Design and Decoding of Polar Codes with Large Kernels

Peter Trifonov, Grigorii Trofimiuk
{pvtrifonov,gtrofimiuk}@itmo.ru

ITMO University

October 17, 2021
Motivation

- Arikan polar codes and their limitations
- What is possible with large kernels?

Decoding polar codes with large kernels

- Successive cancellation decoding
- Kernel processing (marginalization)
- Trellis representation of linear codes
- Recursive trellis processing
- Window processing

Design of polar codes

- Finding good polarization kernels
- Code design for the BEC
- Code design for the AWGN channel
- Codes with Improved Distance Properties

Conclusions
Motivation

Arikan polar codes and their limitations

Polar Codes

- Let $A_m = K_l \otimes^m$, where K_l is an $l \times l$ matrix
- Encoding: $c_0^{n-1} = u_0^{n-1} A_m$, $u_i = 0$, $i \in F$, where F is the set of indices of low-capacity bit subchannels
 - $A (n = l^m, l^m - |F|)$ linear code
- The successive cancellation decoding algorithm

\[
\hat{u}_i = \begin{cases}
0 \\
\arg \max_{u_i} W_m^{(i)}(u_i^{-1}, u_i | y_0^{n-1})
\end{cases}
\]

for $i \in F$, $i = 0, 1, \ldots, l^m - 1$

Arikan kernel $K_2 = F = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$:

\[
W_{\lambda}^{(2\psi)}(u_0^{2\psi} | y_0^{2\lambda-1}) = \sum_{u_{2\psi+1}=0}^{1} W_{\lambda-1}^{(\psi)}(u_0^{2\psi+1} + u_0^{2\psi+1} \mid y_0^{2\lambda-1}) W_{\lambda-1}^{(\psi)}(u_0^{2\psi+1} \mid y_0^{2\lambda-1})
\]

\[
W_{\lambda}^{(2\psi+1)}(u_0^{2\psi+1} | y_0^{2\lambda-1}) = W_{\lambda-1}^{(\psi)}(u_0^{2\psi+1} + u_0^{2\psi+1} \mid y_0^{2\lambda-1}) W_{\lambda-1}^{(\psi)}(u_0^{2\psi+1} \mid y_0^{2\lambda-1})
\]
Polar Codes: Weak and Powerful

- SC decoding complexity is $O(n \log n)$
 - SC algorithm is highly suboptimal
 - List SC decoding is needed with complexity $O(Ln \log n)$
- Polar codes achieve the capacity
 - Error probability $O(2^{-\sqrt{n}})$, minimum distance $O(\sqrt{n})$
 - Polar codes with CRC, polar subcodes
- Highly regular encoder structure
 - High decoding latency
 - Poor hardware utilization
Motivation

Arikan polar codes and their limitations

Improved Polar Codes

- Polar codes with CRC
 - CRC is used to select codewords from the list obtained by the Tal-Vardy decoder

- Polar subcodes
 - Dynamic frozen symbols $u_{ij} = \sum_{s=0}^{i-1} u_s V_{js}, i_j \in F$
 - V is the constraint matrix

- Polarization adjusted convolutional codes
The gain of polar (sub)codes with respect to LDPC diminishes with code length

The slope of the FER curve is inferior to LDPC
The fraction of mediocre subchannels decreases with code length
The number of mediocre subchannels increases with code length
List size needed to cope with errors in mediocre subchannels grows exponentially with their number

How to mitigate exponential growth of the decoding complexity needed for near-ML decoding of polar (sub)codes?
Bit Subchannels

- Consider a binary input memoryless channel with transition probability function $W(y|c)$.
- Transition probability functions for synthetic bit subchannels:

$$W_m^{(i)}(y_0^{n-1}, u_0^{i-1}|u_i) = \frac{1}{2^{n-1}} \sum_{u_i^{n-1}} \prod_{j=0}^{n-1} W(y_j|(u_0^{n-1} K_i \otimes m)_j)$$

- With $m \to \infty$, the capacities of subchannels $W_m^{(i)}$ converge to 0 and 1, and the fraction of subchannels with capacity close to 1 converges to the capacity of W.

P. Trifonov, G. Trofimiuk (ITMO University) Design and Decoding of Polar Codes with Large Kernels
The Bhattacharyya Parameter

- Consider a binary input channel with transition probability function $W(y|c)$
- An upper bound on BER for a maximum likelihood receiver is the Bhattacharyya parameter
 \[Z(W) = \sum_y \sqrt{W(y|0)W(y|1)} \]
- Symmetric capacity $I(W)$ and the Bhattacharyya parameter satisfy
 \[I(W)^2 + Z(W)^2 \leq 1 \]
 \[I(W) + Z(W) \geq 1 \]
- With $m \to \infty$, the Bhattacharyya parameters of $W_m^{(i)}$ converge to 0 and 1
Rate of Polarization

How good are subchannels $W^{(i)}_m$ obtained by the polarization process?

Definition

Matrix K_l has rate of polarization $E(K_l)$, if for any binary input channel $W : 0 \leq I(W) < 1$:

- For any $\beta < E(K_l)$
 \[
 \lim_{m \to \infty} \inf P \left\{ Z(W^{(i)}_m) \leq 2^{-l^m \beta} \right\} = I(W)
 \]

- For any $\beta > E(K_l)$
 \[
 \lim_{m \to \infty} \inf P \left\{ Z(W^{(i)}_m) \geq 2^{-l^m \beta} \right\} = 1
 \]

SC decoding error probability for an $(n = l^m, k)$ polar code based on K_l

\[
P \leq 2^{-l^m \beta}, \beta < E(K_l)
\]

Arikan kernel: $E(K_2) = 0.5$
Partial Distances

Definition

Partial distances $\mathcal{D}_i, 0 \leq i < l,$ of an $l \times l$ matrix $K = \begin{pmatrix} K[0] \\ \vdots \\ K[l - 1] \end{pmatrix}$ are defined as

$$\mathcal{D}_i = d_H(K[i], \langle K[i+1], \ldots, K[l-1] \rangle), 0 \leq i < l - 1,$$

$$\mathcal{D}_{l-1} = \text{wt}(K[l-1]), 0 \leq i < l - 1,$$

where $\langle a_1, \ldots, a_k \rangle$ is an (l, k) linear code generated by vectors $a_1, \ldots, a_k,$ and $d_H(a, C)$ is the minimum Hamming distance between vector a and codewords of $C.$

Rate of polarization of kernel K is given by $E(K) = \frac{1}{l} \sum_{i=0}^{l-1} \log_l \mathcal{D}_i$
Scaling Exponent

- Scaling exponent μ for a family of codes with rate R shows the length $n = O\left(\frac{1}{I(W) - R}^\mu\right)$ needed to achieve some fixed target FER on channel W.
- Random codes: $\mu = 2$
- Scaling assumption for polar codes: for any ϵ there exists $f = \lim_{m \to \infty} \beta_m I^{\mu(W,K_l)}^{-m}$, $0 < f < \infty$

$$f = \lim_{m \to \infty} \beta_m I^{\mu(W,K_l)}^{-m}, 0 < f < \infty,$$

where β_m is the number of subchannels $W^{(i)}_m : \epsilon \leq Z(W^{(i)}_m) \leq 1 - \epsilon$.
- Arikan polar codes on BEC: $\mu(BEC, K_2) = 3.627$
Some Asymptotic Results

- There exist $l \times l$ kernels K_l with rate of polarization $^1 E(K_l) \xrightarrow{\to \infty} 1$
- There exist kernels with scaling exponent $^2 \mu(BEC, K_l) \xrightarrow{\to \infty} 2$
- For any $E < 1$ and $\mu > 2$ there exist 3 polar codes with sufficiently large kernels K_l of rate $R = I(W) - \delta$ and length $O(\frac{1}{\delta \mu})$ that enable reliable communication on a binary-input memoryless symmetric channel W with quasi-linear time encoding and decoding
- For any discrete memoryless channel with capacity $I(W)$, any $E, \mu > 0 : E + 2/\mu < 1$ there exist polar codes 4 with block error rate e^{-nE}, code rate $R = I(W) - N^{-1/\mu}$, and decoding complexity $O(n \log n)$

2. A. Fazeli, H. Hassani, M. Mondelli and A. Vardy, “Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels,” IEEE Transactions on Information Theory, 87(9), September 2021
Spatially coupled LDPC codes were heuristically shown to have scaling exponent $\mu_{\text{SC-LDPC}} \approx 3$.

There exists a kernel of size $l = 64$ with scaling exponent $\mu \approx 2.87$. Already better than SC-LDPC!

Large kernel based codes require smaller list size to achieve the same performance as the codes based on Arikan kernel.

- Lower decoding complexity compared to codes based on Arikan kernel to achieve target FER.
1 Motivation
- Arikan polar codes and their limitations
- What is possible with large kernels?

2 Decoding polar codes with large kernels
- Successive cancellation decoding
- Kernel processing (marginalization)
- Trellis representation of linear codes
- Recursive trellis processing
- Window processing

3 Design of polar codes
- Finding good polarization kernels
- Code design for the BEC
- Code design for the AWGN channel
- Codes with Improved Distance Properties

4 Conclusions
The Successive Cancellation Decoding Algorithm

- For \(i = 0, 1, \ldots, l^{m-1} \):
 \[
 \hat{u}_i = \begin{cases}
 0 & i \in \mathcal{F} \\
 \arg \max_{u_i} W_m^{(i)}(y^{n-1}_0, \hat{u}^{i-1}_0 | u_i) & i \notin \mathcal{F}
 \end{cases}
 \]

- Bit subchannels with transition probability function \(W_m^{(i)}(y^{n-1}_0, u^{i-1}_0 | u_i) \)

- It is convenient to use probabilities
 \[
 W_m^{(i)}(u^i_0 | y^{n-1}_0) = \frac{W_m^{(i)}(y^{n-1}_0, \hat{u}^{i-1}_0 | u_i)}{2 W(y^{n-1}_0)} = \sum_{u_{i+1}^{n-1}} \prod_{j=0}^{n-1} W((u^{n-1}_0 K^{\otimes m}_l)^{j} | y_j)
 \]

- Complexity \(O(n \log_l n) \) operations of kernel processing, i.e. computing
 \[
 W_m^{(i+s)}(u^{i+s}_0 | y^{n-1}_0) = \sum_{u_{i+s+1}^{n-1}} \prod_{j=0}^{l-1} W_m^{(i)}((u^{(t+1)-1}_l K_l)^{j}, 0 \leq t \leq i | y_{j,l}^{n-1})
 \]

where \(r^{n-1}_{j,l} = (r_j, r_{j+l}, \ldots, r_{j+n-1}), 0 \leq s < l, 0 \leq i < \frac{n}{l} \), \(W_0^{(0)}(c|y) = W(c|y) \)
The Successive Cancellation Decoding Algorithm

For \(i = 0, 1, \ldots, l^m - 1 \):
\[
\hat{u}_i = \begin{cases}
0 & i \in \mathcal{F} \\
\arg \max_{u_i} W_m^{(i)}(\hat{u}_i^{i-1}, u_i | y_0^{n-1}) & i \notin \mathcal{F}
\end{cases}
\]

Bit subchannels with transition probability function \(W_m^{(i)}(y_0^{n-1}, u_i^{i-1} | u_i) \)

It is convenient to use probabilities

\[
W_m^{(i)}(u_i^0 | y_0^{n-1}) = \frac{W_m^{(i)}(y_0^{n-1}, \hat{u}_i^{i-1} | u_i)}{2W(y_0^{n-1})} = \sum_{u_{i+1}^0} \prod_{j=0}^{n-1} W((u_0^{n-1} K_l^\otimes m)_j | y_j)
\]

Complexity \(O(n \log_2 n) \) operations of kernel processing, i.e. computing

\[
W_m^{(li+s)}(u_0^{li+s} | y_0^{n-1}) = \sum_{u_{li+s+1}^0} \prod_{j=0}^{l-1} W_m^{(i)}((u_l^{(t+1)-1} K_l)_j, 0 \leq t \leq i | y_j^{n-1})
\]

where \(r_j^{n-1} = (r_j, r_{j+l}, \ldots, r_{j+n-l}), 0 \leq s < l, 0 \leq i < \frac{n}{l}, W_0^{(0)}(c | y) = W(c | y) \)
Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

$$W^{(2i)}_\mu(u_0^{2i} | y_0^{n-1}) = \sum_{u_{2i+1}} W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_1^{n-1})$$

$$W^{(2i+1)}_\mu(u_0^{2i+1} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_1^{n-1})$$

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i + 1$.
 They can be reused
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

\[
W^{(2i)}_\mu(u_0^{2i} | y_0^{n-1}) = \sum_{u_{2i+1}} W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_{1,2}^{n-1})
\]

\[
W^{(2i+1)}_\mu(u_0^{2i+1} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_{1,2}^{n-1})
\]

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i + 1$.
 They can be reused
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

\[W^{(2i)}_{\mu}(u_0^{2i}|y_0^{n-1}) = \sum_{u_{2i+1}} W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i|y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i|y_0^{n-1}) \]

\[W^{(2i+1)}_{\mu}(u_0^{2i+1}|y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i|y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i|y_0^{n-1}) \]

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i + 1$.
 They can be reused
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

\[
W^{(2i)}(u_0^{2i} | y_0^{n-1}) = \sum_{u_{2i+1}} W^{(i)}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_0^{n-1}) W^{(i)}(u_{2t+1}, 0 \leq t \leq i | y_0^{n-1})
\]

\[
W^{(2i+1)}(u_0^{2i+1} | y_0^{n-1}) = W^{(i)}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_0^{n-1}) W^{(i)}(u_{2t+1}, 0 \leq t \leq i | y_1^{n-1})
\]

