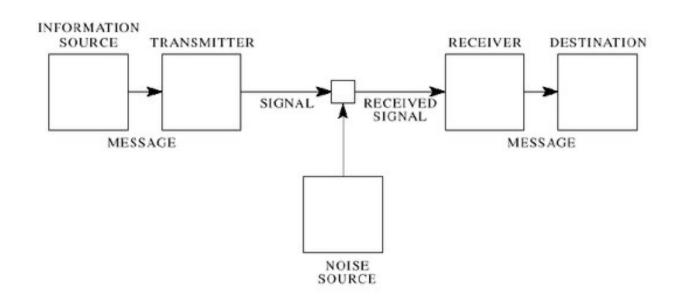
Coding for Distributed Information Systems

Mohammad Ali Maddah-Ali
Department of Electrical Engineering
Sharif University of Technology

Collaboration with: Mahtab Mirmohseni, Tayyebeh Jahani-Nezhad, Nastaran Abadi, Ali Khalesi

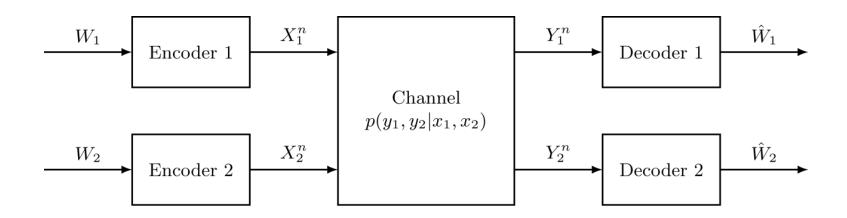
Coding Theory



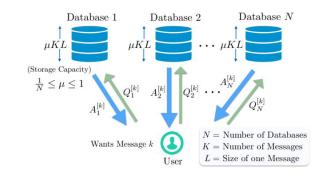
We can achieve vanishing probability of error with a non-vanishing rate.

Multi-User Information Theory

- Multi-Access Channels
- Broadcast Channels
- Interference Channels
- Relay Networks

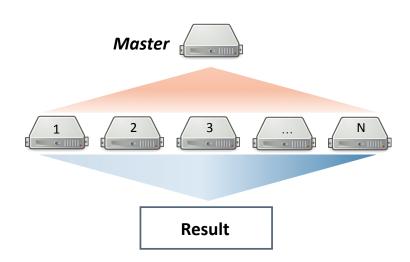


New Applications



Private Information Retrieval

Courtesy of Attia, Kumar, Tandon [2018]



Origin Server

Cache Server

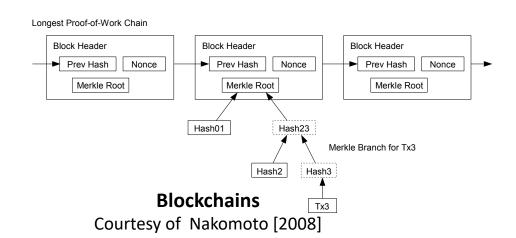
Cache Server

Cache Server

Cache Server

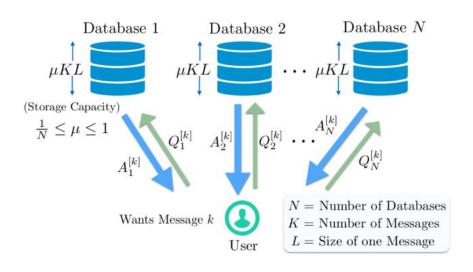
Distributed Cache Networks

Courtesy of Bruneau-Queyreix [2017]



Distributed Computing/Storage

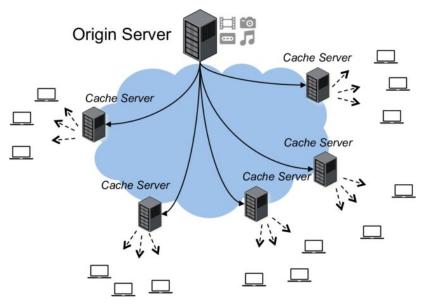
New Applications: New Aspect



Private Information Retrieval

Fig. Credit: of Attia, Kumar, Tandon [2018]

Receiver receives a file, while transmitters don't realize which!

