

(
S̃
(i)
t (v i−1

0 , y l−1
0 ), vi

)
,

where Ry(ǫ) can be set to 0, ǫ is an empty sequence, and

τ(S, v) =

{
0, sgn(S) = (−1)v

−|S|, otherwise.

The intermediate LLRs S̃
(i)
λ = S̃

(i)
λ (v i−1

0 |yN−1
0 ) can be reused during the computation

of S̃
(i)
t for different i
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Illustration of LLR Computation

Phase 0

S̃
(0)
0

S̃
(0)
1

S̃
(0)
2

S̃
(0)
3

Q

Q

Q

Phase 1

S̃
(0)
2

S̃
(1)
3

Pv0
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Illustration of LLR Computation

Phase 2

S̃
(0)
1

S̃
(1)
2

S̃
(2)
3

P

Q

v1
0 F2

Phase 3

S̃
(1)
2

S̃
(3)
3

Pv2

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels October 17, 2021 60 / 102



Decoding polar codes with large kernels Window processing

Window Processing in LLR domain

Approximate probabilities

W (φ)
1 (uφ0 |y l−1

0 ) = max
v

hφ
0

∈Z
(uφ)

φ

W̃(hφ)

t (v
hφ
0 |y l−1

0 )

Log likelihood ratios

S
(φ)
1 (uφ−1

0 , y l−1
0 ) = max

v
hφ
0

∈Z
(0)
φ

Ry(v
hφ
0 )− max

v
hφ
0

∈Z
(1)
φ

Ry (v
hφ
0 )

Summary of window processing:

Compute the transition matrix T offline

For each phase: compute |Z(0)
φ |+ |Z

(1)
φ | = 2|Dφ|+1 paths scores Ry (v

hφ
0 ), two

maximums and obtain S
(φ)
1 (uφ−1

0 , y l−1
0 )
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Simplifications of Window Processing16

In many cases we can reuse intermediate LLRs S̃
(i)
λ arising during the for of Ry (v

hφ
0 )

corresponding to all v
hφ
0 generated by the decoding window

For instance, consider hφ−1 = 8, hφ = 9, to compute S̃
(9)
t (v8

0 , y
l−1
0 ) at phase hφ = 9 we

can reuse intermediate LLRs S
(4)
t−1 obtained at the phase hφ−1 = 8

Joint computation of path scores Ry(v
hφ
0 )

It is possible to reuse results of path scores maximization

In case of hφ = hφ+1 = · · · = hφ+q paths scores Ry (v
hφ
0 ) remains the same. One can

use maximization forest to obtain S
(φ)
1 (uφ−1

0 , y l−1
0 ), S

(φ+1)
1 (uφ0 , y

l−1
0 ), · · · ,

S
(φ+q−)
1 (uφ+q−1

0 , y l−1
0 )

In case of hφ+1 = hφ + 1 (which implies that Dφ+1 = Dφ) one half of computed Ry (v
hφ
0 )

remains the same

16
G. Trofimiuk and P. Trifonov, ”Window Processing of Binary Polarization Kernels,” in IEEE Transactions on Communications, July 2021
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The Idea of Identification of Common Subexpressions

In window processing we need to compute several F⊗t
2 LLRs

· · · · · · · · · · · ·
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Decoding polar codes with large kernels Window processing

The Idea of Identification of Common Subexpressions

Some of intermediate LLRs S̃
(i)
λ can be the same for different paths

· · · · · · · · · · · ·
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Decoding polar codes with large kernels Window processing

The Idea of Identification of Common Subexpressions

We can compute only unique intermediate LLRs S̃
(i)
λ

· · · · · · · · · · · ·

28
operations

12
operations
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Decoding polar codes with large kernels Window processing