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i+1$. They can be reused.
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

$$W^{(2i)}(u_0^{2i}|y_0^{n-1}) = \sum_{u_{2i+1}} W^{(i)}(u_{2t} + u_{2t+1}, 0 \leq t \leq i|y_{0,2}^{n-1}) W^{(i)}(u_{2t+1}, 0 \leq t \leq i|y_{1,2}^{n-1})$$

$$W^{(2i+1)}(u_0^{2i+1}|y_0^{n-1}) = W^{(i)}(u_{2t} + u_{2t+1}, 0 \leq t \leq i|y_{0,2}^{n-1}) W^{(i)}(u_{2t+1}, 0 \leq t \leq i|y_{1,2}^{n-1})$$

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i + 1$. They can be reused.
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

\[
W^{(2i)}_{\mu}(u_0^{2i} | y_0^{n-1}) = \sum_{u_{2i+1}} W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_{0,2}^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_{1,2}^{n-1})
\]

\[
W^{(2i+1)}_{\mu}(u_0^{2i+1} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_{0,2}^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_{1,2}^{n-1})
\]

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i + 1$. They can be reused.
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Decoding polar codes with large kernels

Successive cancellation decoding

Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

\[
W^{(2i)}_{\mu}(u_0^{2i} | y_0^{n-1}) = \sum_{u_{2i+1}} W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_{0,2}^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_{1,2}^{n-1})
\]

\[
W^{(2i+1)}_{\mu}(u_0^{2i+1} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_{0,2}^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_{1,2}^{n-1})
\]

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i + 1$. They can be reused
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

\[
W^{(2i)}_{\mu}(u_0^{2i}|y_{0}^{n-1}) = \sum_{u_{2i+1}} W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i|y_{0,2}^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i|y_{1,2}^{n-1})
\]

\[
W^{(2i+1)}_{\mu}(u_0^{2i+1}|y_{0}^{n-1}) = W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i|y_{0,2}^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i|y_{1,2}^{n-1})
\]

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i + 1$. They can be reused.
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Example: Arikan kernel $F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

\[
W^{(2i)}_\mu(u_0^{2i}|y_0^{n-1}) = \sum_{u_{2i+1}} W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i|y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i|y_1^{n-1})
\]

\[
W^{(2i+1)}_\mu(u_0^{2i+1}|y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i|y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i|y_1^{n-1})
\]

- The same co-factors $W^{(i)}_{\mu-1}$ are used at phases $2i$ and $2i + 1$. They can be reused.
- Complexity $O(n \log_2 n)$
- Memory size $O(n)$
Example: Arikan kernel \(F_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \)

\[
W^{(2i)}_\mu(u_0^{2i} | y_0^{n-1}) = \sum_{u_2i+1} W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_0^{n-1})
\]

\[
W^{(2i+1)}_\mu(u_0^{2i+1} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{2t} + u_{2t+1}, 0 \leq t \leq i | y_0^{n-1}) W^{(i)}_{\mu-1}(u_{2t+1}, 0 \leq t \leq i | y_0^{n-1})
\]

- The same co-factors \(W^{(i)}_{\mu-1} \) are used at phases \(2i \) and \(2i + 1 \). They can be reused
- Complexity \(O(n \log_2 n) \)
- Memory size \(O(n) \)
Example: \(\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \)

\[
W^{(3i)}_\mu (u_0^{3i} | y_0^{n-1}) = \sum_{u_2i+1, u_2i+2} W^{(i)}_{\mu-1} (u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1} (u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1} (u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+1)}_\mu (u_0^{3i+1} | y_0^{n-1}) = \sum_{u_2i+2} W^{(i)}_{\mu-1} (u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1} (u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1} (u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+2)}_\mu (u_0^{3i+2} | y_0^{n-1}) = W^{(i)}_{\mu-1} (u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1} (u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1} (u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

- At layer \(\mu \geq 1 \) calculations are performed in batches of size \(l^{m-\mu} \)
- **Reuse** of probabilities and processor state
- **Partial sums** are supplied to the processors
Decoding polar codes with large kernels

Successive cancellation decoding

Example: \(\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \)

\[
W_{\mu}^{(3i)}(u_0^{3i}|y_0^{n-1}) = \sum_{u_2i+1 \cdot u_2i+2} W_{\mu-1}^{(i)}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i|y_{0,3}^{n-1}) W_{\mu-1}^{(i)}(u_{3t+1}, 0 \leq t \leq i|y_{1,3}^{n-1}) W_{\mu-1}^{(i)}(u_{3t+2}, 0 \leq t \leq i|y_{2,3}^{n-1})
\]

\[
W_{\mu}^{(3i+1)}(u_0^{3i+1}|y_0^{n-1}) = \sum_{u_2i+2} W_{\mu-1}^{(i)}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i|y_{0,3}^{n-1}) W_{\mu-1}^{(i)}(u_{3t+1}, 0 \leq t \leq i|y_{1,3}^{n-1}) W_{\mu-1}^{(i)}(u_{3t+2}, 0 \leq t \leq i|y_{2,3}^{n-1})
\]

\[
W_{\mu}^{(3i+2)}(u_0^{3i+2}|y_0^{n-1}) = W_{\mu-1}^{(i)}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i|y_{0,3}^{n-1}) W_{\mu-1}^{(i)}(u_{3t+1}, 0 \leq t \leq i|y_{1,3}^{n-1}) W_{\mu-1}^{(i)}(u_{3t+2}, 0 \leq t \leq i|y_{2,3}^{n-1})
\]

- At layer \(\mu \geq 1 \) calculations are performed in batches of size \(l^{m-\mu} \)
- Reuse of probabilities and processor state
- Partial sums are supplied to the processors
Example: $K_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

\[
W_\mu^{(3i)}(u_0^{3i} | y_0^{n-1}) = \sum_{u_2i+1} W_{\mu-1}^{(i)}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i) W_{\mu-1}^{(i)}(u_{3t+1}, 0 \leq t \leq i) W_{\mu-1}^{(i)}(u_{3t+2}, 0 \leq t \leq i) \\
W_\mu^{(3i+1)}(u_0^{3i+1} | y_0^{n-1}) = \sum_{u_2i+2} W_{\mu-1}^{(i)}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i) W_{\mu-1}^{(i)}(u_{3t+1}, 0 \leq t \leq i) W_{\mu-1}^{(i)}(u_{3t+2}, 0 \leq t \leq i) \\
W_\mu^{(3i+2)}(u_0^{3i+2} | y_0^{n-1}) = W_{\mu-1}^{(i)}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i) W_{\mu-1}^{(i)}(u_{3t+1}, 0 \leq t \leq i) W_{\mu-1}^{(i)}(u_{3t+2}, 0 \leq t \leq i)
\]

- At layer $\mu \geq 1$ calculations are performed in batches of size $l^{m-\mu}$
- **Reuse** of probabilities and processor state
- **Partial sums** are supplied to the processors
Decoding polar codes with large kernels

Example: $\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

\[
W^{(3)}_\mu(u_0^3|y_0^{n-1}) = \sum_{u_{2i+1},u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i|y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i|y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i|y_{2,3}^{n-1})
\]

\[
W^{(3i+1)}_\mu(u_0^{3i+1}|y_0^{n-1}) = \sum_{u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i|y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i|y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i|y_{2,3}^{n-1})
\]

\[
W^{(3i+2)}_\mu(u_0^{3i+2}|y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i|y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i|y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i|y_{2,3}^{n-1})
\]

- At layer $\mu \geq 1$ calculations are performed in batches of size $l^{m-\mu}$
- Reuse of probabilities and processor state
- Partial sums are supplied to the processors
Example: \(\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \)

\[W^{(3i)}_{\mu}(u_0^{3i} | y_0^{n-1}) = \sum_{u_{2i+1}, u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1}) \]

\[W^{(3i+1)}_{\mu}(u_0^{3i+1} | y_0^{n-1}) = \sum_{u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1}) \]

\[W^{(3i+2)}_{\mu}(u_0^{3i+2} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1}) \]

- At layer \(\mu \geq 1 \) calculations are performed in batches of size \(l^{m-\mu} \)
- **Reuse** of probabilities and processor state
- **Partial sums** are supplied to the processors
Decoding polar codes with large kernels

Successive cancellation decoding

Example: \(\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \)

\[
W^{(3i)}(u_0^{3i} | y_0^{n-1}) = \sum_{u_{2i+1}, u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+1)}(u_0^{3i+1} | y_0^{n-1}) = \sum_{u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+2)}(u_0^{3i+2} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

- At layer \(\mu \geq 1 \) calculations are performed in batches of size \(l^{m-\mu} \)
- **Reuse** of probabilities and processor state
- **Partial sums** are supplied to the processors
Example: $\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

\[
W^{(3i)}_{\mu}(u_0^{3i} | y_0^{n-1}) = \sum_{u_2i+1 \cdots u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+1)}_{\mu}(u_0^{3i+1} | y_0^{n-1}) = \sum_{u_2i+2} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+2)}_{\mu}(u_0^{3i+2} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

- At layer $\mu \geq 1$ calculations are performed in batches of size $l^{m-\mu}$
- Reuse of probabilities and processor state
- Partial sums are supplied to the processors
Example: $\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

\[
W^{(3i)}_\mu(u_0^{3i} | y_0^{n-1}) = \sum_{u_{2i+1}, u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+1)}_\mu(u_0^{3i+1} | y_0^{n-1}) = \sum_{u_{2i+2}} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+2)}_\mu(u_0^{3i+2} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

- At layer $\mu \geq 1$ calculations are performed in batches of size $l^{m-\mu}$
- **Reuse** of probabilities and processor state
- **Partial sums** are supplied to the processors
Example: $\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

\[
W^{(3i)}(u_0^{3i} | y_0^{n-1}) = \sum_{u_2i+1, u_2i+2} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+1)}(u_0^{3i+1} | y_0^{n-1}) = \sum_{u_2i+2} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

\[
W^{(3i+2)}(u_0^{3i+2} | y_0^{n-1}) = W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\]

- At layer $\mu \geq 1$ calculations are performed in batches of size $l^{m-\mu}$
- **Reuse** of probabilities and processor state
- **Partial sums** are supplied to the processors
Decoding polar codes with large kernels

Successive cancellation decoding

Example: \(\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \)

\[
\begin{align*}
W^{(3)}_{\mu}(u_0^3 | y_0^{n-1}) &= \sum_{u_2i+1, u_2i+2} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1}) \\
W^{(3i+1)}_{\mu}(u_0^{3i+1} | y_0^{n-1}) &= \sum_{u_2i+2} W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1}) \\
W^{(3i+2)}_{\mu}(u_0^{3i+2} | y_0^{n-1}) &= W^{(i)}_{\mu-1}(u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i | y_{0,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+1}, 0 \leq t \leq i | y_{1,3}^{n-1}) W^{(i)}_{\mu-1}(u_{3t+2}, 0 \leq t \leq i | y_{2,3}^{n-1})
\end{align*}
\]

- At layer \(\mu \geq 1 \) calculations are performed in batches of size \(L^{m-\mu} \)
- **Reuse** of probabilities and processor state
- **Partial sums** are supplied to the processors
Example: $\kappa_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

\[
W^{(3i)}_{\mu} (u_0^{3i} | y_0^{n-1}) = \sum_{u_{2i+1}, u_{2i+2}} W^{(i)}_{\mu-1} (u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i) y_{0,3}^{n-1} W^{(i)}_{\mu-1} (u_{3t+1}, 0 \leq t \leq i) y_{1,3}^{n-1} W^{(i)}_{\mu-1} (u_{3t+2}, 0 \leq t \leq i) y_{2,3}^{n-1}
\]

\[
W^{(3i+1)}_{\mu} (u_0^{3i+1} | y_0^{n-1}) = \sum_{u_{2i+2}} W^{(i)}_{\mu-1} (u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i) y_{0,3}^{n-1} W^{(i)}_{\mu-1} (u_{3t+1}, 0 \leq t \leq i) y_{1,3}^{n-1} W^{(i)}_{\mu-1} (u_{3t+2}, 0 \leq t \leq i) y_{2,3}^{n-1}
\]

\[
W^{(3i+2)}_{\mu} (u_0^{3i+2} | y_0^{n-1}) = W^{(i)}_{\mu-1} (u_{3t} + u_{3t+1} + u_{3t+2}, 0 \leq t \leq i) y_{0,3}^{n-1} W^{(i)}_{\mu-1} (u_{3t+1}, 0 \leq t \leq i) y_{1,3}^{n-1} W^{(i)}_{\mu-1} (u_{3t+2}, 0 \leq t \leq i) y_{2,3}^{n-1}
\]

- At layer $\mu \geq 1$ calculations are performed in batches of size $l^{m-\mu}$
- Reuse of probabilities and processor state
- Partial sums are supplied to the processors
Improved Decoding Methods

- The successive cancellation decoding algorithm is highly suboptimal
- List SC decoding: an immediate extension of the Tal-Vardy algorithm\(^7\)
 - Shared memory data structures for probabilities/LLRs, partial sums, \textit{and processor state}
- Sequential/stack decoding\(^8\)
 - Relies on Tal-Vardy data structures
 - The score function given in \(^9\) provides substantial reduction of average complexity
 - Negligible performance degradation with respect to SCL decoding

Kernel Processing: An Approximation

\begin{align*}
\mathcal{W}^{(i)}_m (u^i_0 | y^{n-1}_0) &= \sum_{u^1_{i+1}} \prod_{j=0}^{n-1} \mathcal{W} \left((u^{n-1}_0 K_i \otimes m)_j | y_j \right) \\
&\approx \mathcal{W}^{(i)}_m (u^i_0 | y^{n-1}_0) = \max_{u^1_{i+1}} \prod_{j=0}^{n-1} \mathcal{W} \left((u^{n-1}_0 K_i \otimes m)_j | y_j \right)
\end{align*}

Performance loss is negligible

\begin{align*}
\mathcal{W}^{(li+s)}_m (u^{li+s}_0 | y^{n-1}_0) &= \max_{u^{li+1}_{i+1}} \prod_{j=0}^{l-1} \mathcal{W}^{(i)}_{m-1} \left((u^{l(t+1)-1}_t K_i)_j, 0 \leq t \leq i | y_j^{n-1} \right)
\end{align*}

\(\mathcal{W}^{(i)}_m (u^i_0 | y^{n-1}_0)\) is the probability of the most likely continuation of vector \(u^i_0\), not taking into account any freezing constraints on \(u_j, j < i\)
Kernel Processing Problem