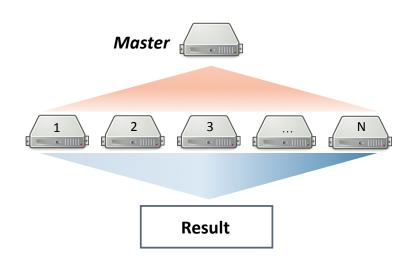


Distributed Cache Networks

Figure Credit: Bruneau-Queyreix [2017]

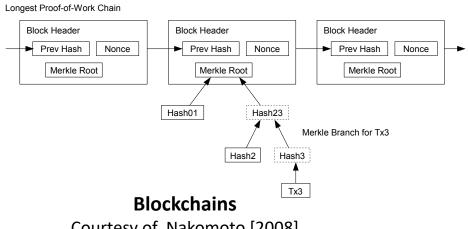
Communication with limited budget for side-information

In this talk



Distributed Computing/Storage

Approximate Decoding



Courtesy of Nakomoto [2008]

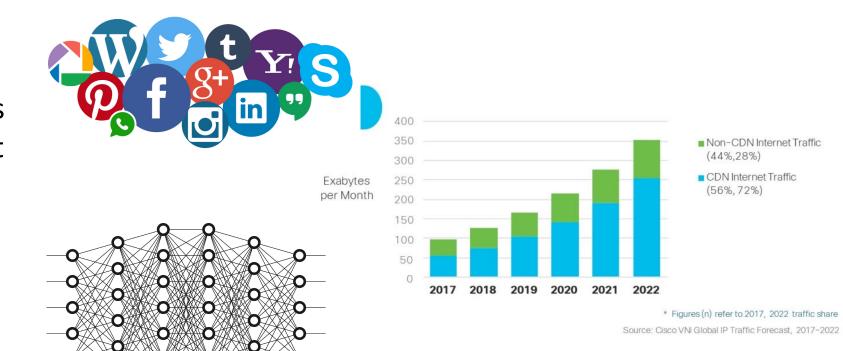
Distributed Encoding

Coded Computing and Approximate Decoding

Jahani-Nezahd, Maddah-Ali [2020]

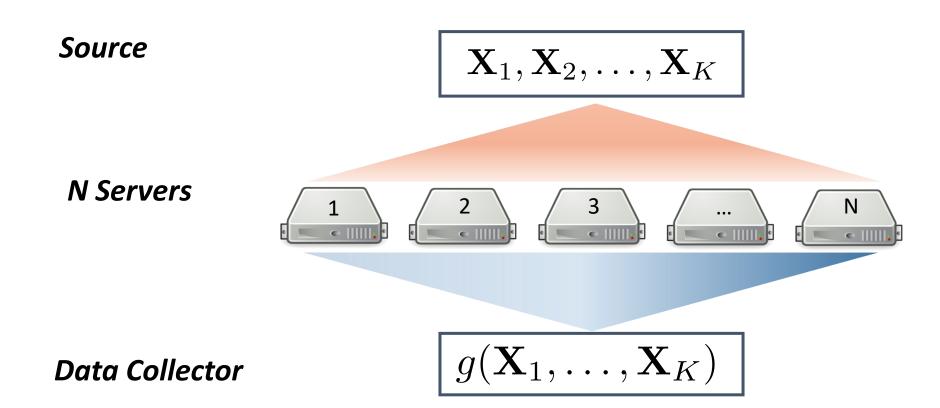
The Size of Data is Exploding

- Big Data
 - Social Networks: 10⁹
 nodes and 10¹² edges
 - 10¹⁰ Pages in internet
- Huge Models
 - 10¹⁰ weights in Deep Learning
- Enormous Computing

