
Coding for Distributed 
Information Systems

Mohammad Ali Maddah-Ali
Department of Electrical Engineering

Sharif University of Technology

1

Collaboration with: Mahtab Mirmohseni, Tayyebeh Jahani-Nezhad, 
Nastaran Abadi, Ali Khalesi



Coding Theory 

2

We can achieve vanishing probability  of error with a non-vanishing rate.



Multi-User Information Theory 

3

- Multi-Access Channels
- Broadcast Channels
- Interference Channels
- Relay Networks  



New Applications 

4

Distributed Cache Networks 
Courtesy of Bruneau-Queyreix [2017]

Offloading Computation  

12	

1	 2	 3	 …	 N	

Master		

Result		

Distributed Computing/Storage

8. Simplified Payment Verification

It is possible to verify payments without running a full network node.  A user only needs to keep 

a copy of the block headers of the longest proof-of-work chain, which he can get by querying 

network  nodes  until  he's  convinced  he  has  the  longest  chain,  and  obtain  the  Merkle  branch 

linking  the  transaction  to  the  block  it's  timestamped  in.   He  can't  check  the  transaction  for 

himself, but by linking it to a place in the chain, he can see that a network node has accepted it, 

and blocks added after it further confirm the network has accepted it.

As such, the verification is reliable as long as honest nodes control the network, but is more 

vulnerable  if  the  network  is  overpowered  by  an  attacker.   While  network  nodes  can  verify 

transactions  for  themselves,  the  simplified  method  can  be  fooled  by an  attacker's  fabricated 

transactions for as long as the attacker can continue to overpower the network.  One strategy to 

protect against this would be to accept alerts from network nodes when they detect an invalid 

block,  prompting  the  user's  software  to  download  the  full  block  and  alerted  transactions  to 

confirm the inconsistency.  Businesses that receive frequent payments will probably still want to 

run their own nodes for more independent security and quicker verification.

9. Combining and Splitting Value

Although it  would be possible to handle coins individually, it  would be unwieldy to make a 

separate  transaction  for  every cent  in  a  transfer.   To  allow value  to  be  split  and  combined, 

transactions contain multiple inputs and outputs.  Normally there will be either a single input 

from a larger previous transaction or multiple inputs combining smaller amounts, and at most two 

outputs: one for the payment, and one returning the change, if any, back to the sender.  

It should be noted that fan-out, where a transaction depends on several transactions, and those 

transactions depend on many more, is not a problem here.  There is never the need to extract a 

complete standalone copy of a transaction's history.

5

Transaction

In

...

In Out

...

Hash01

Hash2 Hash3

Hash23

Block Header

Merkle Root

Prev Hash Nonce

Block Header

Merkle Root

Prev Hash Nonce

Block Header

Merkle Root

Prev Hash Nonce

Merkle Branch for Tx3

Longest Proof-of-Work Chain

Tx3Blockchains
Courtesy of  Nakomoto [2008]

Private Information Retrieval
Courtesy of Attia, Kumar, Tandon [2018]



New Applications: New Aspect 

5

Distributed Cache Networks 
Figure Credit: Bruneau-Queyreix [2017]

Private Information Retrieval
Fig. Credit:  of Attia, Kumar, Tandon [2018]

Receiver receives a file, 
while transmitters don’t realize which!

Communication with limited budget for side-information 



In this talk

6

Offloading Computation  

12	

1	 2	 3	 …	 N	

Master		

Result		

Distributed Computing/Storage

8. Simplified Payment Verification

It is possible to verify payments without running a full network node.  A user only needs to keep 

a copy of the block headers of the longest proof-of-work chain, which he can get by querying 

network  nodes  until  he's  convinced  he  has  the  longest  chain,  and  obtain  the  Merkle  branch 

linking  the  transaction  to  the  block  it's  timestamped  in.   He  can't  check  the  transaction  for 

himself, but by linking it to a place in the chain, he can see that a network node has accepted it, 

and blocks added after it further confirm the network has accepted it.

