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We can achieve vanishing probability of error with a non-vanishing rate.



Multi-User Information Theory
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New Applications
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New Applications: New Aspect
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Communication with limited budget for side-information



In this talk
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Coded Computing and
Approximate Decoding

Jahani-Nezahd, Maddah-Ali [2020]



The Size of Data is Exploding

* Big Data
* Social Networks: 10°
nodes and 1012 edges
e 10%'° Pages in internet

350 m Non-CDN Internet Traffic
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Exabytes 250 m CDN Internet Traffic

N

* Figures (n) referto 2017, 2022 traffic share
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We have to offload the computation to many servers



Offloading Computation
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Separating lines of research
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Offloading Computation

Source
X, Xo, ... Xk
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Data Collector Q(Xla ceey XK)

How to deal with faulty/slow nodes?



Communication: Approaching Shannon
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Coding for Commur

Ication
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Reed-Solomon Codes

Source

Encoder

Channel
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— u(z) Polynomial

u(32)
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Computation Efficiency

Reconstructing u(z)

Exact Decoding

X1, X, ..., Xk

Number of Samples > deg(u(Z)) + 1

Complexity = K log(K)
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Coding for Computation
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Computation Efficiency

Exact Decoding

Main Challenge: How to Design a Code that Goes Through The Computation
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Coded Computing for Matrix Multiplication

A, B Polynomial Codes [Yu, Maddah-Ali, Avestimehr, 2016]

Entangle Codes [Yu, Maddah-Ali, Avestimehr, 2017]
Polynomial-Based Encoder
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Coded Computing for Polynomial Computation

Xla X27 SRR XK Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017]
Encoder
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f(Xq), ..., f(Xg) f(x): Any general polynomial
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Lagrange Coded Computation

XK = u(aK)

= f(u(B1))

a1 2

f Xn) = f(u(Bn))

Forming f U (Z) )

Computing f(u(ak)) = f(Xg)

K
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Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017]
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Lagrange Coded Computation

X17X27°°°7XK

u(z) is a polynomial

~

Xy = u(Bn)
|

f(z) is a polynomial hﬂ I,

XK = u(aK)

Xy = u(as)

X1 = U(Oél)

f(u(z)) is a polynomial as well Xn) = f(u(BN))

Forming f (u (Z) )
Computing f(u(ak)) = f(Xg)

a1 Q9 oK

flu(2))

a1 Q9 K

Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017] 20



Lagrange Coded Computation

XK = U(OéK)

Xy = u(as)

Challenges: u(z)
1. Number of samples needed K.de
P 8(7) { Not Efficient
# of Samples = deg(f(u(z)) + 1 ar ax
— (K — 1) deg(f) + 1 N
2. Only works for polynomial functions [ Not for é\enem[ f(u(z))
Computing
3. It Is not numerically stable, for real , \]\/
computation [ Not Working for Real J
Computation ax
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On Numerical Instability
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Berrut Approximated Coded
Computing

Jahani-Nezahd, Maddah-Ali [2020]
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Berrut Approximated Coded Computation

v'Based on Approximation Theory and Numerical Analysis

v'is not limited to polynomial function computation (Model
Agnostic)

v works for any number of non-straggling worker nodes
v'is not limited to computation over finite fields

v'is numerically stable

v'has low computational complexity
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Berrut Coded Computation
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Why Rational Interpolation?
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Why Rational Interpolation?
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v’ Berrut’s rational interpolation is more numerically stable 28



Berrut Coded Computation

XK = u(aK)
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Berrut Coded Computation
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Berrut Coded Computation

F = {817327”'78\”:’}

Fl-1 (D™

9(2) = Y = fu(B)
= T S

v' Complexity of Decoding O(|F|)
v' The computation is approximate.
v' Works for any number of samples!

v' Works for general functions

XK = u(aK)

Xy = u(as)

X1 = u(al)
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Theoretical Guarantees

For a system with s stragglers, we have

||TBerrut(Z) — h(z)” < 2(1 s R) SiIl(

R — (s+1)(s+3)m> .

where 7

(CANED)

K
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Performance
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Training a Deep Neural Network: Single Server

I.  The master node sends mini-batches of the data
to the worker node

Il. Worker node computes the gradient based on the
parameter of the model with its data samples.