Arithmetic Complexity of Window Processing17

φ
K ′

16, E = 0.51828, µ = 3.346 K16,E = 0.51828,µ = 3.45

uφ Dφ Cost uφ Dφ Cost

0 v0 {} 15 v0 {} 15

1 v1 {} 1 v1 {} 1

2 v2 {} 3 v2 {} 3

3 v4 {3} 21 v3 {} 1

4 v8 {3, 5, 6,7} 127 v4 {} 7

5 v6 ⊕ v9 {3, 5, 6,7} 48 v8 {5, 6,7} 67

6 v5⊕v6⊕v10 {3, 5, 6,7} 95 v6 ⊕ v9 {5, 6,7} 24

7 v3 {5, 6,7} 1 v5⊕v6⊕v10 {5, 6,7} 47

8 v12 {5, 6, 7, 11} 127 v5 {6, 7} 1

9 v5 {6, 7, 11} 1 v6 {7} 1

10 v6 {7, 11} 1 v7 {} 1

11 v7 {11} 1 v11 {} 1

12 v11 {} 1 v12 {} 7

13 v13 {} 1 v13 {} 1

14 v14 {} 3 v14 {} 3

15 v15 {} 1 v15 {} 1

The source code is available at https://github.com/gtrofimiuk/SCLKernelDecoder
17

G. Trofimiuk and P. Trifonov, ”Window Processing of Binary Polarization Kernels,” in IEEE Transactions on Communications, July 2021
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Decoding polar codes with large kernels Window processing

Arithmetic Complexity of Window Processing18

K32 kernel (constructed by algorithm17) with E = 0.521936, µ = 3.417
φ uφ Dφ Cost φ uφ Dφ Cost

0 v0 {} 31 16 v18 {14,15} 16

1 v1 {} 1 17 v14 ⊕ v19 {14,15} 15

2 v2 {} 3 18 v14 {15} 1

3 v3 {} 1 19 v15 {} 1

4 v4 {} 7 20 v20 {} 7

5 v8 {5,6, 7} 67 21 v24 {21,22,23} 67

6 v5 ⊕ v6 ⊕ v9 {5,6, 7} 24 22 v21 ⊕ v22 ⊕ v25 {21,22,23} 24

7 v5 ⊕ v10 {5,6, 7} 47 23 v21 ⊕ v26 {21,22,23} 47

8 v5 {6,7} 1 24 v21 {22,23} 1

9 v6 {7} 1 25 v22 {23} 1

10 v7 {} 1 26 v23 {} 1

11 v11 {} 1 27 v27 {} 1

12 v16 {12,13,14, 15} 127 28 v28 {} 7

13 v12 ⊕ v17 {12,13,14, 15} 63 29 v29 {} 1

14 v12 {13, 14,15} 1 30 v30 {} 3

15 v13 {14,15} 1 31 v31 {} 1

The source code is available at https://github.com/gtrofimiuk/SCLKernelDecoder
17

G. Trofimiuk and P. Trifonov, ”Construction of binary polarization kernels for low complexity window processing,” 2019 IEEE Information Theory Workshop 2019
18

G. Trofimiuk and P. Trifonov, ”Window Processing of Binary Polarization Kernels,” in IEEE Transactions on Communications, July 2021
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Design of polar codes

1 Motivation

Arikan polar codes and their limitations

What is possible with large kernels?

2 Decoding polar codes with large kernels

Successive cancellation decoding

Kernel processing (marginalization)

Trellis representation of linear codes

Recursive trellis processing

Window processing

3 Design of polar codes

Finding good polarization kernels

Code design for the BEC

Code design for the AWGN channel

Codes with Improved Distance Properties

4 Conclusions
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Design of polar codes Finding good polarization kernels

Polarization Properties

Arikan kernel K2

Rate of polarization: E(K2) = 0.5

Scaling exponent: µ(BEC,K2) = 3.627

Asymptotic results

There exist l × l kernels Kl with rate of polarization E(Kl)
l→∞−−−→ 1

There exist kernels with scaling exponent µ(BEC,Kl)
l→∞−−−→ 2

Our goal is to obtain kernels of different lengths with good polarization properties
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Design of polar codes Finding good polarization kernels

Performance of (1024, 512) Polar Codes with Different Kernels

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 1  1.5  2  2.5

F
E

R

Eb/N0,dB

2×2  Arikan kernel F2, E = 0.5, µ=3.627

32×32 K32 kernel (for window processing), E = 0.522, µ=3.417

32×32 Convolutional polar kernel Q32, E = 0.522, µ=3.382

32×32 Sorted convolutional polar kernel Q32,s, E = 0.522, µ=3.153

32×32 BCH kernel B32, E = 0.537, µ=3.122
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Performance of (4096, 2048) Polar Codes with Different Kernels