As such, the verification is reliable as long as honest nodes control the network, but is more 

vulnerable  if  the  network  is  overpowered  by  an  attacker.   While  network  nodes  can  verify 

transactions  for  themselves,  the  simplified  method  can  be  fooled  by an  attacker's  fabricated 

transactions for as long as the attacker can continue to overpower the network.  One strategy to 

protect against this would be to accept alerts from network nodes when they detect an invalid 

block,  prompting  the  user's  software  to  download  the  full  block  and  alerted  transactions  to 

confirm the inconsistency.  Businesses that receive frequent payments will probably still want to 

run their own nodes for more independent security and quicker verification.

9. Combining and Splitting Value

Although it  would be possible to handle coins individually, it  would be unwieldy to make a 

separate  transaction  for  every cent  in  a  transfer.   To  allow value  to  be  split  and  combined, 

transactions contain multiple inputs and outputs.  Normally there will be either a single input 

from a larger previous transaction or multiple inputs combining smaller amounts, and at most two 

outputs: one for the payment, and one returning the change, if any, back to the sender.  

It should be noted that fan-out, where a transaction depends on several transactions, and those 

transactions depend on many more, is not a problem here.  There is never the need to extract a 

complete standalone copy of a transaction's history.

5

Transaction

In

...

In Out

...

Hash01

Hash2 Hash3

Hash23

Block Header

Merkle Root

Prev Hash Nonce

Block Header

Merkle Root

Prev Hash Nonce

Block Header

Merkle Root

Prev Hash Nonce

Merkle Branch for Tx3

Longest Proof-of-Work Chain

Tx3

Blockchains
Courtesy of  Nakomoto [2008]

Approximate Decoding Distributed Encoding 



Coded Computing and 
Approximate Decoding  

7

Jahani-Nezahd, Maddah-Ali [2020]



The Size of Data is Exploding 

8

• Big Data 
• Social Networks: 109

nodes and 1012 edges
• 1010 Pages in internet

• Huge Models
• 1010 weights in Deep 

Learning

• Enormous Computing 

We have to offload the computation to many servers 



Offloading Computation 

9

1 2 3 … NN Servers

Data Collector

Source X1,X2, . . . ,XK

g(X1, . . . ,XK)



Offloading Computation 

10

1 2 3 … 5N Servers

Data Collector

Source X1,X2, . . . ,XK

g(X1, . . . ,XK)



Separating lines of research 

11

OverSketch: Approximate Matrix Multiplication for the Cloud

Vipul Gupta?, Shusen Wang†, Thomas Courtade? and Kannan Ramchandran?

?Department of EECS, UC Berkeley
†Department of CS, Stevens Institute of Technology

Email: {vipul_gupta, courtade, kannanr}@eecs.berkeley.edu, shusen.wang@stevens.edu

Abstract—We propose OverSketch, an approximate algo-

rithm for distributed matrix multiplication in serverless com-

puting. OverSketch leverages ideas from matrix sketching and

high-performance computing to enable cost-efficient multipli-

cation that is resilient to faults and straggling nodes pervasive

in low-cost serverless architectures. We establish statistical

guarantees on the accuracy of OverSketch and empirically

validate our results by solving a large-scale linear program

using interior-point methods and demonstrate a 34% reduction

in compute time on AWS Lambda.

Keywords-serverless computing, straggler mitigation,

sketched matrix multiplication

1. INTRODUCTION

Matrix multiplication is a frequent computational bottle-
neck in fields like scientific computing, machine learning,
graph processing, etc. In many applications, such matrices
are very large, with dimensions easily scaling up to millions.
Consequently, the last three decades have witnessed the devel-
opment of many algorithms for parallel matrix multiplication
for High Performance Computing (HPC). During the same
period, technological trends like Moore’s law made arithmetic
operations faster and, as a result, the bottleneck for parallel
computation shifted from computation to communication.
Today, the cost of moving data between nodes exceeds the
cost of arithmetic operations by orders of magnitude, and this
gap is increasing exponentially with time [1]–[3]. This has
led to the popularity of communication-avoiding algorithms
for parallel computation [3], [4].