Assume \(m = 1 \) for the sake of simplicity. Assume that \(W(y|c) \) is a symmetric channel

\[
\mathcal{W}_1(s)(u^0_0|y^{l-1}_0) = \max_{u^{l-1}_s} \prod_{j=0}^{l-1} W((u^{l-1}_j K)_{y_j}) = \max_{u^{l-1}_s} \prod_{j=0}^{l-1} W ((u^{l-1}_s K_{s+1..l-1})_{y_j}(-1)(u^0_0 K_{0..s})_{j})
\]

- \(K_{a..b} \) is the submatrix of \(K \) given by rows \(a, \ldots, b \)
- If all \(u_i \) are equiprobable, computing \(\mathcal{W}_1(s)(u^0_0|y^{l-1}_0) \) is equivalent to ML decoding of \(y^{l-1}_0 \) in the coset given by \(u^0_0 K_{0..s} \) of the code generated by \(K_{s+1..l-1} \)
LLR-domain Kernel Processing

- The log-likelihood ratio $S_{\mu}^{(i)}(u_0^{i-1}, y_0^{l\mu-1}) = \ln \frac{W_{\mu}^{(i)}(u_0^{i-1}, 0 | y_0^{l\mu-1})}{W_{\mu}^{(i)}(u_0^{i-1}, 1 | y_0^{l\mu-1})}, \mu \geq 0$

- Let \hat{c}_i be the hard decision value corresponding to y_i

\[
S_{1}^{(i)}(u_0^{i-1}, y_0^{l-1}) = \log \frac{\max_{u_{s+1}^{i-1}} \prod_{j=0}^{l-1} W((u_0^{i-1}, 0, u_{i+1}^{l-1}) K_j | y_j)}{\max_{u_{s+1}^{i-1}} \prod_{j=0}^{l-1} W((u_0^{i-1}, 1, u_{i+1}^{l-1}) K_j | y_j)}
\]

\[
= \max_{u_{s+1}^{i-1}} \left(\sum_{j=0}^{l-1} \left(\log W((u_0^{i-1}, 0, u_{i+1}^{l-1}) K_j | y_j) \right) - \log W(\hat{c}_j | y_j) \right)
\]

\[
- \max_{u_{s+1}^{i-1}} \left(\sum_{j=0}^{l-1} \left(\log W((u_0^{i-1}, 1, u_{i+1}^{l-1}) K_j | y_j) \right) - \log W(\hat{c}_j | y_j) \right)
\]

\[
= \max_{u_{s+1}^{i-1}} M((u_0^{i-1}, 0, u_{i+1}^{l-1}) K, S_0^{l-1}) - \max_{u_{s+1}^{i-1}} M((u_0^{i-1}, 1, u_{i+1}^{l-1}) K, S_0^{l-1})
\]
LLR-domain Kernel Processing

- Hard decision: \(\hat{c}_j = \arg \max_{c \in \{0, 1\}} W(c | y_j) \)

- Log ratio: \(\log W(c_j | y_j) - \log W(\hat{c}_j | y_j) = \begin{cases} 0, & \hat{c}_j = c_j \\ -|\log \frac{W(0 | y_j)}{W(1 | y_j)}|, & \hat{c}_j \neq c_j \end{cases} \)

- Input LLRs: \(S_j = \log \frac{W(0 | y_j)}{W(1 | y_j)} \)

- Correlation discrepancy: \(M(c^{l-1}_0, S^{l-1}_0) = - \sum_{j : (-1)^c_j S_j < 0} |S_j| \)

- Kernel input LLRs:
 \[
 S^{(i)}_1(u^{l-1}_0, y^{l-1}_0) = \max_{u^{l-1}_{s+1}} M((u^{l-1}_0, 0, u^{l-1}_{i+1})K, S^{l-1}_0) - \max_{u^{l-1}_{s+1}} M((u^{l-1}_0, 1, u^{l-1}_{i+1})K, S^{l-1}_0)
 \]

\(^{10} \) Sometimes it is defined without the \(-\) sign
Any binary linear code of length \(l \) can be represented by a minimal trellis\(^{11}\)

- Codewords correspond to distinct paths in a trellis from the start to the end nodes.
- If two codewords \(y_0^{l-1}, z_0^{l-1} \) satisfy \(y_0^i = z_0^i \), then they pass through the same nodes in the minimal trellis up to symbol \(i \).
- If two codewords \(y_0^{l-1}, z_0^{l-1} \) satisfy \(a_i^{l-1} = b_i^{l-1} \), then they pass through the same nodes in the minimal trellis starting from symbol \(i \).
- Viterbi algorithm can be used to implement ML decoding.

Minimum Span Form of the Generator Matrix

- A vector c_0^{l-1} starts in position $b = b(c_0^{l-1})$ if $c_b \neq 0$, $c_i = 0$, $0 \leq i < b$
- A vector c_0^{l-1} ends in position $e = e(c_0^{l-1})$ if $c_e \neq 0$, $c_i = 0$, $e < i < l$
- One can transform the generator matrix of the code so that its rows start and end in distinct columns (minimum span form)
- Vector c_0^{l-1} is active from position $b(c_0^{l-1})$ till position $e(c_0^{l-1}) - 1$
- Trellis nodes at level i are labeled by the values of information symbols x_j corresponding to generator matrix rows active in position i
- Edges are labeled with $(xG)_i$

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$
Extended Kernel Codes

- **t-th extended**\(^{12}\) kernel code \(\overline{C}_K^{(t)}\) is generated by

\[
\overline{K}^{(t)} = \begin{pmatrix}
K[t] & 1 \\
K[t+1] & 0 \\
\vdots & \vdots \\
K[l-1] & 0
\end{pmatrix}
\]

- Assume that \(y_l\) is erased. Given \(y_0^l\), find most probable codewords \((c_0, \ldots, c_{l-1}, u_t), u_t \in \mathbb{F}_2\) of code \(\overline{C}_K^{(t)}\) generated by \(\overline{K}^{(t)}\)

- Arikan kernel \(K = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\): \(\overline{K}^{(0)} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}\), \(\overline{K}^{(1)} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}\)

Extended Kernel Codes

- t-th extended kernel code $\overline{C}_K(t)$ is generated by

$$\overline{K}^{(t)} = \begin{pmatrix}
K[t] & 1 \\
K[t+1] & 0 \\
\vdots & \vdots \\
K[l-1] & 0
\end{pmatrix}$$

- Assume that y_l is erased. Given y_0^l, find most probable codewords $(c_0, \ldots, c_{l-1}, u_t)$, $u_t \in \mathbb{F}_2$ of code $\overline{C}_K(t)$ generated by $\overline{K}^{(t)}$

- Arikan kernel $K = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$: $\overline{K}^{(0)} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $\overline{K}^{(1)} = (1 \ 1 \ 1)$

Recursive Maximum Likelihood Decoding of Linear Codes: the Idea

- Viterbi algorithm is not optimal in terms of complexity
- Partition the noisy vector y_{l-1}^0 into a number of sections
- Find the most probable codeword subvectors for each section
- Combine short codeword subvectors into longer subvectors
- Do this recursively\(^\text{13}\)

Sectionalized Trellis of a Linear Block Code

- Given a linear code C, let $C_{a,b}$ be its subcode, such that all its codewords have non-zero symbols only in positions $a \leq i < b$

- Let $p_{a,b}(C)$ be a linear code obtained by puncturing all symbols, except those in positions $a \leq i < b$, from codewords of C

- Let $s_{a,b}(C) = p_{a,b}(C_{a,b})$, i.e. a code obtained from C by shortening it on all symbols except those with indices $a \leq i < b$.

- Trellis paths from time a to time b correspond to cosets in $p_{a,b}(C)/s_{a,b}(C)$. The same coset may occur several times in a trellis.

$$C : G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$
Sectionalized Trellis of a Linear Block Code

- Given a linear code C, let $C_{a,b}$ be its subcode, such that all its codewords have non-zero symbols only in positions $a \leq i < b$

- Let $p_{a,b}(C)$ be a linear code obtained by puncturing all symbols, except those in positions $a \leq i < b$, from codewords of C

- Let $s_{a,b}(C) = p_{a,b}(C_{a,b})$, i.e. a code obtained from C by shortening it on all symbols except those with indices $a \leq i < b$.

- Trellis paths from time a to time b correspond to cosets in $p_{a,b}(C)/s_{a,b}(C)$. The same coset may occur several times in a trellis.

$$C : G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$p_{0,4}(C) : G_{0,4}^{(p)} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
Sectionalized Trellis of a Linear Block Code

- Given a linear code \(C \), let \(C_{a,b} \) be its subcode, such that all its codewords have non-zero symbols only in positions \(a \leq i < b \).
- Let \(p_{a,b}(C) \) be a linear code obtained by puncturing all symbols, except those in positions \(a \leq i < b \), from codewords of \(C \).
- Let \(s_{a,b}(C) = p_{a,b}(C_{a,b}) \), i.e. a code obtained from \(C \) by shortening it on all symbols except those with indices \(a \leq i < b \).
- Trellis paths from time \(a \) to time \(b \) correspond to cosets in \(p_{a,b}(C)/s_{a,b}(C) \). The same coset may occur several times in a trellis.
Sectionalized Trellis of a Linear Block Code

- Given a linear code C, let $C_{a,b}$ be its subcode, such that all its codewords have non-zero symbols only in positions $a \leq i < b$.

- Let $p_{a,b}(C)$ be a linear code obtained by puncturing all symbols, except those in positions $a \leq i < b$, from codewords of C.

- Let $s_{a,b}(C) = p_{a,b}(C_{a,b})$, i.e. a code obtained from C by shortening it on all symbols except those with indices $a \leq i < b$.

- Trellis paths from time a to time b correspond to cosets in $p_{a,b}(C)/s_{a,b}(C)$. The same coset may occur several times in a trellis.
Recursive Trellis Decoding of Linear Block Codes

For each coset $D \in p_{a,b}(C)/s_{a,b}(C)$ find the most probable element $l(D)$, and $m(D) = M(l(D), y_a^{b-1})$.

Composite branch table $T_{a,b}$ stores $(l(D), m(D))$.

ML decoding of (n, k) code C: $p_{0,n}(C)/s_{0,n}(C)$ contains a single element, so $T_{0,n}$ contains the solution of the ML decoding problem.

Construction of $T_{a,b}$: $b - a \geq 2$:

1. Let $z : a < z < b - 1$ be a subsection boundary.
2. Consider all combinations of cosets $D' \in p_{a,z}(C)/s_{a,z}(C)$, $D'' \in p_{z,b}(C)/s_{z,b}(C)$, such that $D' \cdot D'' = D \in p_{a,b}(C)/s_{a,b}(C)$, i.e. concatenation of any their representatives is in $D \in p_{a,b}(C)/s_{a,b}(C)$.
3. $m(D) = \max_{D', D''} (m(D') + m(D''))$, $l(D) = l(D') \cdot l(D'')$.

Generator Matrices of Section Codes

- Generator matrix of $p_{a,b}(C)$ is $G_{a,b}^{(p)} = \begin{pmatrix} G_{a,z} & 0 \\ 0 & G_{z,b} \\ G_{a,b}^{(00)} & G_{a,b}^{(01)} \\ G_{a,b}^{(10)} & G_{a,b}^{(11)} \end{pmatrix}$

- Generator matrix of $s_{a,b}(C)$ is $G_{a,b}^{(s)} = \begin{pmatrix} G_{a,z} & 0 \\ 0 & G_{z,b} \\ G_{a,b}^{(00)} & G_{a,b}^{(01)} \end{pmatrix}$

- $G_{a,b}^{(00)}$, $G_{a,b}^{(01)}$ are some $k''_{a,b} \times (z - a)$ and $k''_{a,b} \times (b - z)$ matrices

- $G_{a,b}^{(10)}$, $G_{a,b}^{(11)}$ are some $k'_{a,b} \times (z - a)$ and $k'_{a,b} \times (b - z)$ matrices

- One-to-one correspondence between $vG'_{a,b}$, where $G'_{a,b} = \begin{pmatrix} G_{a,b}^{(10)} & G_{a,b}^{(11)} \end{pmatrix}$, and cosets $D \in p_{a,b}(C)/s_{a,b}(C)$. CBT entries are indexed by $v \in \mathbb{F}_2^{k'_{a,b}}$.

P. Trifonov, G. Trofimiuk (ITMO University)
Merging the Composite Branch Tables

\[CBT_{a,b}[v].m = \max_{w \in \mathbb{F}_2^{k'}} \left(CBT_{a,z}[A].m + CBT_{z,b}[B].m \right), v \in \mathbb{F}_2^{k''} \]

where \(A \) and \(B \) are indices of the cosets \(D' \in p_{a,z}(C)/s_{a,z}(C) \) and \(D'' \in p_{z,b}(C)/s_{z,b}(C) \), such that \((w \ v) \begin{pmatrix} G_{a,b}^{(00)} \\ G_{a,b}^{(10)} \end{pmatrix} \in D' \) and \((w \ v) \begin{pmatrix} G_{a,b}^{(01)} \\ G_{a,b}^{(11)} \end{pmatrix} \in D'' \)

Such values \(A, B \) can be identified from

\[
\begin{pmatrix} A' \\ A \end{pmatrix} \begin{pmatrix} G_{a,z}^{(s)} \\ G_{a,z}^{(r)} \end{pmatrix} = (w \ v) \begin{pmatrix} G_{a,b}^{(00)} \\ G_{a,b}^{(10)} \end{pmatrix} \quad \begin{pmatrix} B' \\ B \end{pmatrix} \begin{pmatrix} G_{z,b}^{(s)} \\ G_{z,b}^{(r)} \end{pmatrix} = (w \ v) \begin{pmatrix} G_{a,b}^{(01)} \\ G_{a,b}^{(11)} \end{pmatrix},
\]

where \(A', B' \) are the vectors not used elsewhere.