10
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10
−4

10
−3

10
−2

10
−1
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0

 1.4  1.6  1.8  2  2.2  2.4

F
E

R

Eb/N0,dB

2×2 Arikan kernel F2, E = 0.5, µ=3.627

16×16 Sorted Arikan kernel F2
⊗4

, E = 0.5, µ=3.479
16×16 Convolutional polar kernel Q16, E = 0.509, µ=3.399

16×16 Sorted convolutional polar kernelQ16,s , E = 0.509, µ=3.382

16×16 B16 BCH kernel , E = 0.518, µ=3.396

16×16 kernel K16 (for window processing), E = 0.518, µ=3.45

16×16 kernel K'16 (for window processing), E = 0.518, µ=3.346
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Kernel Codes

Consider l × l kernel K

〈g1,g2, . . . ,gk 〉 is a linear block code generated by the vectors g1,g2, . . . ,gk

K [i] is an i-th row of a matrix K

[l] denotes the set of n integers {0,1, . . . , l − 1}
Let C(φ)

K
= 〈K [φ], . . . ,K [l − 1]〉, φ ∈ [l], be an (l , l − φ,d

(φ)
K

) kernel code

C(l)K contains only zero codeword

K [φ]

K [φ+ 1]

K [l − 1]

...

K [0]

...

C(φ)K
K

l

l
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Computing the Rate of Polarization

dH(a,b) is a Hamming distance between the vectors a and b

dH(b, C) = minc∈C dH(b, c) is a minimal distance between vector b and code C

Partial Distances (PD)

Di = dH(K [φ], C(φ+1)
K ), φ ∈ [l − 1],

Dl−1 = dH(K [l − 1],0)

Rate of Polarization:

E(K ) =
1

l

l−1∑

i=0

logl Di

K [φ]

dH

K [φ+ 1]

K [φ+ 2]

K [l − 1]

...

C(φ+1)
K

The vector D is referred to as a partial distance profile (PDP)
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Some Methods of Kernel Construction

l
Exhaustive search19 Shortened BCH kernels20 Code decomposition21

E µ E E

17 0.49361 3.573 0.49175

18 0.50052 3.528 0.48968 0.49521

19 0.50054 3.444 0.48742 0.49045

20 0.50617 3.439 0.49659

21 0.50868 3.374 0.48705 0.49604

22 0.51181 3.353 0.49445 0.50118

23 0.51213 3.372 0.50071 0.50705

24 0.51577 3.3113 0.50445 0.51577

25 0.51683 3.281 0.50040 0.50608

26 0.51921 3.256 0.50470

27 0.51935 3.278 0.50836

19
G. Trofimiuk, ”A Search Method for Large Polarization Kernels,” 2021 IEEE International Symposium on Information Theory (ISIT), 2021

20
S. B. Korada, E. Sasoglu, and R. Urbanke, ”Polar codes: Characterization of exponent, bounds, and constructions,” IEEE Trans. on Inf. Th., 2010

21
N. Presman, O. Shapira, S. Litsyn, T. Etzion, A. Vardy, Binary polarization kernels from code decompositions, IEEE Trans. On Inf. Th., vol. 61, no. 5, 2015
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Motivation of the Exhaustive Search Algorith

How to obtain kernels of size l with the best polarization properties?

1 Polarization properties

Rate of polarization E

Scaling exponent µ

2 Rate of polarization

Independent of channel
Can be explicitly computed

E depends on partial distances only

We can search for l × l kernels with given partial distance profile
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Example: 5× 5 Kernel with Partial Distances [1, 2, 2, 2, 4]

φ = 4
PD = 4

D4 = 4




?????
?????
?????
?????
11110




D3 = 2

...

PD = 2
φ = 3




?????
?????
?????
10100
11110







?????
?????
11100
10100
11110




φ = 2
PD = 2

D2 = 1


?????
?????
11100
10100
11110




D2 = 2


?????
?????
00101
10100
11110




...




?????
01110
00101
10100
11110




PD = 2
φ = 1




?????
01110
00101
10100
11110




D1 = 1




?????
01011
00101
10100
11110







?????
01011
00101
10100
11110




...