In the last few years, there has been a paradigm shift
from HPC towards distributed computing on the cloud due to
extensive and inexpensive commercial offerings. In spite of
developments in recent years, server-based cloud computing
is inaccessible to a large number of users due to complex
cluster management and a myriad of configuration tools.
Serverless computing1 has recently begun to fill this void
by abstracting away the need for maintaining servers and
thus removing the need for complicated cluster management
while providing greater elasticity and easy scalability [5]–
[7]. Some examples are Amazon Web Services (AWS)
based Lambda, Microsoft Azure functions, and Google

This work was supported by NSF Grants CCF-1703678, CCF-1704967
and CCF-0939370 (Center for Science of Information)

1The term ‘serverless’ is a misnomer, servers are still used for computation
but their maintenance and provisioning is hidden from the user.

Stragglers

Figure 1: Job times for 3000 AWS Lambda nodes where the
median job time is around 40 seconds, and around 5% of the nodes
take 100 seconds, and two nodes take as much as 375 seconds to
complete the same job.

Cloud Functions. Large-scale matrix multiplication, being
embarrassingly parallel and frequently encountered, is a
natural fit for serverless computing.

Existing distributed algorithms for HPC/server-based sys-
tems cannot, in general, be extended to serverless computing
due to the following crucial differences between the two
architectures:
• Workers in the serverless setting, unlike cluster nodes, do

not communicate amongst themselves. They read/write data
directly from/to a single data storage entity (for example,
cloud storage like AWS S3) and the user is only allowed
to submit prespecified jobs and does not have any control
over the management of workers [5]–[7].

• Distributed computation in HPC/server-based systems is
generally limited by the number of workers at disposal.
However, in serverless systems, the number of inexpensive
workers can easily be scaled into the thousands, but these
low-commodity nodes are generally limited by the amount
of memory and lifespan available.

• Unlike HPC, nodes in the cloud-based systems suffer
degradation due to system noise which can be a result
of limited availability of shared resources, network latency,
hardware failure, etc. [8], [9]. This causes variability in
job times, which results in subsets of slower nodes, often
called stragglers, which significantly slow the computation.
Time statistics for worker job times are plotted in Figure
1 for AWS Lambda. Notably, there are a few workers

ar
X

iv
:1

81
1.

02
65

3v
2 

 [c
s.D

C]
  2

2 
Fe

b 
20

19

Courtesy of Gupta, et. al.  [2019]
Deadline 



Offloading Computation 

12

1 2 3 … 5N Servers

Data Collector

Source X1,X2, . . . ,XK

g(X1, . . . ,XK)

How to deal with faulty/slow nodes?



Communication: Approaching  Shannon 
Capacity

13



Coding for Communication 

14

Receiver

Source X1,X2, . . . ,XK

Encoder 

Decoder 

X1,X2, . . . ,XK

N Channel Use 1 2 N



Reed-Solomon Codes 

15

Receiver

Source X1,X2, . . . ,XK

u(z) = X1 +X2z + . . .+XKzK�1Encoder 

Decoder 

X1,X2, . . . ,XK

Channel u(�1) u(�2) u(�N )

Number of Samples � deg(u(Z)) + 1

Reconstructing u(z)

⌘ u(z) Polynomial

Complexity = K log(K)

Computation Efficiency 

Exact Decoding 



Coding for Computation 

16

1 2 3 … NN Computation
Servers

Data Collector

Source X1,X2, . . . ,XK

Encoder 

g(X1, . . . ,XK)