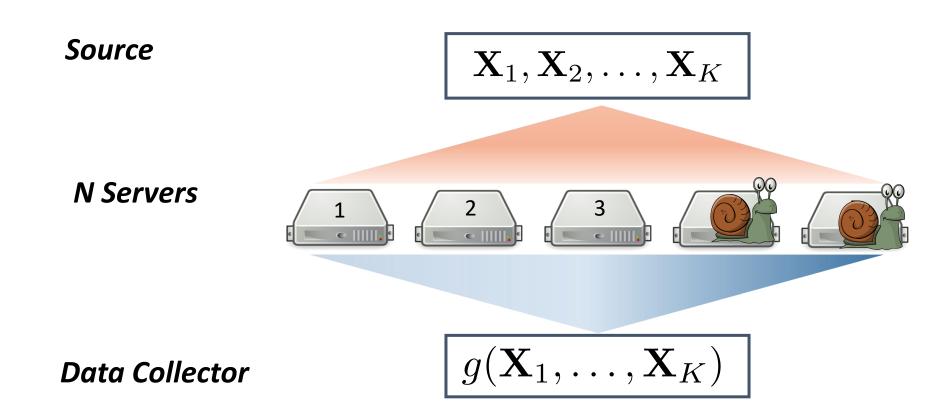


We have to offload the computation to many servers

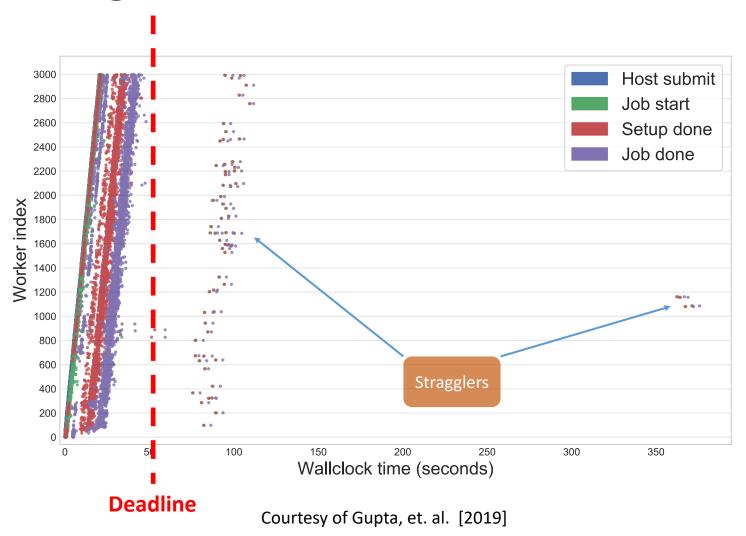
Offloading Computation



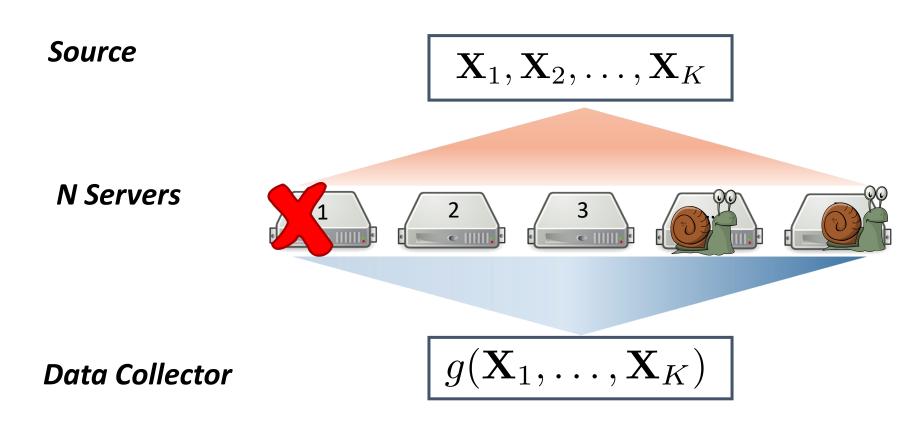
Offloading Computation



Separating lines of research

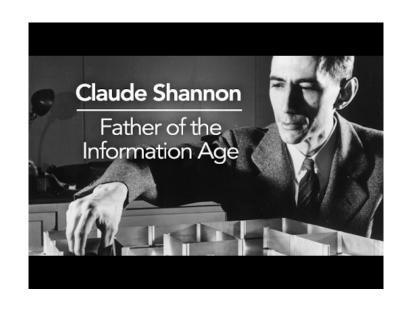


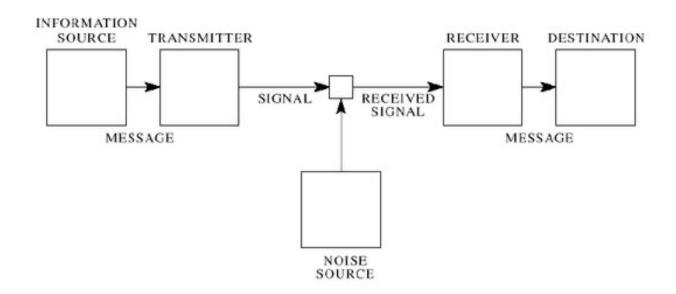
Offloading Computation



How to deal with faulty/slow nodes?