D1 = 1

D1 = 2


?????
00011
00101
10100
11110







00001
00011
00101
10100
11110




PD = 1
φ = 0

D0 = 1
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The Basic Algorithm

Algorithm 1: BasicKernelSearch(K , φ,M,D)

1 if φ = −1 then

2 return K ;

3 for each v ∈Mφ do

4 d ← dH(v , C(φ+1)
K );

5 if d = Dφ then

6 K [φ]← v ;

7 K̂ ← BasicKernelSearch(K , φ−
1,M,D);

8 if K̂ 6= 0l×l then

9 return K̂ ;

10 return 0l×l ;

Mφ is a set of candidate rows

For each returned K we have

K [φ] ∈Mφ

Algorithm 1 is a depth-first search over

candidate rows

Default candidate rows M
(def )
φ ={

v l−1
0 |v l−1

0 ∈ F
l
2,wt(v) ≥ Dφ

}

Can be restricted to

M
(r)
φ =

{
v l−1

0 |v l−1
0 ∈ F

l
2,wt(v) = Dφ

}
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Bounds on Partial Distances

The minimum distance d
(φ)
K of kernel codes C(φ)K is given by minφ≤i<l Di

Consider l × l kernel K with nondecreasing PDP D, such as Dφ ≤ Dφ+1 for φ ∈ [l − 1]

Let d [n, k ] is a best known minimum distance of (n, k) code. Thus, Dφ ≤ d [l , l − φ]

Let D be a nondecreasing PDP

If D1 = 2, then22 Di is even for all i ≥ 1;

For 0 ≤ i < l , we have22

l∑

i ′=i

2l−i ′ Di ′ ≤ 2l−i l

22
H.P. Lin, S. Lin, and K. A. Abdel-Ghaffar, Linear and nonlinear binary kernels of polar codes of small dimensions with maximum exponents, IEEE Transactions

On Information Theory, vol. 61, no. 10, 2015
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Construction of Good Polarization Kernels

1 Generate various non-decreasing PDPs (satisfying the above bounds)
2 For each PDP run the exhaustive search algorithm

Unfortunately, it is hard to determine sufficient running time

Typically, if kernels with a given PDP exists, then depth-first search finds a
corresponding kernel quickly

3 Pick a kernel with the best polarization properties
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Kernels with Good Polarization Properties

The processing complexity is measured as a number of addition and comparison

operations

l E µ Partial distances
Recursive trellis

processing complexity

17 0.49361 3.573 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 16 1250

18 0.50052 3.528 1, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 6, 8, 8, 10, 10, 12 2946

19 0.50054 3.444 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 10, 10, 16 5048

20 0.50617 3.439 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 12, 16 4894

21 0.50868 3.374 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 10, 10, 10, 14, 14 10978

22 0.51181 3.353 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, 20 18120

23 0.51213 3.372 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 6, 8, 8, 10, 10, 10, 12, 14, 16 17786

24 0.51577 3.3113 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 16, 16 2828

25 0.51683 3.281 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 8, 10, 12, 12, 12, 16, 18 40566

26 0.51921 3.256 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 24 54848

27 0.51935 3.278 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 12, 12, 14, 14, 24 93764

All obtained kernels are available at arxiv.org/abs/2101.10269

The processing complexity is too high, how to reduce it?
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Kernel Processing

Computing the bit subchannel probability

W(φ)
1 (uφ0 |y

l−1
0 ) for one layer of l × l transform K is

equal to ML decoding of the kernel code C(φ+1)
K and

its coset C(φ+1)
K ⊕K [φ]

K [φ+ 1]

K [φ+ 2]

K [l − 1]

...

K [0]

...

C(φ+1)
K

ML decoding can be done by Viterbi algorithm or recursive trellis decoding

The minimum distance d
(φ)
K of kernel codes C(φ)K is given by min

φ≤i<l
Di

Trellis state complexity is lower bounded by the minimum distance of the code

To obtain polarization kernels which admit low processing complexity, we can reduce the

minimum distance of the kernel codes

As a consequence, we obtain kernels with the degraded polarization properties
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Design of polar codes Finding good polarization kernels

Bounds on Trellis Complexity of Linear Codes

Let C be an (n, k ,d) linear code over Fq . Then the nonsectionalized state complexity

satisfies 23

s ≥ max
i
(k − K (i ,d)− K (n − i ,d)), (3)

where K (i ,d) is the maximum possible dimension of the code of length i and minimum

distance d over Fq

For (n, k ,d) linear code C 24

s ≥
⌈

k(d − 1)

n

⌉
(4)