Decoder

Main Challenge: How to Design a Code that Goes Through The Computation 

Computation Efficiency 

Exact Decoding 



Coded Computing for Matrix Multiplication 

17

1 2 3 … N

Polynomial-Based Encoder 

Decoder 

A,B

AB

Deep Neural Network

Polynomial Codes [Yu, Maddah-Ali, Avestimehr, 2016]

Entangle Codes [Yu, Maddah-Ali, Avestimehr, 2017]

PolyDot Codes  [Dutta, Fahim, Haddadpour, 
Jeong, Cadambe, Grover [2017]



Coded Computing for Polynomial Computation 

18

1 2 3 … N

X1,X2, . . . ,XK

f(X1), . . . , f(XK)

Encoder 

Decoder 

f(x): Any general polynomial  

Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017] 



Lagrange Coded Computation

19

1 2 3 … N

X1,X2, . . . ,XK

f(X1), . . . , f(XK)

X̃1 = u(�1) X̃N = u(�N )

f(X̃1) = f(u(�1)) f(X̃N ) = f(u(�N ))

f(u(z))

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

u(z)

↵K↵1 ↵2

u(z)

Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017] 

Forming f(u(z))
f(u(↵k)) = f(Xk)Computing 



Lagrange Coded Computation

20

1 2 3 … N

X1,X2, . . . ,XK

f(X1), . . . , f(XK)

X̃1 = u(�1) X̃N = u(�N )

f(X̃1) = f(u(�1)) f(X̃N ) = f(u(�N ))

f(u(z))

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

u(z)

↵K↵1 ↵2

u(z)

Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017] 

Forming f(u(z))
f(u(↵k)) = f(Xk)Computing 

u(z) is a polynomial

f(z) is a polynomial

f(u(z)) is a polynomial as well  



Lagrange Coded Computation

21

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

↵K↵1 ↵2

f(u(z))

u(z)Challenges: 
1. Number of samples needed  K.deg(f)

2. Only works for polynomial functions

3. It Is not numerically stable, for real 
computation

# of Samples = deg(f(u(z)) + 1

= (K � 1) deg(f) + 1

Not Efficient  

Not for General 
Computing 

Not Working for Real 
Computation 



On Numerical Instability 

22

Coefficient = [6, -17, 0, -3, 12, 21, 22 , -17, 1, -24] Coefficient=[1769.4, 16.5, -3721.2, -54.1, 2513.7, 855, -606.2, -9.8, 285, 4 ,-24.2]

The error 
caused by 
floating-

point 
arithmetic



On Numerical Instability 

23

Results of non-straggling nodes

Vandermonde

-1

Inverting Vandermonde matrix is numerically unstable for 𝑛 ≥ 25.



Berrut Approximated Coded 
Computing 

24

Jahani-Nezahd, Maddah-Ali [2020]

Exact Computing Polynomial Encoding  



Berrut Approximated Coded Computation

25

üBased on Approximation Theory and Numerical Analysis

üis not limited to polynomial function computation (Model 
Agnostic)

ü works for any number of non-straggling worker nodes
üis not limited to computation over finite fields
üis numerically stable
ühas low computational complexity 



Berrut Coded Computation

26

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

u(z)
u(z) =

K�1X

k=0

(�1)k

(z�↵k)PK�1
j=0

(�1)j

(z�↵j)

Xk

Chebyshev points of the first kind:

Why Rational?  



Why Rational Interpolation? 

27

Runge’s Phenomenon 

u(z) =
K�1X

k=0

(�1)k

(z�↵k)PK�1
j=0

(�1)j

(z�↵j)

Xk

10 Equidistance Samples 
f(x) =

1

1 + 2.5x2



28

60 Chebyshev Samples 

Why Rational Interpolation? 