Communication: Approaching Shannon Capacity

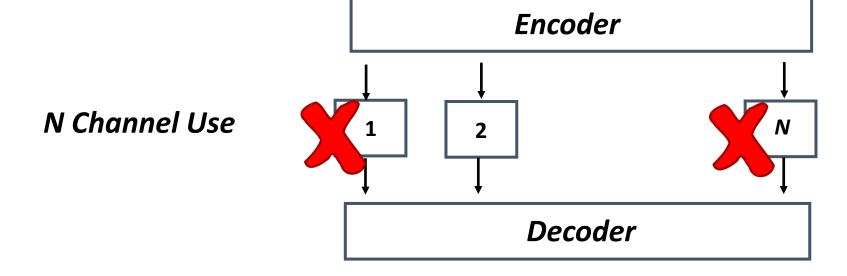




Coding for Communication

Source

$$[\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_K]$$



Receiver

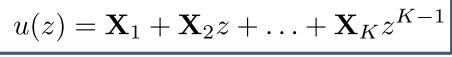
$$\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_K$$

Reed-Solomon Codes

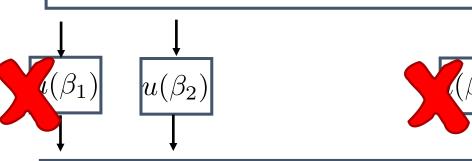
Source

$$|\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_K| \equiv u(z)$$
 Polynomia

Encoder



Channel



Computation Efficiency

Exact Decoding

Decoder

Reconstructing u(z)

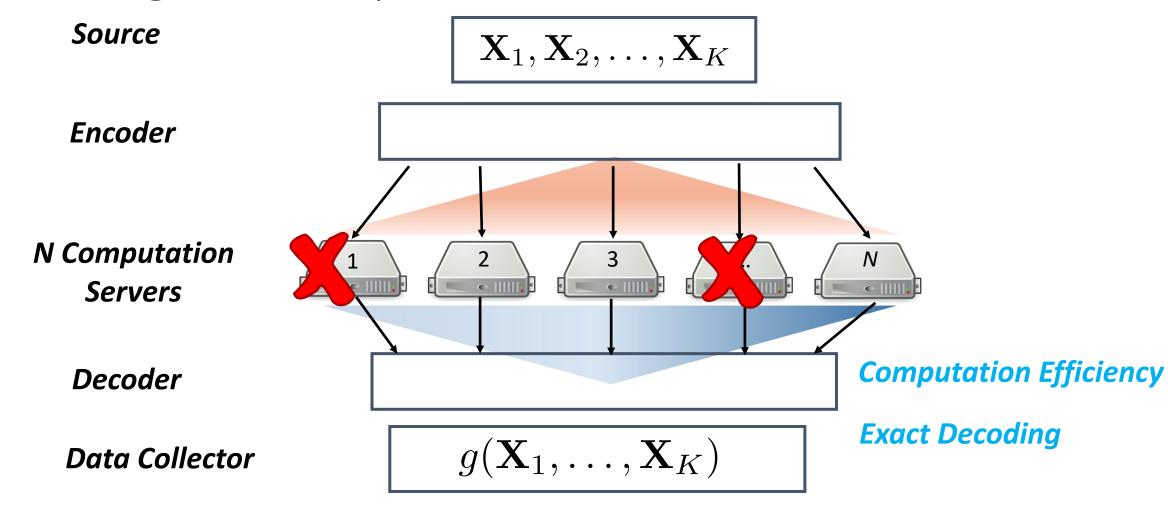
Receiver

Number of Samples
$$\geq \deg(u(Z)) + 1$$

$$X_1, X_2, \dots, X_K \quad \text{Complexity} = K \log(K)$$

$$Complexity = K \log(K)$$

Coding for Computation



Main Challenge: How to Design a Code that Goes Through The Computation

Coded Computing for Matrix Multiplication

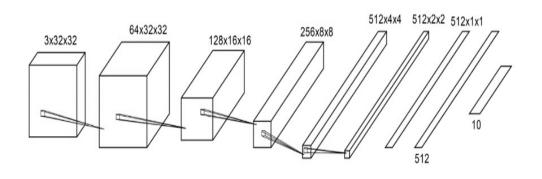
A, BPolynomial-Based Encoder Decoder \mathbf{AB}