23
D. J. Muder, ”Minimal trellises for block codes,” in IEEE Transactions on Information Theory, vol. 34, no. 5, pp. 1049-1053, Sept. 1988

24
A. Lafourcade and A. Vardy, ”Asymptotically good codes have infinite trellis complexity,” in IEEE Transactions on Information Theory, March 1995
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Design of polar codes Finding good polarization kernels

Example with 16× 16 Kernels

Kernel E µ Distance properties
Recursive trellis

processing complexity

K ′
16

0.51828 3.346
PDP 1 2 2 2 2 4 4 4 4 6 6 8 8 8 8 16

632
d
(φ)
k

1 2 2 2 2 4 4 4 4 6 6 8 8 8 8 16

K16 0.51828 3.45
PDP 1 2 2 4 2 2 4 4 6 6 8 8 4 8 8 16

236
d
(φ)
k

1 2 2 2 2 2 4 4 4 4 4 4 4 8 8 16

Kernel E µ Distance properties
Recursive trellis

processing complexity

F⊗4
2

0.5 3.627
PDP 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16

64
d
(φ)
k

1 2 2 2 2 2 2 2 2 4 4 4 4 8 8 16

F⊗4
2

, sorted 0.5 3.479
PDP 1 2 2 2 2 4 4 4 4 4 4 8 8 8 8 16

328
d
(φ)
k

1 2 2 2 2 4 4 4 4 4 4 8 8 8 8 16
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Design of polar codes Finding good polarization kernels

Kernels which Admit Low Complexity Processing

1 Generate several PDPs corresponding to the reduced rate of polarization (compared

to the best one)
2 Permute some PDP entries
3 Try to obtain the corresponding kernels by the exhaustive search algorithm

l E µ Partial distances
Recursive trellis

processing complexity

18 0.50052 3.528 1, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 6, 8, 8, 10, 10, 12 2946

18 0.49521 3.648 1, 2, 2, 4, 2, 2, 2, 4, 4, 6, 4, 6, 8, 8, 8, 8, 8, 16 1000

20 0.50617 3.439 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 12, 16 4894

20 0.49943 3.649 1, 2, 2, 4, 2, 4, 2, 2, 4, 4, 6, 8, 8, 8, 4, 8, 12, 8, 8, 16 478

24 0.51577 3.3113 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 16, 16 2828

24 0.50291 3.619 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 4, 4, 8, 8, 12, 4, 4, 8, 8, 12, 12, 8, 16, 16 365

27 0.51935 3.278 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 12, 12, 14, 14, 24 93764

27 0.49720 3.766 1, 2, 2, 4, 2, 2, 4, 4, 6, 2, 4, 4, 6, 6, 8, 8, 10, 12, 4, 4, 8, 8, 12, 12, 8, 16, 16 998

There is a trade-off between processing complexity and polarization properties
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Design of polar codes Code design for the BEC

Design of Polar Codes with Large Kernels

Method Arikan kernel Large kernels

Monte-Carlo ✓ ✓

Binary erasure channel recursion ✓ ✓

Gaussian approximation ✓ ✓

Minimum distance ✓ ✓

Density evolution ✓ ✗

Degrading/upgrading approximation ✓ ✗

Partial order ✓ ✗

Polarization weight ✓ ✗

Polar codes with CRC ✓ ✓

Polar subcodes ✓ ✓

Polar codes with distributed CRC ✓ ✗

Shortening and puncturing ✓ ✗ and ✓

✗: the method has not yet been developed
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Design of polar codes Code design for the BEC

Polarization Behaviour

If W (y |c) is the binary erasure channel (BEC), then W
(i)
m are also BEC

Input erasure pattern e ∈ F
l
2 at phase i is not correctable iff there exist

u l−1
i+1, v

l−1
i+1 : ∀u i−1

0 ,∀j : ej = 0 : ((u i−1
0 ,0,u l−1

i+1)K )j = ((u i−1
0 ,1, v l−1

i+1 )K )j

Let Ei ,w be the number of uncorrectable erasure patterns of weight w

Let z be the input erasure probability. Erasure probability in W
(i)
1 is

fi(z) =
l∑

w=0

Ei ,wzw (1− z)l−w

Polarization behaviour is the collection of functions (f0(z), . . . , fl−1(z))