ü Prevents the problem of large oscillations near the endpoints (Runge
phenomenon)
ü Berrut’s rational interpolation is more numerically stable



Berrut Coded Computation

29

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

u(z)
u(z) =

K�1X

k=0

(�1)k

(z�↵k)PK�1
j=0

(�1)j

(z�↵j)

Xk

Chebyshev points of the first kind:

Chebyshev points of the second kind:

�j = cos
j⇡

N
, j 2 [N ]

u(�n)

f(u(�n))

n



Berrut Coded Computation

30

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

u(z)

↵K↵1 ↵2

u(z) =
K�1X

k=0

(�1)k

(z�↵k)PK�1
j=0

(�1)j

(z�↵j)

Xk

�j = cos
j⇡

N
, j 2 [N ]

F = {�̂1, �̂2, . . . , �̂|F|}

g(z) =

|F|�1X

n=0

(�1)n

(z��̂n)P|F|�1
j=0

(�1)j

(z��̂j)

f(u(�̂n))

f(Xk) ⇡ g(↵k)



Berrut Coded Computation

31

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

u(z)

↵K↵1 ↵2

F = {�̂1, �̂2, . . . , �̂|F|}

g(z) =

|F|�1X

n=0

(�1)n

(z��̂n)P|F|�1
j=0

(�1)j

(z��̂j)

f(u(�̂n))

ü Complexity of Decoding 

ü The computation is approximate. 

ü Works for any number of samples!

ü Works for general functions



Theoretical Guarantees  

32

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

u(z)

↵K↵1 ↵2

For a system with s stragglers, we have 

where                                . 

Theorem 

11

Remark 12: The application of BACC is not limited to polynimial functions, and this scheme can be used to

approximately evaluate any arbitrary functions.

Remark 13: In this scheme, we suggest to choose ↵j , j 2 [K � 1], as Chebyshev points of the first kind, and

we suggest to choose zi, i 2 [N ], as Chebyshev points of the second kind. In Theorem 7, we will prove that the

Lebesgue constant for Berrut’s rational interpolant grows logarithmically in the size of a subset of Chebyshev points.

Remark 14: In BACC, we suggest using Berrut’s rational interpolant rather than barycentric interpolant for the

decoding step. Because of the stragglers, the master node faces a subset of Chebyshev points as the interpolation

points rather than the entire set. If we had the entire set, calculating wi would have a well-behaved explicit formula

as (9). However, when we have a subset of them, we need to use the general formula (3) to calculate wi. Using

(3) itself is not numerically stable in practice. The reason is that, according to Remark 6, any subset of Chebyshev

points is not necessarily a set of properly distributed interpolation points for polynomial interpolants. Thus, we use

Berrut’s rational interpolant.

Remark 15: In the polynomial interpolation, the errors caused by floating-point arithmetic are significant, and

the barycentric formula has a good performance in this respect. However, the barycentric representation is not

well-conditioned for some distribution of the interpolation points. In particular, even barycentric interpolation in

equidistant points faces strange behavior called Runge phenomenon [42], which is a problem of large oscillations

near the endpoints. In such cases, no matter what formulation is used, polynomial interpolation is not recommended

for interpolation. Thus, for Lagrange coded computing, in the encoding step, we recommend to use barycentric

interpolation. In addition, the popular equidistant points are not recommended.

IV. ANALYTICAL GUARANTEES

In order to guarantee that the proposed interpolation points and the approximation result are acceptable, we

establish the following theorems.

Lemma 6. Assume Xn = {xj}
n
j=0 is a subset of X̃N = {x̃k}

N
k=0 with n+1 elements such that x0 > x1 > · · · > xn,

where n = N�s, and x̃k, k 2 [N ] are the Chebyshev points of the second kind, i.e., x̃k = cos k⇡
N , k 2 [N ], and s is

a constant number independent of N . The Lebesgue function associated with Berrut’s interpolant in Xn = {xj}
n
j=0

attains its maximum if there exist k̄ such that xj = x̃j = cos j⇡
N for j 2 [k̄] and xj = x̃j+s+1 = cos (j+s+1)⇡

N for

j 2 [k̄ + 1 : N � s], i.e., that all s elements not included in Xn are ordered consecutively in X̃N .