Polynomial Codes [Yu, Maddah-Ali, Avestimehr, 2016]

Entangle Codes [Yu, Maddah-Ali, Avestimehr, 2017]

PolyDot Codes [Dutta, Fahim, Haddadpour, Jeong, Cadambe, Grover [2017]

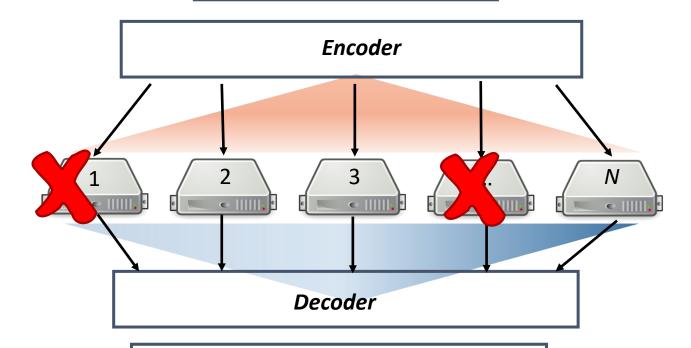
Deep Neural Network



Coded Computing for Polynomial Computation

$$\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_K$$

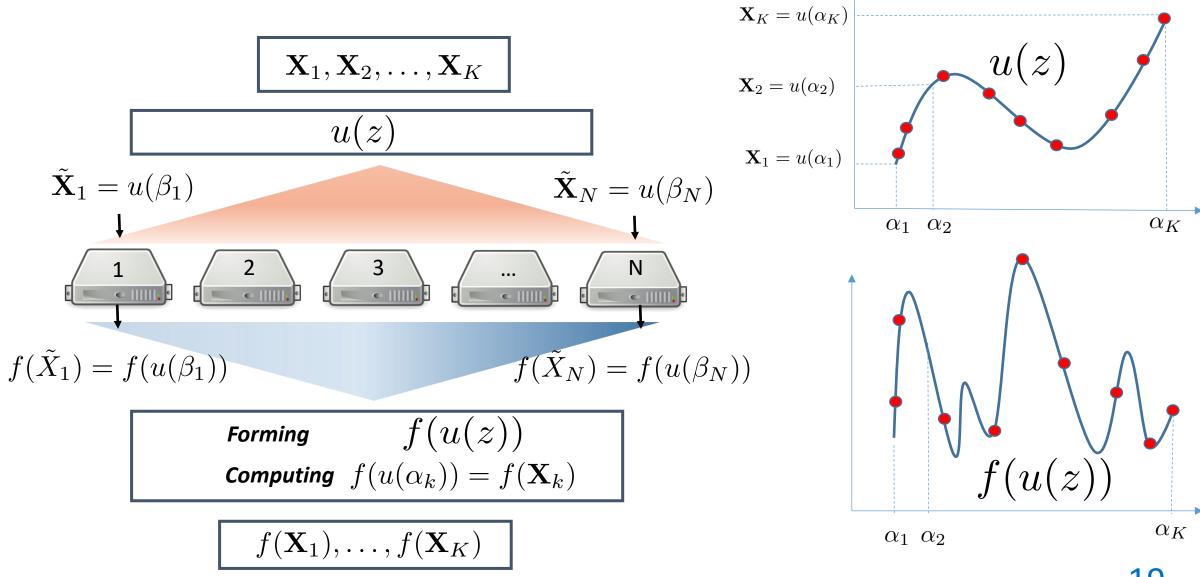
Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017]



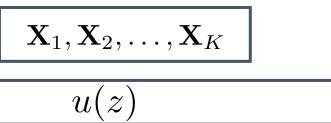
$$f(\mathbf{X}_1), \dots, f(\mathbf{X}_K)$$