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels October 17, 2021 83 / 102



Design of polar codes Code design for the BEC

An Example

Arikan kernel K2 =

(
1 0

1 1

)

Uncorrectable erasure patterns for phase 0:(10), (01), (11)

f0(z) = 2z(1 − z) + z2 = 2z − z2

Uncorrectable erasure patterns for phase 1: (11)

f1(z) = z2

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels October 17, 2021 84 / 102



Design of polar codes Code design for the BEC

Finding the Polarization Behaviour

If erasure pattern e ∈ {0,1}l is uncorrectable, then any e′ ∈ {0,1}l which covers e,

i.e e′
i ≥ ei , is also uncorrectable

Let cover set ∆(S) be the set of vectors that cover at least one vector in set S

Let C
(i)
K = 〈Ki ..l−1〉 be the i-th kernel code, C

(l)
K = {0}.

An erasure pattern e is uncorrectable at phase i iff e ∈ ∆(C
(i)
K \ C

(i+1)
K ),0 ≤ i < l

The number of uncorrectable erasure patterns can be obtained from the trellis2526 of

C
(i)
K

25
V. Miloslavskaya, P. Trifonov. Design of binary polar codes with arbitrary kernel. In Proc of IEEE Information Theory Workshop , 2012

26
H. Yao, A. Fazeli, A.Vardy. Explicit Polar Codes with Small Scaling Exponent. In Proc. of ISIT 2019.
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Design of polar codes Code design for the AWGN channel

Capacity of Bit Subchannels

Capacity of a binary input symmetric channel

I
(i)
1 = 1−

∫ ∞

−∞
pi(ξ) log2(1 + e−ξ)dξ,

where pi(ξ|0) is the PDF27 of the LLR ln
W

(i)
1

(y l−1
0

,0|0)

W
(i)
1

(y l−1
0

,0|1)
, assuming that 0 is transmitted

An approximation

I
(i)
1 ≈1−

∫ ∞

−∞
fi(ξ|0) log2


1 +

P
{

ui = 1|S(i)
1 = ξ

}

P
{

ui = 0|S(i)
1 = ξ

}


 dξ

=1−
∫ ∞

−∞
fi(ξ|0) log2

(
1 +

fi(−ξ|0)
fi(ξ|0)

)
dξ,

where fi(ξ|0) is the PDF of S
(i)
1 (0, y l−1

0 ), assuming that 0 is transmitted
27

T. Richardson, R. Urbanke. Modern coding theory. Cambridge University Press, 2008
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Design of polar codes Code design for the AWGN channel

Mutual Information Based Design

Let I = I0(X ;Y ) be the mutual information (symmetric capacity) of AWGN channel

input X and output Y

Simulations can be use to estimate PDF fi(ξ|0) and compute mutual information

I
(i)
1 (I) of W

(i)
1 for any I : 0 < I < 1

Assume that all bit subchannels are Gaussian, and they are completely

characterized by their symmetric capacity

I
(lj+s)
m (I) ≈

{
I
(s)
1 (I

(j)
m−1(I)), m > 0,0 ≤ s < l ,0 ≤ j < lm−1

I, m = 0, s = 0
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Design of polar codes Code design for the AWGN channel

Subchannel Capacity Functions: K16, µ = 3.45

 0
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 0.6
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 1

 0  0.2  0.4  0.6  0.8  1

I 1
(i
)

i=0
i=1
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i=3
i=4
i=5
i=6
i=7
i=8
i=9
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i=11
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i=15

I

Capacity functions for BEC

(dashed) are not identical

to those for AWGN channel

(solid)
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Design of polar codes Codes with Improved Distance Properties

Polar Codes with CRC

Append CRC to the data before encoding it with a large kernel polar code

Use Tal-Vardy list decoder

Select a codeword with the valid CRC from the obtained list
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Design of polar codes Codes with Improved Distance Properties

Minimum Weight Codewords of Polar Codes

Partial distance Dj is the distance from the j-th row of kernel K to the code generated by rows

j + 1, . . . , l − 1

Theorem

Consider a (n, k , d) polar code C given by a polarizing transformation A = K⊗m and a frozen set

K, where n = lm, and partial distances Di of kernel K satisfy

Di = wt(K [j]), 0 ≤ j < li , 0 ≤ i < m.