The solutions are \(A = (w \ v) \tilde{G}_{a,b} \) and \(B = (w \ v) \tilde{G}_{a,b} \) for some \(\tilde{G}_{a,b} \) and \(\tilde{G}_{a,b} \).

Complexity is \(O(2^{k'_a,b+k''_{a,b}}) \)
Recursive Trellis Processing of Polarization Kernels

- Let S_{l-1}^0 be the input LLR vector, i.e. $S_j = \log \frac{W(0|y_j)}{W(1|y_j)}$

- SC decoding requires computing

$$
S_1^{(i)}(u_0^{i-1}, y_0^{i-1}) = \max_{u_{i+1}^{i-1}} M((u_0^{i-1}, 0, u_{i+1}^{i-1})K, S_0^{l-1}) \quad \max_{u_{i+1}^{i-1}} M((u_0^{i-1}, 1, u_{i+1}^{i-1})K, S_0^{l-1}), \quad i = 0, 1, \ldots, l-1
$$

- Successive decoding in the cosets of extended kernel codes K

- The recursive trellises for cosets of a linear code have the same structure as the recursive trellis of the code itself

- Section codes $p_{a,b}(\overline{C}(t))$, $s_{a,b}(\overline{C}(t))$ may be identical for several phases t
Recursive Binary Kernel Processing

- t-th extended kernel code $\overline{C}^{(t)}$ is generated by $\overline{K}^{(t)} = \begin{pmatrix} K[t] & 1 \\ K[t+1] & 0 \\ \vdots & \vdots \\ K[l-1] & 0 \end{pmatrix}$

- Due to invertibility of kernel K, one has $|p_{0,l}(\overline{C}^{(t)})/s_{0,l}(\overline{C}^{(t)})| = 2$

- Composite branch table for section $[0, l)$, denoted $T_{0,l}^{(t)}$, contains $M((u_{0}^{i-1}, u_{i}, u_{i+1}^{l-1})K, S_{0}^{l-1}), u_{i} \in \mathbb{F}_2$

- No need to store $l(D)$, only correlation discrepancies $m(D)$ should be computed
Reusing CBTs Across Phases

- Cosets $p_{a,b}(\overline{C}^{(t)})/s_{a,b}(\overline{C}^{(t)})$ may be identical for different phases t. Re-use the CBTs from prior phases to obtain further complexity savings.
- Even if section codes are different, the CBT at phase t may be a subvector of the CBT at phase $t-1$.
Example: 2-iterated Arikan Kernel $K_4 = B_{2,2} F_2^2 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

$$K^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$M(i, S_j) = w_{ij} = \begin{cases} 0, & i = \hat{c}_j \\ -|S_j|, & i \neq \hat{c}_j \end{cases}$

$$S_j = \ln \frac{W(0|y_j)}{W(1|y_j)}$$

$p_{0,4}(\overline{C}^{(0)})$ is a $(4, 4, 1)$ code, $s_{0,4}(\overline{C}^{(0)})$ is a $(4, 3, 2)$ code

Coset representatives of $p_{0,4}(\overline{C}^{(0)})/s_{0,4}(\overline{C}^{(0)})$: $(0, 0, 0, 0)$ and $(1, 0, 0, 0)$

$p_{0,2}(\overline{C}^{(0)}), p_{2,4}(\overline{C}^{(0)})$ are $(2, 2, 1)$ codes, $s_{0,2}(\overline{C}^{(0)})$ and $s_{2,4}(\overline{C}^{(0)})$, are $(2, 1, 2)$ codes. Hence,

$$T_{0,2}^{(0)} = \max(w_{00} + w_{01}, w_{10} + w_{11}), \max(w_{10} + w_{01}, w_{00} + w_{11})$$

$$T_{2,4}^{(0)} = \max(w_{02} + w_{03}, w_{12} + w_{13}), \max(w_{12} + w_{03}, w_{02} + w_{13})$$

$$T_{0,4}^{(0)} = \max(T_{0,2}^{(0)}[0] + T_{2,4}^{(0)}[0], T_{0,2}^{(0)}[1] + T_{2,4}^{(0)}[1]), \max(T_{0,2}^{(0)}[0] + T_{2,4}^{(0)}[1], T_{0,2}^{(0)}[1] + T_{2,4}^{(0)}[0])$$
Example: 2-iterated Arikan Kernel $K_4 = B_{2,2} F_2^\otimes 2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

$K^{(0)} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$

$p_{x,x+2}(\overline{C}^{(1)}) = p_{x,x+2}(\overline{C}^{(0)})$ and $s_{x,x+2}(\overline{C}^{(1)}) = s_{x,x+2}(\overline{C}^{(0)})$ for $x \in \{0, 2\}$

$p_{0,4}(\overline{C}^{(1)})$ is a $(4, 3, 2)$ code, while $s_{0,4}(\overline{C}^{(1)})$ is a $(4, 2, 2)$ code generated by two last rows of K_4

Consider the cosets of the latter code given by vectors $(0, 0, 0, 0)$ and $(1, 0, 1, 0)$. Assuming $u_0 = 0$, one obtains

$T_{0,4}^{(1)} = [T_{0,2}^{(0)}[0] + T_{2,4}^{(0)}[0], T_{0,2}^{(0)}[1] + T_{2,4}^{(0)}[1]]$.

Assuming $u_0 = 1$, one obtains

$T_{0,4}^{(1)} = [T_{0,2}^{(0)}[1] + T_{2,4}^{(0)}[0], T_{0,2}^{(0)}[0] + T_{2,4}^{(0)}[1]]$.
Example: 2-iterated Arikan Kernel $K_4 = B_{2,2} F_2^2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

$K^{(0)} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$

$W_{ij} = \begin{cases} 0, & i = \hat{c}_j \\ -|S_j|, & i \neq \hat{c}_j \end{cases}$

$S_j = \ln \frac{W(0|y_j)}{W(1|y_j)}$

$p_{0,2}(\overline{C}^{(2)})$ and $p_{2,4}(\overline{C}^{(2)})$ are $(2,1,2)$ codes, while $s_{0,2}(\overline{C}^{(2)})$ and $s_{2,4}(\overline{C}^{(2)})$ are $(2,0,\infty)$ codes. $p_{0,4}(\overline{C}^{(2)})$ is a $(4,2,2)$ code, $s_{0,4}(\overline{C}^{(2)})$ is a $(4,1,4)$ code. Cosets of $s_{0,4}(\overline{C}^{(2)})$ are given by $(0,0,0,0)$ and $(1,1,0,0)$. For $u_0 = u_1 = 0$ one has

$T_{0,2}^{(2)} = [w_{00} + w_{01}, w_{10} + w_{11}]$; $T_{2,4}^{(2)} = [w_{02} + w_{03}, w_{12} + w_{13}]$

$T_{0,4}^{(2)} = \max(T_{0,2}^{(2)}[0] + T_{2,4}^{(2)}[0], T_{0,2}^{(2)} + T_{2,4}^{(2)}[1]), \max(T_{0,2}^{(2)}[0] + T_{2,4}^{(2)}[1], T_{0,2}^{(2)}[1] + T_{2,4}^{(2)}[0])$.

P. Trifonov, G. Trofimiuk (ITMO University)
Example: 2-iterated Arikan Kernel $K_4 = B_{2,2}F_2^\otimes 2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ IV

$p_{0,2}(\overline{C}^{(3)}) = p_{0,2}(\overline{C}^{(2)}) = p_{2,4}(\overline{C}^{(2)}) = p_{2,4}(\overline{C}^{(3)})$ are (2, 1, 2) codes, while $s_{0,2}(\overline{C}^{(2)})$ and $s_{2,4}(\overline{C}^{(2)})$ are (2, 0, ∞) codes. $p_{0,4}(\overline{C}^{(3)})$ is a (4, 1, 4) code, $s_{0,4}(\overline{C}^{(4)})$ is a (4, 0, ∞) code.

$$T_{0,4}^{(3)} = [T_{0,2}^{(2)}[0] + T_{2,4}^{(2)}[0], T_{0,2}^{(2)}[1] + T_{2,4}^{(2)}[1]].$$
A Simplification

- Consider computing $T = \left[\max(w_{00} + w_{01}, w_{10} + w_{11}), \max(w_{10} + w_{01}, w_{00} + w_{11}) \right]$

- $w_{ij} = \begin{cases} 0, & i = \hat{c}_j \\ -|S_j|, & i \neq \hat{c}_j, \end{cases}$

- \hat{c}_j is the hard decision corresponding to LLR $S_j = \ln \frac{W(0|y_j)}{W(1|y_j)}$

- The final result of kernel processing does not change if the same value is subtracted from all CBT entries at any section

- $\tilde{T} = \left[\max(w_{00} + w_{01}, w_{10} + w_{11}) - w_{10} - w_{11}, \max(w_{10} + w_{01}, w_{00} + w_{11}) - w_{10} - w_{11} \right]$

- $= \left[\max(w_{00} - w_{10} + w_{01} - w_{11}, 0), \max(w_{01} - w_{11}, w_{00} - w_{10}) \right]$

- $= \left[\max(S_0 + S_1, 0), \max(S_1, S_0) \right]$

- $\hat{T} = \left[\max(S_0 + S_1, 0) - \max(S_1, S_0), 0 \right] = [\text{sgn}(S_0) \text{sgn}(S_1) \min(|S_0|, |S_1|), 0]$

- Complexity: 6 operations \rightarrow 1 operation
Yet Another Simplification

\[T_{0,4}^{(1)} = \begin{cases} [T_{0,2}^{(0)}[0] + T_{2,4}^{(0)}[0], T_{0,2}^{(0)}[1] + T_{2,4}^{(0)}[1]], & u_0 = 0 \\ [T_{0,2}^{(0)}[1] + T_{2,4}^{(0)}[0], T_{0,2}^{(0)}[0] + T_{2,4}^{(0)}[1]], & u_0 = 1 \end{cases} \]

The final result of kernel processing does not change if the same value is subtracted from all CBT entries at any section

\[\hat{T}_{0,4}^{(1)} = \begin{cases} [T_{0,2}^{(0)}[0] - T_{0,2}^{(0)}[1] + T_{2,4}^{(0)}[0] - T_{2,4}^{(0)}[1], 0], & u_0 = 0 \\ [T_{0,2}^{(0)}[1] - T_{0,2}^{(0)}[0] + T_{2,4}^{(0)}[0] - T_{2,4}^{(0)}[1], 0], & u_0 = 1 \end{cases} \]

\[\hat{T}_{0,4}^{(1)} = [(−1)^{u_1} (T_{0,2}^{(0)}[0] - T_{0,2}^{(0)}[1]) + (T_{2,4}^{(0)}[0] - T_{2,4}^{(0)}[1]), 0] \]

If we know that \(T_{a,b}^{(0)}[1] = 0 \), this simplifies to

\[\hat{T}_{0,4}^{(1)} = [(−1)^{u_1} T_{0,2}^{(0)}[0] + T_{2,4}^{(0)}[0], 0] \]
Example: 2-iterated Arikan Kernel $K_4 = B_{2,2}F_2^{\otimes 2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

- For the Arikan matrix $B_{2,m}F_2^{\otimes m}$, changes of section codes follow the same pattern as in the successive cancellation algorithm.
- Min-Sum SC algorithm for an Arikan polar code of length 2^m is a special case of the recursive trellis processing algorithm for kernel $B_{2,m}F_2^{\otimes m}$.
Successive Maximization

\[T_{a,b}[v].m = \max_{w \in \mathbb{F}_2^{k',a,b}} (T_{x,z}[A].m + T_{z,y}[B].m) \]

\[= \max_{w_{k',i,a,b}^{-1}} \cdots \max_{w_1} \max_{w_0} (T_{x,z}[A].m + T_{z,y}[B].m) , \]

where \(A = (w \ v) \tilde{G}_{a,b} \) and \(B = (w \ v) \tilde{G}_{a,b} \)

- Keep intermediate results of maximization
- Re-use saved intermediate results at later phases
Sorted Arikan Kernel: Maximization Forest

\[K_8 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix} \]

has scaling exponent 3.577.