Proof. Lemma 6 expresses that the worst case in the interpolation step of the proposed scheme is occurred when

s straggling worker nodes correspond to the consecutive elements of X̃N = {x̃k}
N
k=0. The proof of Lemma 6 can

be found in Appendix VII-A.

Theorem 7. Assume X = (Xn)n2N is a family of well-spaced points with C = ⇡2(s+1)
2 and R = (s+1)(s+3)⇡2

4 ,

where n = N � s and s < N � 2. Also, the Lebesgue constant for Berrut’s rational interpolant in Xn is bounded

DRAFT

u(z) =
K�1X

k=0

(�1)k

(z�↵k)PK�1
j=0

(�1)j

(z�↵j)

Xk

||rBerrut(z)� h(z)||  2(1 +R) sin
� (s+ 1)⇡

2N

�
||h00(z)||

h(z) = f(u(z))



Performance  

33

deg 𝑓 = 25, 𝑁 = 500 , 𝐾 = 20

Lagrange Coded Computing 
needs 476 non-stragglers 
(Tolerates 24 Stragglers )

100 polynomial functions 𝑓, Randomly generated 



Training a Deep Neural Network: Single Server 

34

I. The master node sends mini-batches of the data 
to the worker node

II. Worker node computes the gradient based on the   
parameter of the model  with its data samples.

III. It updates the model using the gradients 

This Computation is heavy!
Let us do parallel processing 



Training a Deep Neural Network: Parallel 
Processing 

35

Master

0 1 2 … N

I. The master node sends independent mini-batches 
of the data to each worker node

II. Each worker node computes the gradient based 
on the   parameter of the model  with its data 
samples.

III. All server nodes the model using the gradients 

Challenge: Stragglers 



Training a Deep Neural Network: BACC

36

Master

0 1 2 … N

I. The master node encodes mini-batches of the 
data samples using encoding step of BACC.

II. Worker nodes compute the gradient based on the 
shared  parameter with their local coded data 
samples.

III. Having received the results from a set of non-
straggling worker nodes, the master node can 
approximately recover gradients using Berrut’s
rational interpolant.



Training a Deep Neural Network

37

Comparison between two distributed learning approaches: 
(a) data replication as a baseline scheme
(b) the proposed scheme

(a) (b) 



Training a Deep Neural Network

38Jahani-Nezhad, Maddah-Ali [2020]



Open Problems

• Using Approximation Technique for Coded Computing is a Wide Open 
Area 
• Jahani-Nezhad, Maddah-Ali  [2018]
• Fahim, Cadambe [2019]
• Jeong, Devulapalli, Cadambe,  Calmon [2021]
• Soleymani, Mahdavifar, Avestimehr [2021] 

• Connection with Joint Source-Channel Coding
• Uncoded Coded! 

• Security/Privacy 
• Federated Learning 

39



Distributed Encoding 

40

Abadi, Maddah-Ali [2021]



Sharding in Blockchain

Shard 1

Shard 2

Shard 3⋮

Blockchain

41

X1

X2

X3

f(X1)

f(X2)

f(X3)

Verifying all 
Transactions

(Dist. Computing)

Not Very Secure! 