Ill. 1t updates the model using the gradients

This Computation is heavy!
Let us do parallel processing
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Training a Deep Neural Network: Parallel
Processing

I. The master node sends independent mini-batches .
of the data to each worker node e i

Il. Each worker node computes the gradient based

on the parameter of the model with its data {0 \] { 1j ( 2 } / \ / N \
o 1111 e Il o 111111 e 111111 o 111111

samples.

o &
<
&

IIl. All server nodes the model using the gradients

Challenge: Stragglers
35



Training a Deep Neural Network: BACC

I.  The master node encodes mini-batches of the -
data samples using encoding step of BACC. ~ I

II. Worker nodes compute the gradient based on the
shared parameter with their local coded data
samples.

Ill. Having received the results from a set of non-
straggling worker nodes, the master node can
approximately recover gradients using Berrut’s
rational interpolant.
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Training a Deep Neural Network

Comparison between two distributed learning approaches

ion as a baseline scheme

t

(a) data replica

(b) the proposed scheme
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Test Accuracy (%)

Training a Deep Neural Network
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Open Problems

e Using Approximation Technique for Coded Computing is a Wide Open
Area
* Jahani-Nezhad, Maddah-Ali [2018]
 Fahim, Cadambe [2019]
* Jeong, Devulapalli, Cadambe, Calmon [2021]

e Soleymani, Mahdavifar, Avestimehr [2021]

* Connection with Joint Source-Channel Coding
* Uncoded Coded!

* Security/Privacy
* Federated Learning
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Distributed Encoding

Abadi, Maddah-Ali [2021]
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Sharding in Blockchain

Blockchain

o

Shard 1 Verifying all

Transactions
(Dist. Computing)

s -

Shard 2

M

:Shard 3

Not Very Secure!
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PolyShard in Blockchain

Li, Yu, Yang, Avestimehr, Kannan and Viswanath [2020]

Blockchain w(61) f(u(B1))
’ ’ ! ’ Xl / Decoder
Shard 1 u(B2) = T Verifying all

Transactions
(Dist. Computing)

— Recovering Data

Shard 2 (Dist. Storage)

f(u(Bn))
Peee < oo} o™

Xk = u(ak)

Shard 3 Partially Solved Decentralization, Security,
X, = u(a) Scalability Trilemma
X; = u(ay)

a1 Qo aK



Challenge of Distributed Encoding

Blockchain
’ ’ ! ’ Xl Decoder
Shard 1 Verifying all

Transactions
(Dist. Computing)

e * ol
Recovering Data
Shard 2 (Dist. Storage)
._m X3 Decoder Fails!
Number of Variables

Shard 3 is more than Number
: of Equations
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Classical Coding
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\_ Channel

 Source

)
9/

A

NCT TEECTELY Y TR

Shannon approach Hamming approach
Probabilistic errors Adversarial errors
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Distributed Encoding

Source W%
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Distributed Encoding: Problem Formulation

1- Adversaries Collaborates
2-No information about and
Adversary can produce a limited

YK SH number of messages
> « /Source

'node 1

Encoding Nodes

[
(]
3- No information about the adversaries
I and their behavior.

(| iy

v

L Decoder —p

4- The decoder wants to decode the
messages of the honest nodes correctly.

5- Decoder doesn’t care to recover the messages of
adversaries or even detect the adversaries.

Minimize the number of encoding nodes needed
by the encoder to do its job 46
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System Parameters

K=3

# of source nodes

-

# of adversaries

v=3
# of adversarial messages

N=5
# of encoding nodes

K: the number of source nodes

N: the number of encoding nodes

[: the number of adversaries

v: the maximum number of the
messages of one adversarial source node

t: the number of encoding nodes
that decoder needs to connect to.
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The problem

To characterize t*, as the minimum of tinan (N, K, 8, v) distributed encoding system.

(Informally, at least how many encoding nodes does the decoder need?)