Trellis for \(K^{(3)} \)

Trellis for \(K^{(4)} \)
Sorted Arikan Kernel: Maximization Forest

\[K_8 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \]

has scaling exponent 3.577
Sorte Arikan Kernel K_8: Recursive Trellises for Section Codes
Special Trellises

<table>
<thead>
<tr>
<th>Type</th>
<th>Trellis</th>
<th>Simplified expression</th>
<th>Complexity M_j</th>
</tr>
</thead>
</table>
| 1 | ![Trellis 1](image) | $T_{a,b}[0] = \text{sgn}(T_{a,z}[0]) \text{sgn}(T_{z,b}[0]) \min(|T_{a,z}[0]|, |T_{z,b}[0]|)$
$T_{a,b}[1] = 0$ | 1 |
| 2 | ![Trellis 2](image) | $T_{a,b}[0] = (-1)^{c'} T_{a,z}[0] + (-1)^{c''} T_{z,b}[0]$
$T_{a,b}[1] = 0$ | 1 |
| 3 | ![Trellis 3](image) | Let \hat{c}_0, \hat{c}_1 be the hard decisions for $T_{a,z}[0], T_{z,b}[1]$
$T_{a,b}[\hat{c}_0, \hat{c}_1] = 0; \ T_{a,b}[1 \oplus \hat{c}_0, 1 \oplus \hat{c}_1] = -|T_{a,z}[0]| - |T_{z,b}[0]|$
$T_{a,b}[1 \oplus \hat{c}_0, \hat{c}_1] = -|T_{a,z}[0]|; \ T_{a,b}[\hat{c}_0, 1 \oplus \hat{c}_1] = -|T_{z,b}[0]|$ | 1 |
Decoding polar codes with large kernels

Recursive trellis processing

Complexity

Total complexity of kernel processing $C = \sum_{i=0}^{l-1}(\delta_i + c_{i,0,l})$

- $\delta_i \in \{0, 1\}$ is the complexity of computing the final LLR from the obtained CBT
- Complexity of construction of the CBT for section $[a, b)$ at phase i

$$c_{i,a,b} = \begin{cases}
 m_{iab}, & \text{if CBTs for subsections can be reused} \\
 m_{iab} + c_{i,a,z} + c_{i,z,b}, & \text{otherwise},
\end{cases}$$

- Complexity of computations at section $[a, b)$ on phase i

$$m_{ixy} = \begin{cases}
 0, & \text{if forest reuse is possible} \\
 M_j, & \text{if type-} j \text{ special trellis is encountered}, \\
 2^{k'_{iab}+k''_{iab}-f_{iab}} + 2^{k'_{iab}}(2^{k''_{iab}-f_{iab}} - 1), & \text{otherwise},
\end{cases}$$

- $f_{iab} \in \{0, 1\}$ shows if an extra simplification is possible
Optimizing Sectionalization

- The complexity strongly depends on sectionalization, i.e. selection of $z : a < z < b$
- A dynamic programming algorithm with complexity $O(l^4)$ for finding an optimal sectionalization
- Example: 24×24 kernel
 - Uniform sectionalization ($z = (a + b)/2$): 715 summations, 449 comparisons
 - Optimized: 250 summations and 124 comparisons
 - $[0, 24)$ splits into $[0, 16)$ and $[16, 24)$ with further uniform sectionalization
Complexity of Kernel Processing

<table>
<thead>
<tr>
<th>Kernel K_i</th>
<th>$E(K_i)$</th>
<th>$\mu(K_i)$</th>
<th>State of the art</th>
<th>Recursive trellis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Method</td>
<td>Add</td>
</tr>
<tr>
<td>$K_{16}B_4$</td>
<td>0.51828</td>
<td>3.45</td>
<td>window15</td>
<td>95</td>
</tr>
<tr>
<td>$K_{32}B_5$</td>
<td>0.521936</td>
<td>3.417</td>
<td>window</td>
<td>297</td>
</tr>
<tr>
<td>K^r_{32}</td>
<td>0.52194</td>
<td>3.42111</td>
<td>Viterbi</td>
<td>4536</td>
</tr>
<tr>
<td>K^{bch}_{32}</td>
<td>0.53656</td>
<td>3.1221</td>
<td>Viterbi</td>
<td>99745</td>
</tr>
<tr>
<td>$K^{enbch'}_{32}$</td>
<td>0.53656</td>
<td>3.1221</td>
<td>window</td>
<td>2864420</td>
</tr>
<tr>
<td>K^*_{20}</td>
<td>0.506169</td>
<td>3.43827</td>
<td>Viterbi</td>
<td>7524</td>
</tr>
<tr>
<td>K_{20}</td>
<td>0.49943</td>
<td>3.64931</td>
<td>Viterbi</td>
<td>1866</td>
</tr>
<tr>
<td>K^*_{24}</td>
<td>0.51577</td>
<td>3.3113</td>
<td>Viterbi</td>
<td>9922</td>
</tr>
<tr>
<td>K_{24}</td>
<td>0.502911</td>
<td>3.61903</td>
<td>Viterbi</td>
<td>2102</td>
</tr>
</tbody>
</table>

- **Pipelined implementation**

- **Latency $O(\log_2 l)$**

Kernel Processing

- Successful cancellation of \((n = l^m, k)\) polar code with polarizing transform \(K \otimes m\) requires computing the probabilities \(W_m(i)(u_i^0|y_0^{n-1})\) for each \(i \in [n]\)
 - For non-frozen symbol \(u_i\) one should compute \(W_m(i)(\hat{u}_0^{i-1}.0|y_0^{n-1})\) and \(W_m(i)(\hat{u}_0^{i-1}.1|y_0^{n-1})\)
 - \(\hat{u}_0^{i-1}\) are already determined by SC decoder
- The vector \(u_0^i\) is referred to as a path
- \(W_m(i)(u_i^0|y_0^{n-1})\) is computed recursively
- We consider computing the probabilities \(W_1(i)(u_i^0|y_{i-1}^{l-1})\) of only one layer of polarizing transform \(K\)
The Idea of Window Processing Algorithm

We consider processing of \(l \times l, l = 2^t \), kernel \(K \)

- Let \(\tilde{W}_t^{(i)}(v_0^i|y_0^{l-1}) \) be a probability of input symbols \(v_0^i \) for Arikan kernel \(F_2 \otimes t \)

The main idea of window processing is to compute \(W_1^{(\phi)}(u_0^\phi|y_0^{l-1}) \) using several values \(\tilde{W}_t^{(i)}(v_0^i|y_0^{l-1}) \) for some \(i \geq \phi \)

- **Motivation:** the probabilities \(\tilde{W}_t^{(i)}(v_0^i|y_0^{l-1}) \) are very easy to calculate

\[
\tilde{W}_\lambda^{(2\psi)}(u_0^{2\psi}|y_0^{2\lambda-1}) = \sum_{u_2^{\psi+1} \in F_2} \tilde{W}_\lambda^{(\psi)}(u_0^{2\psi+1} + u_0^{2\psi+1} | y_0^{2\lambda-1}) \tilde{W}_\lambda^{(\psi)}(u_0^{2\psi+1} | y_0^{2\lambda-1})
\]
\[
\tilde{W}_\lambda^{(2\psi+1)}(u_0^{2\psi+1}|y_0^{2\lambda-1}) = \tilde{W}_\lambda^{(\psi)}(u_0^{2\psi+1} + u_0^{2\psi+1} | y_0^{2\lambda-1}) \tilde{W}_\lambda^{(\psi)}(u_0^{2\psi+1} | y_0^{2\lambda-1})
\]
Transition Matrix

We need to establish the relation between the input vectors u and v of polarizing transforms K and $F_2^\otimes t$ respectively

- We can write $TK = F_2^\otimes t$, where T is referred to as the transition matrix.
- $c_0^{l-1} = v_0^{l-1} F_2^\otimes t = u_0^{l-1} K$

This implies that $u_0^{l-1} = v_0^{l-1} T$, or

$$u_\phi = \sum_{s=0}^{l-1} v_s T[s, \phi] = \sum_{s=0}^{\tau_\phi} v_s$$

τ_ϕ denotes the position of the last non-zero symbol in the ϕ-th column of T

- We will also need $h_\phi = \max_{0 \leq \phi' \leq \phi'} \tau_{\phi'}$
Transition Matrix

We need to establish the relation between the input vectors u and v of polarizing transforms K and $F_2^\otimes t$ respectively

- We can write $TK = F_2^\otimes t$, where T is referred to as the transition matrix.
- $c_0^{l-1} = v_0^{l-1} F_2^\otimes t = u_0^{l-1} K$

This implies that $u_0^{l-1} = v_0^{l-1} T$, or

$$u_\phi = \sum_{s=0}^{l-1} v_s T[s, \phi] = \sum_{s=0}^{\tau_\phi} v_s$$

- τ_ϕ denotes the position of the last non-zero symbol in the ϕ-th column of T
- We will also need $h_\phi = \max_{0 \leq \phi' \leq \phi} \tau_\phi'$
Relations Between Input vectors

We also need the expression for each component of v_0^l,

$$v_{\tau_\phi} = u_\phi + \sum_{s=0}^{\tau_\phi - 1} v_s$$ \hspace{1cm} (2)

Some τ_ϕ might be equal, so, we transform (2)

1. $\Theta' = (T \quad I)$, T is obtained by transposing T^{-1} and reversing the order of columns
2. Transform Θ' into a minimum-span form Θ, ϕ-th row starts in ϕ and ends in z_ϕ column
3. Compute

$$u_\phi = \sum_{s=0}^{\phi - 1} u_s \Theta_{l-1-\phi, l-1-s} + \sum_{j=0}^{\omega_\phi} v_j \Theta_{l-1-\phi, l+j}$$

$$\omega_\phi = z_{l-1-\phi} - l$$

where $\omega_\phi = z_{l-1-\phi} - l$
Example of Transition Matrix

\[
K'_{16} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

\[
F_2^4 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Example of Transition Matrix

\[
T = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
8 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
9 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
\tau = \{0, 1, 2, 4, 8, 9, 10, 3, 12, 5, 6, 7, 11, 13, 14, 15\}
\]

\[
h = \{0, 1, 2, 4, 8, 9, 10, 10, 12, 12, 12, 12, 13, 13, 14, 15\}
\]

\[
\begin{align*}
&u_0 = v_0 \\
&u_1 = v_1 \\
&u_2 = v_2 \\
&u_3 = v_4 \\
&u_4 = v_8 \\
&u_5 = v_6 \oplus v_9 \\
&u_6 = v_5 \oplus v_6 \oplus v_{10} \\
&u_7 = v_3 \\
&u_8 = v_{12} \\
&u_9 = v_5 \\
&u_{10} = v_6 \\
&u_{11} = v_7 \\
&u_{12} = v_{11} \\
&u_{13} = v_{13} \\
&u_{14} = v_{14} \\
&u_{15} = v_{15}
\end{align*}
\]
Decoding Window

- We are able to reconstruct u_0^ϕ from $v_0^{h_\phi}$
- If $h_\phi > \phi$, then some values of $v_0^{h_\phi}$ are independent from u_0^ϕ and, therefore, unknown
- By *decoding window* we denote the set

$$D_\phi = [h_\phi + 1] \setminus \{\omega_0, \omega_1, \ldots, \omega_\phi\}$$

of indices of independent (from u_0^ϕ) components of $v_0^{h_\phi}$

$$W_1^{(\phi)}(u_0^\phi | y_0^{l-1}) = \sum_{v_0^{h_\phi} \in Z^{(u_0^\phi)}} \tilde{W}_t^{(h_\phi)}(v_0^{h_\phi} | y_0^{l-1})$$

- $Z^{(b)}_\phi$ is the set of vectors $v_0^{h_\phi}$, such as $v_s \in \mathbb{F}_2$, $s \in D_\phi$, the values of $v_t, t \in [h_\phi + 1] \setminus D_\phi$, are obtained according to the transition matrix T and $u_\phi = b$
- $|D_\phi| = h_\phi - \phi$
Decoding Window

- We are able to reconstruct u_0^ϕ from $v_0^{h_\phi}$.
- If $h_\phi > \phi$, then some values of $v_0^{h_\phi}$ are independent from u_0^ϕ and, therefore, unknown.
- By *decoding window* we denote the set

$$D_\phi = [h_\phi + 1] \setminus \{\omega_0, \omega_1, \ldots, \omega_\phi\}$$

of indices of independent (from u_0^ϕ) components of $v_0^{h_\phi}$.

$$W_1^{(\phi)}(u_0^\phi|y_0^{l-1}) = \sum_{v_0^{h_\phi} \in \mathcal{Z}_\phi^{(u_\phi)}} \tilde{W}_t^{(h_\phi)}(v_0^{h_\phi}|y_0^{l-1})$$

- $\mathcal{Z}_\phi^{(b)}$ is the set of vectors $v_0^{h_\phi}$, such as $v_s \in \mathbb{F}_2$, $s \in D_\phi$, the values of v_t, $t \in [h_\phi + 1] \setminus D_\phi$, are obtained according to the transition matrix T and $u_\phi = b$.
- $|D_\phi| = h_\phi - \phi$.
Decoding Window. Example

<table>
<thead>
<tr>
<th>ϕ</th>
<th>K'_{16}</th>
<th>u_ϕ</th>
<th>D_ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>v_0</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>v_1</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>v_2</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>v_4</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>v_8</td>
<td>${3, 5, 6, 7}$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$v_6 \oplus v_9$</td>
<td>${3, 5, 6, 7}$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$v_5 \oplus v_6 \oplus v_{10}$</td>
<td>${3, 5, 6, 7}$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>v_3</td>
<td>${5, 6, 7}$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>v_{12}</td>
<td>${5, 6, 7, 11}$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>v_5</td>
<td>${6, 7, 11}$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>v_6</td>
<td>${7, 11}$</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>v_7</td>
<td>${11}$</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>v_{11}</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>v_{13}</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>v_{14}</td>
<td>{}</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>v_{15}</td>
<td>{}</td>
<td></td>
</tr>
</tbody>
</table>
Probability Computation Example

Consider window processing of $\phi = 6$ of K_{16}' kernel

$$W_1^{(6)}(u_0^6 | y_0^{15}) = \sum_{u_7^{15} \in \mathbb{F}_2^9} W_1^{(15)}(u_0^{15} | y_0^{15}) = \sum_{u_7^{15} \in \mathbb{F}_2^9} \prod_{i=0}^{n-1} W((u_0^{15}K_{16}')_i | y_0^{15})$$

- We have the constraint $u_6 = v_5 \oplus v_6 \oplus v_{10} \Rightarrow \tau_6 = h_6 = 10 \Rightarrow$ we should consider paths v_0^{10} and their probabilities $\tilde{W}_4^{(10)}(v_0^{10} | y_0^{15})$
- How to construct paths v_0^{10} from already estimated by SC decoding symbols \hat{u}_0^5?
 - $v_0 = \hat{u}_0$, $v_1 = \hat{u}_1$, $v_2 = \hat{u}_2$, $v_4 = \hat{u}_3$, $v_8 = \hat{u}_4$
 - v_3, v_5, v_6, v_7 are not defined by $\hat{u}_0^5 \Rightarrow$ decoding window $D_6 = \{3, 5, 6, 7\}$
 - We should consider all $(v_3, v_5, v_6, v_7) \in \mathbb{F}_2^4$
 - For given values v_5, v_6 and u_6, we have $v_9 = \hat{u}_5 \oplus v_6$ and $v_{10} = u_6 \oplus v_5 \oplus v_6$
Probability Computation Example