PolyShard in Blockchain

Shard 1

Shard 2

Shard 3⋮

Blockchain

42

1

2

…

N

X1

X2

X3

u(�1)

u(�N )

u(�2)

f(u(�N ))

f(u(�1))

f(u(�2))
Verifying all 
Transactions

(Dist. Computing)
Or 

Recovering Data
(Dist. Storage)

Li, Yu, Yang,  Avestimehr, Kannan and Viswanath [2020] 

Decoder 

Partially Solved Decentralization, Security, 
Scalability Trilemma

X1 = u(↵1)

X2 = u(↵2)

XK = u(↵K)

↵K↵1 ↵2

u(z)



Challenge of Distributed Encoding

Shard 1

Shard 2

Shard 3⋮

Blockchain

43

1

2

…

N

X1

X2

X3

u(�1)

u(�N )

u(�2)

f(u(�N ))

f(u(�1))

f(u(�2))
Verifying all 
Transactions

(Dist. Computing)
Or 

Recovering Data
(Dist. Storage)

X1,1

X1,N

X1,2
Decoder 

Decoder Fails!
Number of Variables 

is more than Number 
of Equations



Classical Coding

Channel

Shannon approach
Probabilistic errors

Hamming approach
Adversarial errors

44

Source



Distributed Encoding 

Channel

45

Source

Source Nodes Encoding Nodes 

New Problem Formulation? 



Distributed Encoding: Problem Formulation 

Source 
node 1

Source 
node 2

Source 
node 3

Decoder

4- The decoder wants to decode the 
messages of the honest nodes correctly.

46

3- No information about the adversaries
and their behavior. 

1- Adversaries Collaborates
2-No information about      and     . 
3- Adversary can produce a limited 

number of messages 

5- Decoder doesn’t care to recover the messages of 
adversaries or even detect the adversaries.

Encoding Nodes 

Minimize the number of encoding nodes needed 
by the encoder to do its job



System Parameters  

𝜷: the number of adversaries

𝑲: the number of source nodes

𝒗: the maximum number of the 
messages of one adversarial source node

𝑵: the number of encoding nodes

𝒕: the number of encoding nodes 
that decoder needs to connect to.

𝐾 = 3

𝑁 = 5

𝛽 = 1

𝑣 = 3

47

# of adversaries

# of adversarial messages

# of source nodes

# of encoding nodes



The problem 

To characterize 𝑡∗, as the minimum of 𝑡 in an (𝑁, 𝐾, 𝛽, 𝑣) distributed encoding system. 

(Informally, at least how many encoding nodes does the decoder need?)

48

Design Parameters: 
1. Encoding Functions
2. Decoding Algorithm 



Fundamental limit of 𝑡

In an 𝑁,𝐾, 𝛽, 𝑣 distributed encoding system, with linear encoding function 
• if 𝑁 ≥ 𝐾 + 2𝛽 𝑣 − 1 + 1

𝑡!"#$%&
∗ = 𝐾 + 2𝛽 𝑣 − 1

• if 𝐾 ≤ 𝑁 ≤ 𝐾 + 2𝛽 𝑣 − 1
𝑡!"#$%&
∗ = 𝑁

Theorem 

49

Abadi, Maddah-Ali [2020]



Achievable Scheme 

50

𝑓( 𝑥(), … , 𝑥(* = 𝛼()𝑥() +⋯+ 𝛼*𝑥(* , 1 ≤ 𝑛 ≤ 𝑁

𝐂𝐚𝐬𝐞: 𝑁 ≥ 𝐾 + 2𝛽 𝑣 − 1 + 1

𝑥!" sent by source k to encoding node n 

Encoding function: 

𝛼!#are generated randomly from the field

Decoding Procedure: 

1. Consider every possible scenario for the set of adversaries and how they 
use their options. 

2. Form the corresponding set of linear equations and try solve it. 
3. If a case offers a solution, announce it. 



Achievable Scheme 

51

In any feasible solution, formed with 𝑡∗ = 𝐾 + 2𝛽(𝑣 − 1) coded symbols, the symbols 
of honest nodes have been recovered correctly.  

Lemma 

Proof: 
• Consider (1) an arbitrary feasible solation, and  (2) the real solution. 
• Forms two sets of equations by these two and merge them. 
• Prove that the gaps of honest symbols are zero.  