Then:

1 d = mini /∈F wt(Ai ), where Ai is the i-th row of matrix A.

2 For any cn−1
0 = un−1

0 A ∈ C : wt(cn−1
0 ) = d ∃i : ui = 1,wt(Ai ) = d.

Example: for Arikan kernel one has wt(Ai ) = 2wt(i)

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels October 17, 2021 90 / 102



Design of polar codes Codes with Improved Distance Properties

Dynamic Frozen Symbols

Classical polar codes: frozen symbols ui = 0, i ∈ F
A generalization: ui =

∑i−1
j=0 Vsi ,juj , i ∈ F

uV T = 0,

where si is the index of row of V having last 1 in position i

The successive cancellation decoding algorithm:

For i = 0,1, . . . ,2m − 1:

ûi =

{∑i−1
j=0 Vsi ,j ûj , i ∈ K

argmaxui
W(i)

m (yn−1
0 , û i−1

0 |ui), i /∈ F
Decoding error probability PSC ≤

∑
i /∈F Pm,i

The same as for a classical polar code with frozen set F
Straightforward extension to list SC (Tal-Vardy) decoding

How to select the constraint matrix V?
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Design of polar codes Codes with Improved Distance Properties

Reducing the Error Coefficient

Consider a random linear k-dimensional subcode C of a base (n, k ′) polar code,

k < k ′. Let (w0, . . . ,wn) be its weight spectrum

If all linear subspaces are equiprobable, then

E[ws] = w ′
s

2k − 1

2k ′ − 1
≈ w ′

s2−(k ′−k), s > 0,

Select k ′ so that E[wd ] is sufficiently low

Any codeword of C satisfies cn−1
0 = un−1

0 Am, where un−1
0 V T = 0

The constraint matrix V =

(
V ′

Ṽ

)

V ′ is an (n − k ′)× n matrix with distinct weight-1 rows, having 1’s in positions F ′

Ṽ is a random (k ′ − k)× n full-rank matrix

Polar-CRC codes: Ṽ is a check matrix of the CRC code
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Ṽ

)

V ′ is an (n − k ′)× n matrix with distinct weight-1 rows, having 1’s in positions F ′
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Design of polar codes Codes with Improved Distance Properties

Type-A Dynamic Frozen Symbols

For truly random subcodes ij are too high⇒ the decoder may kill the correct path

before it is able to exploit the dynamic freezing constraints

Ṽ is responsible for elimination of low-weight codewords

Construct Ṽ , so that

the decoder can process dynamic freezing constraints as soon as possible

most of the low-weight codewords are still eliminated

Let the indices of non-trivial dynamic frozen symbols be smallest possible, such that

all ui : wt(Am,i) = d = mini /∈F wt(Am,i) are involved in at least one dynamic freezing

constraint

Set Vsj ,n − k ′ ≤ s < n − k ,0 ≤ j < is, to independent equiprobable binary values

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels October 17, 2021 93 / 102



Design of polar codes Codes with Improved Distance Properties

Type-A Dynamic Frozen Symbols

For truly random subcodes ij are too high⇒ the decoder may kill the correct path

before it is able to exploit the dynamic freezing constraints
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Design of polar codes Codes with Improved Distance Properties

Penalizing Wrong Paths in the SCL Decoder: Type-B DFS

Path score in the SCL algorithm: R(ûj
0) = R(ûj−1

0 ) + τ(S
(j)
m , ûj), where

τ(u,S) =

{
0, if (−1)u = sgnS

−|S|, otherwise

Incorrect ûi result in low-magnitude S
(j)
m for many j > i, and many of S

(j)
m still have correct

signs⇒ wrong path in the SCL decoder are penalized slowly while processing constraints
ui = 0, i ∈ F ′

Type-B dynamic frozen symbols

Speedup error propagation for wrong paths

Select q most reliable bit subchannelsW(i)
m : i ∈ F ′

Replace ui = 0 with ui =
∑

j<i Rijuj , where Rij are random binary values

If some ûj is incorrect,
∑

j<i Rij ûj would disagree with the sign of S
(i)
m with high

probability⇒ the path is penalized
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Design of polar codes Codes with Improved Distance Properties