Set of considered Arikan SC paths ν_0^{10}:

$$\mathcal{Z}_6^{(u_6)} = \left\{ [\hat{u}_0, \hat{u}_1, \hat{u}_2, 0, \hat{u}_3, 0, 0, \hat{u}_4, \hat{u}_5, u_6], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 0, \hat{u}_3, 0, 1, \hat{u}_4, \hat{u}_5, u_6 \oplus 1], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 0, \hat{u}_3, 1, 0, 0, \hat{u}_4, \hat{u}_5 \oplus 1, u_6 \oplus 1], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 0, \hat{u}_3, 1, 1, 0, \hat{u}_4, \hat{u}_5 \oplus 1, u_6 \oplus 1], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 1, \hat{u}_3, 0, 0, 0, \hat{u}_4, \hat{u}_5, u_6], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 1, \hat{u}_3, 0, 0, 1, \hat{u}_4, \hat{u}_5, u_6], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 1, \hat{u}_3, 0, 1, 0, \hat{u}_4, \hat{u}_5 \oplus 1, u_6 \oplus 1], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 1, \hat{u}_3, 0, 1, 1, \hat{u}_4, \hat{u}_5 \oplus 1, u_6 \oplus 1], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 1, \hat{u}_3, 1, 0, 0, \hat{u}_4, \hat{u}_5 \oplus 1, u_6 \oplus 1], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 1, \hat{u}_3, 1, 1, 0, \hat{u}_4, \hat{u}_5 \oplus 1, u_6 \oplus 1], [\hat{u}_0, \hat{u}_1, \hat{u}_2, 1, \hat{u}_3, 1, 1, 1, \hat{u}_4, \hat{u}_5 \oplus 1, u_6 \oplus 1] \right\}$$

Subchannel probability:

$$W_1^{(6)}(u_0^6|y_0^{15}) = \sum_{\nu_0^{10} \in \mathcal{Z}_6^{(u_6)}} \tilde{W}_4^{(10)}(\nu_0^{10}|y_0^{15})$$

For one K'_{16} probability we need to calculate 16 probabilities for Arikan matrix $F_2^\otimes 4$.
Log-Likelihood Ratios for Arikan Matrix

- Approximate bit subchannel probabilities
 \[\tilde{\mathcal{W}}_t^{(i)}(v^i_0|y^{l-1}) = \max_{v^{l-1}_{i+1} \in \mathbb{R}^{l-i-1}_2} \tilde{\mathcal{W}}_t^{(i-1)}(v^{l-1}_0|y^{l-1}) \]

- Modified log-likelihood ratios
 \[\tilde{S}^{(i)}_t(v^{i-1}_0, y^{l-1}) = \log \frac{\tilde{\mathcal{W}}_t^{(i)}(v^{i-1}_0.0|y^{l-1})}{\tilde{\mathcal{W}}_t^{(i)}(v^{i-1}_0.1|y^{l-1})} \]

- Recursive computation
 \[\tilde{S}^{(2i)}_{\lambda}(v^{2i-1}_0, y^{N-1}_0) = Q(a, b) = \text{sgn}(a) \text{sgn}(b) \min(|a|, |b|) \]
 \[\tilde{S}^{(2i+1)}_{\lambda}(v^{2i}_0, y^{N-1}_0) = P(a, b, v_{2i}) = (-1)^v_{2i} a + b, \]
 \[a = \tilde{S}^{(i)}_{\lambda-1}(v^{2i-1}_{0,even} \oplus v^{2i-1}_{0,odd}, y^{N-1}_{0,even}), b = \tilde{S}^{(i)}_{\lambda-1}(v^{2i-1}_{0,odd}, y^{N-1}_{0,odd}) \]
Path Score

- The log-likelihood of a path v_0^i can be obtained

$$R_y(v_0^i) = R(v_0^i | y_0^{l-1}) = \log \tilde{W}_t^{(i)}(v_0^i | y_0^{l-1}) = R_y(v_0^{i-1}) + \tau \left(\tilde{S}_t^{(i)}(v_0^{i-1}, y_0^{l-1}), v_i \right),$$

where $R_y(\epsilon)$ can be set to 0, ϵ is an empty sequence, and

$$\tau(S, v) = \begin{cases} 0, & \text{sgn}(S) = (-1)^v \\ -|S|, & \text{otherwise} \end{cases}$$

- The intermediate LLRs $\tilde{S}_\lambda^{(i)} = \tilde{S}_\lambda^{(i)}(v_0^{i-1} | y_0^{N-1})$ can be reused during the computation of $\tilde{S}_t^{(i)}$ for different i.
Illustration of LLR Computation

Phase 0

\[\tilde{S}_0^{(0)} \]

\[\tilde{S}_1^{(0)} \]

\[\tilde{S}_2^{(0)} \]

\[\tilde{S}_3^{(0)} \]

Phase 1

\[\tilde{S}_2^{(0)} \]

\[\tilde{S}_3^{(1)} \]

\[v_0 \rightarrow P \]
Illustration of LLR Computation

Phase 2

\[\tilde{S}_1^{(0)} \]
\[\tilde{S}_2^{(1)} \]
\[\tilde{S}_3^{(2)} \]

\[v_0^1 F_2 \rightarrow P \]

Phase 3

\[\tilde{S}_2^{(1)} \]
\[\tilde{S}_3^{(3)} \]

\[v_2 \rightarrow P \]
Window Processing in LLR domain

Approximate probabilities

\[W_{1}^{(\phi)}(u_{0}^{\phi}|y_{0}^{l-1}) = \max_{v_{0}^{h_{\phi}} \in Z_{\phi}^{(u_{\phi})}} W_{1}^{(h_{\phi})}(v_{0}^{h_{\phi}}|y_{0}^{l-1}) \]

Log likelihood ratios

\[S_{1}^{(\phi)}(u_{0}^{\phi-1}, y_{0}^{l-1}) = \max_{v_{0}^{h_{\phi}} \in Z_{\phi}^{(0)}} R_{y}(v_{0}^{h_{\phi}}) - \max_{v_{0}^{h_{\phi}} \in Z_{\phi}^{(1)}} R_{y}(v_{0}^{h_{\phi}}) \]

Summary of window processing:

- Compute the transition matrix \(T \) offline
- For each phase: compute \(|Z_{\phi}^{(0)}| + |Z_{\phi}^{(1)}| = 2|D_{\phi}|+1\) paths scores \(R_{y}(v_{0}^{h_{\phi}}) \), two maximums and obtain \(S_{1}^{(\phi)}(u_{0}^{\phi-1}, y_{0}^{l-1}) \)
In many cases we can reuse intermediate LLRs $\tilde{S}^{(i)}_\chi$ arising during the for of $R_y(v_0^{h_\phi})$ corresponding to all $v_0^{h_\phi}$ generated by the decoding window.

For instance, consider $h_{\phi-1} = 8$, $h_\phi = 9$, to compute $\tilde{S}^{(9)}_t(v_0^8, y_0^{l-1})$ at phase $h_\phi = 9$ we can reuse intermediate LLRs $S^{(4)}_{t-1}$ obtained at the phase $h_{\phi-1} = 8$.

Joint computation of path scores $R_y(v_0^{h_\phi})$.

It is possible to reuse results of path scores maximization.

In case of $h_\phi = h_{\phi+1} = \cdots = h_{\phi+q}$ paths scores $R_y(v_0^{h_\phi})$ remains the same. One can use maximization forest to obtain $S^{(\phi)}_1(u_0^{\phi-1}, y_0^{l-1}), S^{(\phi+1)}_1(u_0^{\phi}, y_0^{l-1}), \cdots, S^{(\phi+q-)}_1(u_0^{\phi+q-1}, y_0^{l-1})$.

In case of $h_{\phi+1} = h_\phi + 1$ (which implies that $D_{\phi+1} = D_\phi$) one half of computed $R_y(v_0^{h_\phi})$ remains the same.
The Idea of Identification of Common Subexpressions

In window processing we need to compute several F_2^t LLRs
The Idea of Identification of Common Subexpressions

Some of intermediate LLRs $\tilde{S}^{(i)}_\lambda$ can be the same for different paths.
The Idea of Identification of Common Subexpressions

We can compute only **unique** intermediate LLRs $\tilde{S}^{(i)}_\lambda$

...

28 operations

12 operations
Arithmetic Complexity of Window Processing

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\phi'_{16}, E = 0.51828, \mu = 3.346$</th>
<th>$\phi'_{16}, E = 0.51828, \mu = 3.45$</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_ϕ</td>
<td>D_ϕ</td>
<td>Cost</td>
</tr>
<tr>
<td>0</td>
<td>v_0</td>
<td>{}</td>
</tr>
<tr>
<td>1</td>
<td>v_1</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>v_2</td>
<td>{}</td>
</tr>
<tr>
<td>3</td>
<td>v_4</td>
<td>{3}</td>
</tr>
<tr>
<td>4</td>
<td>v_8</td>
<td>{3,5,6,7}</td>
</tr>
<tr>
<td>5</td>
<td>$v_6 \oplus v_9$</td>
<td>{3,5,6,7}</td>
</tr>
<tr>
<td>6</td>
<td>$v_5 \oplus v_6 \oplus v_{10}$</td>
<td>{3,5,6,7}</td>
</tr>
<tr>
<td>7</td>
<td>v_3</td>
<td>{5,6,7}</td>
</tr>
<tr>
<td>8</td>
<td>v_{12}</td>
<td>{5,6,7,11}</td>
</tr>
<tr>
<td>9</td>
<td>v_5</td>
<td>{6,7,11}</td>
</tr>
<tr>
<td>10</td>
<td>v_6</td>
<td>{7,11}</td>
</tr>
<tr>
<td>11</td>
<td>v_7</td>
<td>{11}</td>
</tr>
<tr>
<td>12</td>
<td>v_{11}</td>
<td>{}</td>
</tr>
<tr>
<td>13</td>
<td>v_{13}</td>
<td>{}</td>
</tr>
<tr>
<td>14</td>
<td>v_{14}</td>
<td>{}</td>
</tr>
<tr>
<td>15</td>
<td>v_{15}</td>
<td>{}</td>
</tr>
</tbody>
</table>

The source code is available at https://github.com/gtrofimiuk/SCLKernelDecoder
The source code is available at https://github.com/gtrofimiuk/SCLKernelDecoder

Motivation
- Arikan polar codes and their limitations
- What is possible with large kernels?

Decoding polar codes with large kernels
- Successive cancellation decoding
- Kernel processing (marginalization)
- Trellis representation of linear codes
- Recursive trellis processing
- Window processing

Design of polar codes
- Finding good polarization kernels
- Code design for the BEC
- Code design for the AWGN channel
- Codes with Improved Distance Properties

Conclusions
Polarization Properties

Arikan kernel K_2
- Rate of polarization: $E(K_2) = 0.5$
- Scaling exponent: $\mu(BEC, K_2) = 3.627$

Asymptotic results
- There exist $l \times l$ kernels K_l with rate of polarization $E(K_l) \xrightarrow{l \to \infty} 1$
- There exist kernels with scaling exponent $\mu(BEC, K_l) \xrightarrow{l \to \infty} 2$

Our goal is to obtain kernels of different lengths with good polarization properties
Performance of (1024, 512) Polar Codes with Different Kernels

- 2x2 Arikan kernel F_2, $E = 0.5$, $\mu = 3.627$
- 32x32 K_{32} kernel (for window processing), $E = 0.522$, $\mu = 3.417$
- 32x32 Convolutional polar kernel Q_{32}, $E = 0.522$, $\mu = 3.382$
- 32x32 Sorted convolutional polar kernel $Q_{32,s}$, $E = 0.522$, $\mu = 3.153$
- 32x32 BCH kernel B_{32}, $E = 0.537$, $\mu = 3.122$
Performance of (4096, 2048) Polar Codes with Different Kernels

![Graph showing FER vs. Eb/N0 for different kernels](image-url)
Kernel Codes

Consider $l \times l$ kernel K

- $\langle g_1, g_2, \ldots, g_k \rangle$ is a linear block code generated by the vectors g_1, g_2, \ldots, g_k
- $K[i]$ is an i-th row of a matrix K
- $[l]$ denotes the set of n integers $\{0, 1, \ldots, l - 1\}$
- Let $C_K^{(\phi)} = \langle K[\phi], \ldots, K[l - 1] \rangle$, $\phi \in [l]$, be an $(l, l - \phi, d_K^{(\phi)})$ kernel code
- $C_K^{(l)}$ contains only zero codeword
Computing the Rate of Polarization

- \(d_H(a, b)\) is a Hamming distance between the vectors \(a\) and \(b\)
- \(d_H(b, C) = \min_{c \in C} d_H(b, c)\) is a minimal distance between vector \(b\) and code \(C\)

Partial Distances (PD)

\[
D_i = d_H(K[\phi], C_K^{(\phi+1)}), \phi \in [l - 1], \\
D_{l-1} = d_H(K[l - 1], 0)
\]

Rate of Polarization:

\[
E(K) = \frac{1}{l} \sum_{i=0}^{l-1} \log_l D_i
\]

The vector \(D\) is referred to as a partial distance profile (PDP)
Some Methods of Kernel Construction

<table>
<thead>
<tr>
<th>l</th>
<th>Exhaustive search(^{19})</th>
<th>Shortened BCH kernels(^{20})</th>
<th>Code decomposition(^{21})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>(\mu)</td>
<td>E</td>
</tr>
<tr>
<td>17</td>
<td>0.49361</td>
<td>3.573</td>
<td>0.49175</td>
</tr>
<tr>
<td>18</td>
<td>0.50052</td>
<td>3.528</td>
<td>0.48968</td>
</tr>
<tr>
<td>19</td>
<td>0.50054</td>
<td>3.444</td>
<td>0.48742</td>
</tr>
<tr>
<td>20</td>
<td>0.50617</td>
<td>3.439</td>
<td>0.49659</td>
</tr>
<tr>
<td>21</td>
<td>0.50868</td>
<td>3.374</td>
<td>0.48705</td>
</tr>
<tr>
<td>22</td>
<td>0.51181</td>
<td>3.353</td>
<td>0.49445</td>
</tr>
<tr>
<td>23</td>
<td>0.51213</td>
<td>3.372</td>
<td>0.50071</td>
</tr>
<tr>
<td>24</td>
<td>0.51577</td>
<td>3.3113</td>
<td>0.50445</td>
</tr>
<tr>
<td>25</td>
<td>0.51683</td>
<td>3.281</td>
<td>0.50040</td>
</tr>
<tr>
<td>26</td>
<td>0.51921</td>
<td>3.256</td>
<td>0.50470</td>
</tr>
<tr>
<td>27</td>
<td>0.51935</td>
<td>3.278</td>
<td>0.50836</td>
</tr>
</tbody>
</table>

Motivation of the Exhaustive Search Algorithm

How to obtain kernels of size l with the best polarization properties?