Converse

52

For any choice of coefficients, for 𝑡 < 𝐾 + 2𝛽 𝑣 − 1 coded symbols, there is a 
scenario, in which the decoder cannot decode the message of honest nodes correctly 
and uniquely. 

Lemma 

Basically, with techniques such as interference alignment, and carefully 
choosing the coefficients of the linear codes, we cannot avoid confusing the 
decoder. 



Open Problems

• Can nonlinear code offer gain? 
• If yes, what is the fundamental limits of the distributed encoding?

• For linear codes, can we reduce the complexity of decodoing?

• Other types of errors? 

• Fundamental limits of distributed coded computing?  

53



Multiuser Secret Sharing 

54

Khalesi, Mirmohseni, Maddah-Ali [2021]



Multi-User Secret Sharing 

55

Secret Messages X1,X2, . . . ,XK

User1 User2 User K

2 3 4 … N-1 N1

X1 X2 XK

1. Correctness: Each user can recover its own message
2. Privacy: Each user learns nothing about the message of other users 

Dealer

M bits

Xk 2 GF (2MRk)

Access Sets 



Multi-User Secret Sharing 

56

Secret Messages X1,X2, . . . ,XK

User1 User2 User K

2 3 4 … N-1 N1

X1 X2 XK

Objective: To characterize the capacity region of multi-user secret sharing as 
the set of all possible (R1, R2, …, RK), subject to correctness and privacy

Dealer

M bits

Xk 2 GF (2MRk)

Access Sets 



Multi-User Secret Sharing 

57

Secret Messages X1,X2, . . . ,XK

User1 User2 User K

2 3 4 … N-1 N1

X1 X2 XK

Introduced by Soleymani and Mahdavifar [2019]
• R1=R2= …=RK

• Specific (Structured) Access Sets 

Dealer

M bits

Xk 2 GF (2MRk)

Access Sets 



Main Result

The Capacity Region of Multi-User Secret Sharing Problem is the convex hull of all rate 
tuples satisfying: 

Theorem 

58

Khalesi, Mirmohseni, Maddah-Ali [2021]

Rk  min
k 6=k̃

|Ak\Ak̃|, 8k, k̃ 2 [K],

X

i2S
Ri  | [i2S Ai|,S ✓ [K].



Multi-User Secret Sharing: Naïve Solution 

59

2 3 4 … N-1

Secret Messages X1,X2, . . . ,XK

User1 User2 User K

N1

X1 X2 XK

Xk = (Xk,0, . . . ,Xk,rk�1)

uk(z) = Xk,0 + . . .+Xk,rk�1z
rk�1 +Uk,1z

rk + . . .+Uk,Tkz
rk+Tk

n 2 Ak uk(�n)

Divide each message into 

Form  the polynomial 

Chosen i.i.d

If                 , store                , at server n

It performs very badly

Tk = max |Ak \Ak̃|, k̃ 6= k



Multi-User Secret Sharing: Naïve Solution 

60

2 3 4 … N-1

Secret Messages X1,X2, . . . ,XK

User1 User2 User K

N1

X1 X2 XK

Xk = (Xk,0, . . . ,Xk,rk�1)

uk(z) = Xk,0 + . . .+Xk,rk�1z
rk�1 +Uk,1z

rk + . . .+Uk,Tkz
rk+Tk

n 2 Ak uk(�n)

Divide each message into 

Form  the polynomial 

If                 , store                , at server n

ui(�n) = uj(�n)Uk,n

for any two users i and j connected to server n

are solved for such that 

For any rate tuple in
the capacity region, it is possible

Tk = max |Ak \Ak̃|, k̃ 6= k



Open Problems

• Connection to Caching, Computing, Storage? 

• Fault Tolerance? Adversarial Settings? 

• …

61



Conclusion 

• Some of the results that we have in distributed systems are motivated 
and designed based on our conventional approach

• However, considering the new requirements necessitates new 
techniques which offers significant gains 

62