Polar Subcodes: an Algebraic Construction

Design an (n = lm, k ,d) polar subcode

Let H be a check matrix of (n, κ > k ,d) extended narrow-sense primitive BCH code

Let Am = K⊗m
l

Let V0 = QHAT
m, where Q is an invertible matrix, such that last non-zero elements of

V are located in distinct columns ji ,0 ≤ i < n − κ

Let F0 = {j0, . . . , jn−κ−1}
Find indices ji /∈ F0,n − κ ≤ i < n − k of the least reliable bit subchannels

Let V =

(
V0

V1

)
, where V1 contains distinct rows with 1’s in positions jn−κ, . . . , jn−k−1,

and 0 elsewhere

V is the constraint matrix of (n, k ,≥ d) polar subcode28

28
P. Trifonov and V. Miloslavskaya, ”Polar subcodes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 2, February 2016
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Design of polar codes Codes with Improved Distance Properties

Performance of Polar Subcodes under SCL Decoding

10
−4
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10
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Eb/N0, dB

Randomized subcode (4096,2048,32), t=7,q=57,K16'K16'K16',L=8
Subcode of eBCH code  (4096,2048,48),K16'K16'K16',L=8
Polar code with CRC−8, (4096,2048,32),K16'K16'K16',L=8

µ(K ′
16) = 3.346
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Design of polar codes Codes with Improved Distance Properties

Mixed Kernel Codes

Mixed kernel polarizing transformation A = Kl1 ⊗ Kl2 ⊗ · · · ⊗ Klm

Rate of polarization for a Kronecker29 product of matrices E(A) =
∑m

l=1

E(Kli
)

logli

∏m
i=1 li

Kernels over different alphabets can be mixed30

Changing the order of matrices in the Kronecker product does affect the performance

29
M.-K. Lee, K. Yang. The exponent of a polarizing matrix constructed from the Kronecker product. Des. Codes Cryptogr. vol. 70, 2014

30
N. Presman, O. Shapira, S. Litsyn. IEEE Journal On Selected Areas In Communications, Vol. 34, No. 2, February 2016
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Design of polar codes Codes with Improved Distance Properties

Performance of Mixed-Kernel Codes
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Randomized subcode (2048,1024,24), t=9,K16K16F2F2F2,L=32

CCSDS LDPC (2048,1024),<=200 iterations

Changing the order of kernels

does affect the performance
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Design of polar codes Codes with Improved Distance Properties

Sequential Decoding of Large Kernel Codes vs BP Decoding of 5G LDPC Codes
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Kernel K r
32 has simple trellises⇒ decoding complexity much less than for the LDPC code

Even K24 with complex trellises has some complexity advantage with respect to LDPC
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Conclusions

1 Motivation

Arikan polar codes and their limitations

What is possible with large kernels?

2 Decoding polar codes with large kernels

Successive cancellation decoding

Kernel processing (marginalization)

Trellis representation of linear codes

Recursive trellis processing

Window processing

3 Design of polar codes

Finding good polarization kernels

Code design for the BEC

Code design for the AWGN channel

Codes with Improved Distance Properties

4 Conclusions
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Conclusions

Conclusions

Polar codes with large kernels under SCL decoding can provide both performance

and complexity improvement with respect to the codes based on the Arikan kernel

The codes based on large kernels may have lower decoding complexity compared to

LDPC codes with similar performance

Efficient kernel processing is essential to obtain a practical implementation

Window processing

Recursive trellis processing

Polarization kernels need to be carefully designed

Higher scaling exponent may provide simpler processing and better overall
performance/complexity tradeoff

Length-compatible codes with common kernel processing

Many of code design and decoding techniques developed for Arikan polar codes

extend easily to the case of large kernels
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Conclusions

Open Problems

How to further reduce the complexity of kernel processing?

How to explicitly construct kernels with a given rate of polarization and simple

recursive trellis processing?

How to find an optimal order of kernels in mixed kernel codes?

How to compute scaling exponent for channels other than BEC?

How to implement shortening and puncturing of large kernel codes?
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