1. **Polarization properties**
 - Rate of polarization E
 - Scaling exponent μ

2. **Rate of polarization**
 - Independent of channel
 - Can be *explicitly* computed

E depends on **partial distances** only

- We can search for $l \times l$ kernels with given **partial distance profile**
Example: 5×5 Kernel with Partial Distances $[1, 2, 2, 2, 4]$
Example: 5×5 Kernel with Partial Distances $[1, 2, 2, 2, 4]$
Example: 5×5 Kernel with Partial Distances $[1, 2, 2, 2, 4]$

\[
\begin{align*}
\phi &= 4 & \text{PD} &= 4 \\
D_4 &= 4 & \\
\begin{pmatrix}
????? \\
????? \\
????? \\
11110
\end{pmatrix} & \\
\end{align*}
\]

\[
\begin{align*}
\phi &= 3 & \text{PD} &= 2 \\
D_3 &= 2 & \\
\begin{pmatrix}
????? \\
????? \\
10100 \\
11110
\end{pmatrix} & \\
\end{align*}
\]

\[
\begin{align*}
\phi &= 2 & \text{PD} &= 2 \\
D_2 &= 1 & \\
\begin{pmatrix}
????? \\
????? \\
????? \\
11000 \\
10100 \\
11110
\end{pmatrix} & \\
\end{align*}
\]

\[
\begin{align*}
\phi &= 1 & \text{PD} &= 2 \\
D_1 &= 1 & \\
\begin{pmatrix}
????? \\
????? \\
00101 \\
10100 \\
11110
\end{pmatrix} & \\
\end{align*}
\]

\[
\begin{align*}
\phi &= 0 & \text{PD} &= 1 \\
D_0 &= 1 & \\
\begin{pmatrix}
00001 \\
00111 \\
00101 \\
01010 \\
11110
\end{pmatrix} & \\
\end{align*}
\]
Example: 5×5 Kernel with Partial Distances $[1, 2, 2, 2, 4]$
Example: 5×5 Kernel with Partial Distances $[1, 2, 2, 2, 4]$
Example: 5×5 Kernel with Partial Distances $[1, 2, 2, 2, 4]$
Example: 5×5 Kernel with Partial Distances $[1, 2, 2, 2, 4]$
Example: 5×5 Kernel with Partial Distances $[1, 2, 2, 2, 4]$
The Basic Algorithm

Algorithm 1: BasicKernelSearch(K, ϕ, M, D)

1. if $\phi = -1$ then
 2. return K;
3. for each $v \in M_\phi$ do
 4. $d \leftarrow d_H(v, C_{K}^{\phi+1})$;
 5. if $d = D_\phi$ then
 6. $K[\phi] \leftarrow v$;
 7. $\hat{K} \leftarrow$ BasicKernelSearch($K, \phi-1, M, D$);
 8. if $\hat{K} \neq 0^{l \times l}$ then
 9. return \hat{K};
10. return $0^{l \times l}$;

- M_ϕ is a set of candidate rows
- For each returned K we have $K[\phi] \in M_\phi$

Algorithm 1 is a **depth-first search** over candidate rows

- Default candidate rows $M_{\phi}^{(\text{def})} = \left\{ v_0^{l-1} | v_0^{l-1} \in F_2^l, \text{wt}(v) \geq D_\phi \right\}$

Can be restricted to

- $M_{\phi}^{(r)} = \left\{ v_0^{l-1} | v_0^{l-1} \in F_2^l, \text{wt}(v) = D_\phi \right\}$

- M_{ϕ} is a set of candidate rows
- For each returned K we have $K[\phi] \in M_\phi$
Bounds on Partial Distances

- The minimum distance $d_K^{(\phi)}$ of kernel codes $C_K^{(\phi)}$ is given by $\min_{\phi \leq i < l} D_i$

Consider $l \times l$ kernel K with nondecreasing PDP D, such as $D_\phi \leq D_{\phi+1}$ for $\phi \in [l - 1]$

- Let $d[n, k]$ is a best known minimum distance of (n, k) code. Thus, $D_\phi \leq d[l, l - \phi]$

Let D be a nondecreasing PDP

- If $D_1 = 2$, then $^{22}D_i$ is even for all $i \geq 1$;
- For $0 \leq i < l$, we have 22

$$\sum_{i' = i}^{l} 2^{l-i'} D_{i'} \leq 2^{l-i} l$$

22H.P. Lin, S. Lin, and K. A. Abdel-Ghaffar, Linear and nonlinear binary kernels of polar codes of small dimensions with maximum exponents, IEEE Transactions On Information Theory, vol. 61, no. 10, 2015
Construction of Good Polarization Kernels

1. Generate various non-decreasing PDPs (satisfying the above bounds)
2. For each PDP run the exhaustive search algorithm
 - Unfortunately, it is hard to determine sufficient running time
 - Typically, if kernels with a given PDP exists, then depth-first search finds a corresponding kernel quickly
3. Pick a kernel with the best polarization properties
Kernels with Good Polarization Properties

The processing complexity is measured as a number of addition and comparison operations

<table>
<thead>
<tr>
<th>I</th>
<th>E</th>
<th>μ</th>
<th>Partial distances</th>
<th>Recursive trellis processing complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0.49361</td>
<td>3.573</td>
<td>1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 16</td>
<td>1250</td>
</tr>
<tr>
<td>18</td>
<td>0.50052</td>
<td>3.528</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 10, 10, 12</td>
<td>2946</td>
</tr>
<tr>
<td>19</td>
<td>0.50054</td>
<td>3.444</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 8, 8, 8, 10, 10, 16</td>
<td>5048</td>
</tr>
<tr>
<td>20</td>
<td>0.50617</td>
<td>3.439</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 12, 16</td>
<td>4894</td>
</tr>
<tr>
<td>21</td>
<td>0.50868</td>
<td>3.374</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 6, 8, 8, 10, 10, 10, 14, 14</td>
<td>10978</td>
</tr>
<tr>
<td>22</td>
<td>0.51181</td>
<td>3.353</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 12, 20</td>
<td>18120</td>
</tr>
<tr>
<td>23</td>
<td>0.51213</td>
<td>3.372</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 6, 6, 6, 6, 6, 8, 8, 10, 10, 10, 10, 12, 14, 16</td>
<td>17786</td>
</tr>
<tr>
<td>24</td>
<td>0.51577</td>
<td>3.3113</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16</td>
<td>2828</td>
</tr>
<tr>
<td>25</td>
<td>0.51683</td>
<td>3.281</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 10, 12, 12, 12, 16, 18</td>
<td>40566</td>
</tr>
<tr>
<td>26</td>
<td>0.51921</td>
<td>3.256</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 24</td>
<td>54848</td>
</tr>
<tr>
<td>27</td>
<td>0.51935</td>
<td>3.278</td>
<td>1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 8, 8, 10, 10, 10, 12, 12, 14, 14, 24</td>
<td>93764</td>
</tr>
</tbody>
</table>

All obtained kernels are available at arxiv.org/abs/2101.10269

- The processing complexity is too high, how to reduce it?
Kernel Processing

Computing the bit subchannel probability
\[W_1^{\phi}(u_0^\phi | y_0^{l-1}) \]
for one layer of \(l \times l \) transform \(K \) is equal to **ML decoding** of the kernel code \(C_K^{\phi+1} \) and its coset \(C_K^{\phi+1} \oplus K[\phi] \)

- ML decoding can be done by Viterbi algorithm or recursive trellis decoding
- The minimum distance \(d_{K}^{\phi} \) of kernel codes \(C_K^{\phi} \) is given by \(\min_{\phi \leq i < l} D_i \)
- Trellis state complexity is lower bounded by the minimum distance of the code

To obtain polarization kernels which admit low processing complexity, we can reduce the minimum distance of the kernel codes

As a consequence, we obtain kernels with the degraded polarization properties
Kernel Processing

Computing the bit subchannel probability
\[\mathcal{W}_1^{(\phi)}(u_0^\phi | y_0^{l-1}) \] for one layer of \(l \times l \) transform \(K \) is equal to **ML decoding** of the kernel code \(C_{\phi+1}^K \) and its coset \(C_{\phi+1}^K \oplus K[\phi] \)

- ML decoding can be done by Viterbi algorithm or recursive trellis decoding
- The minimum distance \(d_{\phi}^K \) of kernel codes \(C_{\phi}^K \) is given by \(\min_{\phi \leq i < l} D_i \)
- Trellis state complexity is lower bounded by the minimum distance of the code

To obtain polarization kernels which admit low processing complexity, we can reduce the minimum distance of the kernel codes

- As a consequence, we obtain kernels with the degraded polarization properties
Kernel Processing

Computing the bit subchannel probability $\mathcal{W}_1^{(\phi)}(u_0^\phi | y_0^{l-1})$ for one layer of $l \times l$ transform K is equal to **ML decoding** of the kernel code $C_K^{(\phi+1)}$ and its coset $C_K^{(\phi+1)} \oplus K[\phi]$

- ML decoding can be done by Viterbi algorithm or recursive trellis decoding
- The minimum distance $d_K^{(\phi)}$ of kernel codes $C_K^{(\phi)}$ is given by $\min_{\phi \leq i < l} D_i$
- Trellis state complexity is lower bounded by the minimum distance of the code

To obtain polarization kernels which admit low processing complexity, we can reduce the minimum distance of the kernel codes

- As a consequence, we obtain kernels with the degraded polarization properties
Bounds on Trellis Complexity of Linear Codes

Let C be an (n, k, d) linear code over \mathbb{F}_q. Then the nonsectionalized state complexity satisfies

$$s \geq \max_i (k - K(i, d) - K(n - i, d)),$$

where $K(i, d)$ is the maximum possible dimension of the code of length i and minimum distance d over \mathbb{F}_q

For (n, k, d) linear code C

$$s \geq \left\lceil \frac{k(d - 1)}{n} \right\rceil$$

24 A. Lafourcade and A. Vardy, "Asymptotically good codes have infinite trellis complexity," in IEEE Transactions on Information Theory, March 1995
Example with 16×16 Kernels

<table>
<thead>
<tr>
<th>Kernel</th>
<th>E</th>
<th>μ</th>
<th>Distance properties</th>
<th>Recursive trellis processing complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>K'_16</td>
<td>0.51828</td>
<td>3.346</td>
<td>PDP 1 2 2 2 2 2 4 4 4 4 6 6 8 8 8 8 16</td>
<td>632</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$d_{k}^{(\phi)}$ 1 2 2 2 2 4 4 4 4 6 6 8 8 8 8 16</td>
<td></td>
</tr>
<tr>
<td>K_{16}</td>
<td>0.51828</td>
<td>3.45</td>
<td>PDP 1 2 2 2 2 2 4 4 4 4 6 6 8 8 8 8 16</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$d_{k}^{(\phi)}$ 1 2 2 2 2 2 4 4 4 4 4 4 4 4 8 8 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kernel</th>
<th>E</th>
<th>μ</th>
<th>Distance properties</th>
<th>Recursive trellis processing complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_2^\otimes 4$</td>
<td>0.5</td>
<td>3.627</td>
<td>PDP 1 2 2 4 2 2 4 4 8 2 4 4 8 4 8 8 16</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$d_{k}^{(\phi)}$ 1 2 2 2 2 2 2 4 4 4 4 4 4 4 8 8 16</td>
<td></td>
</tr>
<tr>
<td>$F_2^\otimes 4$, sorted</td>
<td>0.5</td>
<td>3.479</td>
<td>PDP 1 2 2 2 2 2 4 4 4 4 4 4 4 8 8 8 16</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$d_{k}^{(\phi)}$ 1 2 2 2 2 2 4 4 4 4 4 4 4 8 8 8 16</td>
<td></td>
</tr>
</tbody>
</table>
There is a trade-off between processing complexity and polarization properties.
Design of Polar Codes with Large Kernels

<table>
<thead>
<tr>
<th>Method</th>
<th>Arikan kernel</th>
<th>Large kernels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte-Carlo</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Binary erasure channel recursion</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gaussian approximation</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Minimum distance</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Density evolution</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Degrading/upgrading approximation</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Partial order</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Polarization weight</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Polar codes with CRC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Polar subcodes</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Polar codes with distributed CRC</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Shortening and puncturing</td>
<td>✓</td>
<td>× and ✓</td>
</tr>
</tbody>
</table>

×: the method has not yet been developed
Polarization Behaviour

- If $W(y|c)$ is the binary erasure channel (BEC), then $W_m^{(i)}$ are also BEC.
- Input erasure pattern $e \in \mathbb{F}_2^l$ at phase i is not correctable iff there exist $u_{i+1}^{l-1}, v_{i+1}^{l-1}: \forall u_0^{l-1}, \forall j: e_j = 0: ((u_0^{l-1}, 0, u_{i+1}^{l-1})K)_j = ((u_0^{l-1}, 1, v_{i+1}^{l-1})K)_j$
- Let $E_{i,w}$ be the number of uncorrectable erasure patterns of weight w.
- Let z be the input erasure probability. Erasure probability in $W_1^{(i)}$ is
 \[
 f_i(z) = \sum_{w=0}^{l} E_{i,w} z^w (1 - z)^{l-w}
 \]
- Polarization behaviour is the collection of functions $(f_0(z), \ldots, f_{l-1}(z))$.
An Example

- Arikan kernel $K_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

- Uncorrectable erasure patterns for phase 0: (10), (01), (11)
 \[
 f_0(z) = 2z(1 - z) + z^2 = 2z - z^2
 \]

- Uncorrectable erasure patterns for phase 1: (11)
 \[
 f_1(z) = z^2
 \]
Finding the Polarization Behaviour

- If erasure pattern $e \in \{0, 1\}^l$ is uncorrectable, then any $e' \in \{0, 1\}^l$ which covers e, i.e $e'_i \geq e_i$, is also uncorrectable.
- Let cover set $\Delta(S)$ be the set of vectors that cover at least one vector in set S.
- Let $C_K^{(i)} = \langle K_{i..l-1} \rangle$ be the i-th kernel code, $C_K^{(l)} = \{0\}$.
- An erasure pattern e is uncorrectable at phase i iff $e \in \Delta(C_K^{(i)} \setminus C_K^{(i+1)})$, $0 \leq i < l$.
- The number of uncorrectable erasure patterns can be obtained from the trellis\(^{25,26}\) of $C_K^{(i)}$.