Design Parameters:
1. Encoding Functions
2. Decoding Algorithm

48



Fundamental limit of t

Inan (N, K, B, v) distributed encoding system, with linear encoding function
e fN>K+20(v—1)+1

tl*inear =K+2,8(77—1)
« fKSN<K+28(w-1)
=N

*k
tlinear

S (., WD

B: the number of adversaries

-

v: the maximum number of the
messages of one adversarial source node

K: the number of source nodes

N: the number of encoding nodes

t: the number of encoding nodes
that decoder needs to connect to.
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Achievable Scheme

Case: N>K+28(v—1)+1

Xni Sent by source k to encoding node n
Encoding function:

fn(Xn1, oy Xng) = Op1Xpy + -+ Agxpng, 1 <N <N

a,1are generated randomly from the field

Decoding Procedure:

1. Consider every possible scenario for the set of adversaries and how they
use their options.

2. Form the corresponding set of linear equations and try solve it.
3. If a case offers a solution, announce it.
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Achievable Scheme

Lemma

In any feasible solution, formed witht™ = K + 28(v — 1) coded symbols, the symbols
of honest nodes have been recovered correctly.

Proof:
e Consider (1) an arbitrary feasible solation, and (2) the real solution.

* Forms two sets of equations by these two and merge them.
* Prove that the gaps of honest symbols are zero.
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Converse

Lemma

For any choice of coefficients, fort < K + 2f(v — 1) coded symbols, there is a
scenario, in which the decoder cannot decode the message of honest nodes correctly
and uniquely.

Basically, with techniques such as interference alignment, and carefully
choosing the coefficients of the linear codes, we cannot avoid confusing the

decoder.
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Open Problems

e Can nonlinear code offer gain?
* If yes, what is the fundamental limits of the distributed encoding?

* For linear codes, can we reduce the complexity of decodoing?
* Other types of errors?

* Fundamental limits of distributed coded computing?
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Multiuser Secret Sharing

Khalesi, Mirmohseni, Maddah-Ali [2021]
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Multi-User Secret Sharing X, ¢ GF(2MP)

Dealer X, Xs,.... X5 | Secret Messages

L 2 3 4 N-1 N |

il u: u: ,, 1 M bits
Access Sets . \ \

X1 X2 XK

Userl User2 User K

1. Correctness: Each user can recover its own message
2. Privacy: Each user learns nothing about the message of other users 55



Multi-User Secret Sharing

Dealer

X1,Xo,..., Xk

X € GF(2MEr)

Secret Messages

s (0 T s 11 TR S | T S | A S | T S | T i

Access Sets

\“A\ X

Userl

User2

User K

Objective: To characterize the capacity region of multi-user secret sharing as
the set of all possible (Ry, R,, ..., Ry), subject to correctness and privacy 56



Multi-User Secret Sharing

Dealer

X, X, ...

7XK

X € GF(2MEr)

Secret Messages

N1 .

Access Sets

Userl

User2

Introduced by Soleymani and Mahdavifar [2019]

*  R,=R,=..=R,

e Specific (Structured) Access Sets

S

User K
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Main Result

The Capacity Region of Multi-User Secret Sharing Problem is the convex hull of all rate

tuples satisfying: -
Sk Ry < min | A\ Az, ¥k, & € [K],
k+k

Y R; <|Uses Ail,8 C [K].

1€S
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Multi-User Secret Sharing: Naive Solution

Secret Messages X, Xo,.... Xk
Divide each message into k= (X&,0, - s Xperyo ) Chosen i.i.d
Form the polynomial ux(2) = Xpo + ... + Xpp, 1271 T’“ + ..+ Up g 2"t
If ne Ay, store ug(5,),atservern Ty, = max |A N Az, k+ k

AR

Userl User2 User K 59



Multi-User Secret Sharing: Naive Solution

Secret Messages X1, X9, . ... Xxg

Uy, are solved for such that  ;(f,) = u;(8,)

for any two users i and j connected to server n

Divide each message into X = (Xk,05 5 Xiyrye_y)

Form the polynomial uy(2) = Xgo + ...+ Xppp 12+ Up 2™ + ... 4+ Up g 2"

If n € A, store ug(5,) ,atservern Ty, = max [A; N Az, k+k

oy (i AR

For any rate tuple in
the capacity region, it is possible

Userl User2 User K 60



Open Problems
* Connection to Caching, Computing, Storage?

* Fault Tolerance? Adversarial Settings?
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Conclusion

* Some of the results that we have in distributed systems are motivated
and designed based on our conventional approach

* However, considering the new requirements necessitates new
techniques which offers significant gains
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