Capacity of Bit Subchannels

- Capacity of a binary input symmetric channel
 \[I_1^{(i)} = 1 - \int_{-\infty}^{\infty} p_i(\xi) \log_2(1 + e^{-\xi}) \, d\xi, \]

 where \(p_i(\xi | 0) \) is the PDF\(^{27} \) of the LLR \(\ln \frac{W_1^{(i)}(y_0^{-1}, 0|0)}{W_1^{(i)}(y_0^{-1}, 0|1)} \), assuming that 0 is transmitted.

- An approximation
 \[I_1^{(i)} \approx 1 - \int_{-\infty}^{\infty} f_i(\xi | 0) \log_2 \left(1 + \frac{P \left\{ u_i = 1 | S_1^{(i)} = \xi \right\}}{P \left\{ u_i = 0 | S_1^{(i)} = \xi \right\}} \right) \, d\xi \]
 \[= 1 - \int_{-\infty}^{\infty} f_i(\xi | 0) \log_2 \left(1 + \frac{f_i(-\xi | 0)}{f_i(\xi | 0)} \right) \, d\xi, \]

 where \(f_i(\xi | 0) \) is the PDF of \(S_1^{(i)}(0, y_0^{-1}) \), assuming that 0 is transmitted.

Mutual Information Based Design

- Let $\mathcal{I} = I_0(X; Y)$ be the mutual information (symmetric capacity) of AWGN channel input X and output Y.
- Simulations can be used to estimate PDF $f_i(\xi|0)$ and compute mutual information $I_1^{(i)}(\mathcal{I})$ of $W_1^{(i)}$ for any $\mathcal{I} : 0 < \mathcal{I} < 1$.
- Assume that all bit subchannels are Gaussian, and they are completely characterized by their symmetric capacity.

\[
I_m^{(l_j+s)}(\mathcal{I}) \approx \begin{cases}
I_1^{(s)}(I_{m-1}^{(j)}(\mathcal{I})), & m > 0, 0 \leq s < l, 0 \leq j < l^{m-1} \\
\mathcal{I}, & m = 0, s = 0
\end{cases}
\]
Subchannel Capacity Functions: $K_{16}, \mu = 3.45$

Capacity functions for BEC (dashed) are not identical to those for AWGN channel (solid)
Polar Codes with CRC

- Append CRC to the data before encoding it with a large kernel polar code
- Use Tal-Vardy list decoder
- Select a codeword with the valid CRC from the obtained list
Minimum Weight Codewords of Polar Codes

Partial distance D_j is the distance from the j-th row of kernel K to the code generated by rows $j + 1, \ldots, l - 1$

Theorem

Consider a (n, k, d) polar code C given by a polarizing transformation $A = K^\otimes m$ and a frozen set \mathcal{K}, where $n = l^m$, and partial distances D_i of kernel K satisfy

$$D_i = \text{wt}(K[j]), 0 \leq j < l_i, 0 \leq i < m.$$

Then:

1. $d = \min_{i \notin \mathcal{F}} \text{wt}(A_i)$, where A_i is the i-th row of matrix A.
2. For any $c^{n-1}_0 = u^{n-1}_0 A \in C : \text{wt}(c^{n-1}_0) = d$ $\exists i : u_i = 1$, $\text{wt}(A_i) = d$.

Example: for Arikan kernel one has $\text{wt}(A_i) = 2^{\text{wt}(i)}$
Dynamic Frozen Symbols

- Classical polar codes: frozen symbols $u_i = 0, i \in \mathcal{F}$
- A generalization: $u_i = \sum_{j=0}^{i-1} V_{s_i,j} u_j, i \in \mathcal{F}$

 $$uV^T = 0,$$

 where s_i is the index of row of V having last 1 in position i

- The successive cancellation decoding algorithm:
 For $i = 0, 1, \ldots, 2^m - 1$:
 $$\hat{u}_i = \begin{cases} \sum_{j=0}^{i-1} V_{s_i,j} \hat{u}_j, & i \in \mathcal{K} \\ \arg \max_{u_i} \mathcal{W}_m(y_0^{n-1}, \hat{u}_0^{i-1}|u_i), & i \notin \mathcal{F} \end{cases}$$

- Decoding error probability $P_{SC} \leq \sum_{i \notin \mathcal{F}} P_{m,i}$
 - The same as for a classical polar code with frozen set \mathcal{F}

- Straightforward extension to list SC (Tal-Vardy) decoding

- How to select the constraint matrix V?
Reducing the Error Coefficient

Consider a random linear k-dimensional subcode C of a base (n, k') polar code, $k < k'$. Let (w_0, \ldots, w_n) be its weight spectrum.

If all linear subspaces are equiprobable, then

$$E[w_s] = w'_s \frac{2^k - 1}{2^{k'} - 1} \approx w'_s 2^{-(k' - k)}, \; s > 0,$$

Select k' so that $E[w_d]$ is sufficiently low.

Any codeword of C satisfies $c_0^{n-1} = u_0^{n-1} A_m$, where $u_0^{n-1} V^T = 0$

- The constraint matrix $V = \begin{pmatrix} V' \\ \tilde{V} \end{pmatrix}$
- V' is an $(n - k') \times n$ matrix with distinct weight-1 rows, having 1’s in positions \mathcal{F}'
- \tilde{V} is a random $(k' - k) \times n$ full-rank matrix

Polar-CRC codes: \tilde{V} is a check matrix of the CRC code.
Reducing the Error Coefficient

Consider a random linear k-dimensional subcode C of a base (n, k') polar code, $k < k'$. Let (w_0, \ldots, w_n) be its weight spectrum.

If all linear subspaces are equiprobable, then

$$E[w_s] = w'_s \frac{2^k - 1}{2^{k'} - 1} \approx w'_s 2^{-(k' - k)}, \quad s > 0,$$

Select k' so that $E[w_d]$ is sufficiently low.

Any codeword of C satisfies $c_0^{n-1} = u_0^{n-1} A_m$, where $u_0^{n-1} V^T = 0$.

- The constraint matrix $V = \begin{pmatrix} V' \\ \tilde{V} \end{pmatrix}$
- V' is an $(n - k') \times n$ matrix with distinct weight-1 rows, having 1’s in positions F'
- \tilde{V} is a random $(k' - k) \times n$ full-rank matrix

Polar-CRC codes: \tilde{V} is a check matrix of the CRC code.
Type-A Dynamic Frozen Symbols

- For truly random subcodes i_j are too high \Rightarrow the decoder may kill the correct path before it is able to exploit the dynamic freezing constraints.
- \tilde{V} is responsible for elimination of low-weight codewords.
- Construct \tilde{V}, so that:
 - the decoder can process dynamic freezing constraints as soon as possible.
 - most of the low-weight codewords are still eliminated.
- Let the indices of non-trivial dynamic frozen symbols be smallest possible, such that all $u_i : \text{wt}(A_{m,i}) = d = \min_{i \notin F} \text{wt}(A_{m,i})$ are involved in at least one dynamic freezing constraint.
- Set $V_{s_j}, n - k' \leq s < n - k, 0 \leq j < i_s$, to independent equiprobable binary values.
Type-A Dynamic Frozen Symbols

- For truly random subcodes i_j are too high \Rightarrow the decoder may kill the correct path before it is able to exploit the dynamic freezing constraints.
- \tilde{V} is responsible for elimination of low-weight codewords.
- Construct \tilde{V}, so that
 - the decoder can process dynamic freezing constraints as soon as possible
 - most of the low-weight codewords are still eliminated.
- Let the indices of non-trivial dynamic frozen symbols be smallest possible, such that all $u_i : \text{wt}(A_{m,i}) = d = \min_{i \notin F} \text{wt}(A_{m,i})$ are involved in at least one dynamic freezing constraint.
- Set $V_{sj}, n - k' \leq s < n - k, 0 \leq j < i_s$, to independent equiprobable binary values.
Penalizing Wrong Paths in the SCL Decoder: Type-B DFS

- Path score in the SCL algorithm: $R(\hat{u}_0^j) = R(\hat{u}_0^{j-1}) + \tau(S_m^{(j)}, \hat{u}_j)$, where
 \[
 \tau(u, S) = \begin{cases}
 0, & \text{if } (-1)^u = \text{sgn } S \\
 -|S|, & \text{otherwise}
 \end{cases}
 \]

- Incorrect \hat{u}_i result in low-magnitude $S_m^{(j)}$ for many $j > i$, and many of $S_m^{(j)}$ still have correct signs \Rightarrow wrong path in the SCL decoder are penalized slowly while processing constraints $u_i = 0, i \in F'$

- Type-B dynamic frozen symbols
 - Speedup error propagation for wrong paths
 - Select q most reliable bit subchannels $W_m^{(i)} : i \in F'$
 - Replace $u_i = 0$ with $u_i = \sum_{j < i} R_{ij} u_j$, where R_{ij} are random binary values
 - If some \hat{u}_j is incorrect, $\sum_{j < i} R_{ij} \hat{u}_j$ would disagree with the sign of $S_m^{(i)}$ with high probability \Rightarrow the path is penalized
Penalizing Wrong Paths in the SCL Decoder: Type-B DFS

- Path score in the SCL algorithm: \(R(\hat{u}^j_0) = R(\hat{u}^{j-1}_0) + \tau(S_m^{(j)}, \hat{u}_j) \), where

\[
\tau(u, S) = \begin{cases}
0, & \text{if } (-1)^u = \text{sgn } S \\
-|S|, & \text{otherwise}
\end{cases}
\]

- Incorrect \(\hat{u}_i \) result in low-magnitude \(S_m^{(j)} \) for many \(j > i \), and many of \(S_m^{(j)} \) still have correct signs \(\Rightarrow \) wrong path in the SCL decoder are penalized slowly while processing constraints \(u_i = 0, i \in \mathcal{F}' \)

- Type-B dynamic frozen symbols
 - Speedup error propagation for wrong paths
 - Select \(q \) most reliable bit subchannels \(\mathcal{W}_m^{(i)} : i \in \mathcal{F}' \)
 - Replace \(u_i = 0 \) with \(u_i = \sum_{j < i} R_{ij} \hat{u}_j \), where \(R_{ij} \) are random binary values
 - If some \(\hat{u}_j \) is incorrect, \(\sum_{j < i} R_{ij} \hat{u}_j \) would disagree with the sign of \(S_m^{(i)} \) with high probability \(\Rightarrow \) the path is penalized
Design an \((n = l^m, k, d)\) polar subcode

- Let \(H\) be a check matrix of \((n, \kappa > k, d)\) extended narrow-sense primitive BCH code
- Let \(A_m = K_i \otimes m\)
- Let \(V_0 = QHA_m^T\), where \(Q\) is an invertible matrix, such that last non-zero elements of \(V\) are located in distinct columns \(j_i, 0 \leq i < n - \kappa\)
- Let \(\mathcal{F}_0 = \{j_0, \ldots, j_{n-\kappa-1}\}\)
- Find indices \(j_i \notin \mathcal{F}_0, n - \kappa \leq i < n - k\) of the least reliable bit subchannels
- Let \(V = \begin{pmatrix} V_0 \\ V_1 \end{pmatrix}\), where \(V_1\) contains distinct rows with 1’s in positions \(j_{n-\kappa}, \ldots, j_{n-k-1}\), and 0 elsewhere
- \(V\) is the constraint matrix of \((n, k, \geq d)\) polar subcode\(^{28}\)

Performance of Polar Subcodes under SCL Decoding

\[\mu(K_{16}') = 3.346 \]
Mixed Kernel Codes

- Mixed kernel polarizing transformation $A = K_{l_1} \otimes K_{l_2} \otimes \cdots \otimes K_{l_m}$
- Rate of polarization for a Kronecker product of matrices $E(A) = \sum_{i=1}^{m} \frac{E(K_{l_i})}{\log_{l_i} \prod_{i=1}^{m} l_i}$
- Kernels over different alphabets can be mixed
- Changing the order of matrices in the Kronecker product does affect the performance

Performance of Mixed-Kernel Codes

Changing the order of kernels does affect the performance.
Kernel K_{32} has simple trellises \Rightarrow decoding complexity much less than for the LDPC code

Even K_{24} with complex trellises has some complexity advantage with respect to LDPC
Motivation
- Arikan polar codes and their limitations
- What is possible with large kernels?

Decoding polar codes with large kernels
- Successive cancellation decoding
- Kernel processing (marginalization)
- Trellis representation of linear codes
- Recursive trellis processing
- Window processing

Design of polar codes
- Finding good polarization kernels
- Code design for the BEC
- Code design for the AWGN channel
- Codes with Improved Distance Properties

Conclusions
Conclusions

- Polar codes with large kernels under SCL decoding can provide both performance and complexity improvement with respect to the codes based on the Arikan kernel.
- The codes based on large kernels may have lower decoding complexity compared to LDPC codes with similar performance.
- Efficient kernel processing is essential to obtain a practical implementation:
 - Window processing
 - Recursive trellis processing
- Polarization kernels need to be carefully designed:
 - Higher scaling exponent may provide simpler processing and better overall performance/complexity tradeoff
 - Length-compatible codes with common kernel processing
- Many of code design and decoding techniques developed for Arikan polar codes extend easily to the case of large kernels.
Open Problems

- How to further reduce the complexity of kernel processing?
- How to explicitly construct kernels with a given rate of polarization and simple recursive trellis processing?
- How to find an optimal order of kernels in mixed kernel codes?
- How to compute scaling exponent for channels other than BEC?
- How to implement shortening and puncturing of large kernel codes?