f(x): Any general polynomial

Lagrange Coded Computation



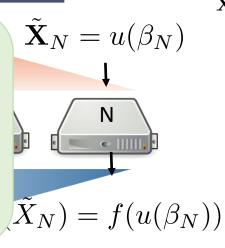
Lagrange Coded Computation

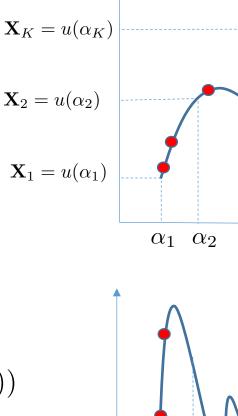


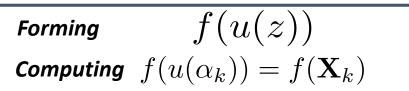
u(z) is a polynomial

f(z) is a polynomial

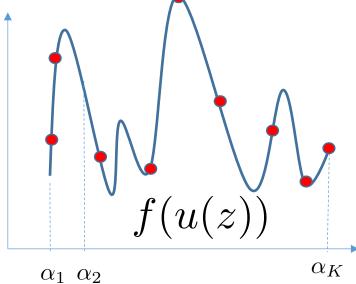
f(u(z)) is a polynomial as well







$$f(\mathbf{X}_1), \dots, f(\mathbf{X}_K)$$



 α_K

Lagrange Coded Computation

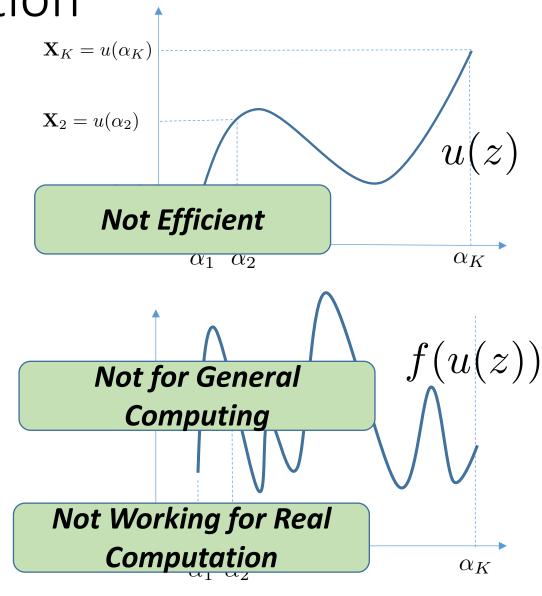
Challenges:

Number of samples needed K.deg(f)

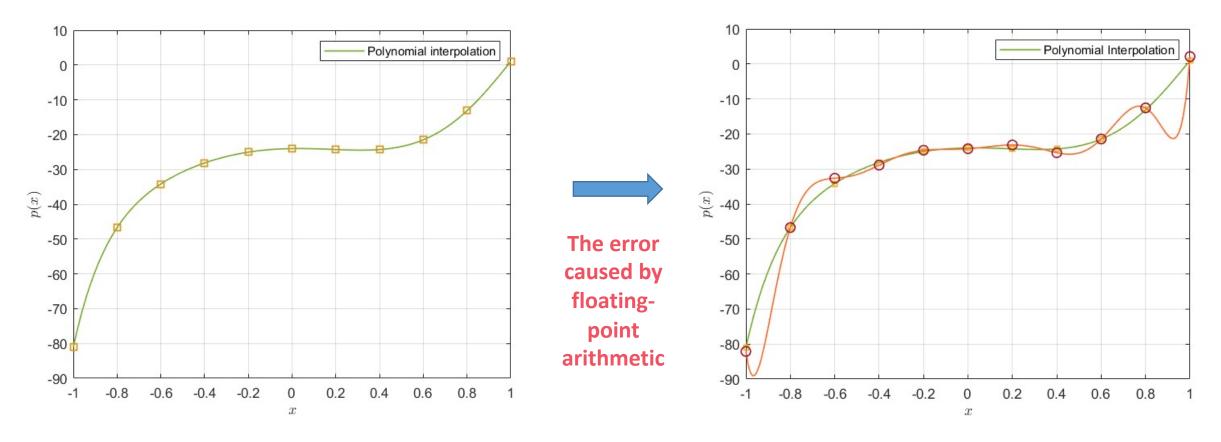
of Samples =
$$deg(f(u(z)) + 1)$$

= $(K - 1) deg(f) + 1$

- 2. Only works for polynomial functions
- 3. It is not numerically stable, for real computation



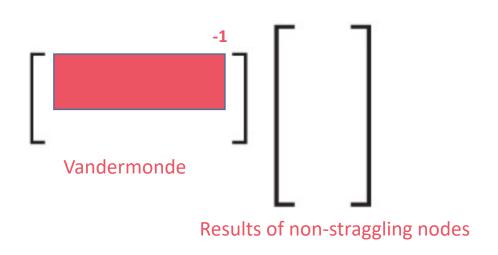
On Numerical Instability

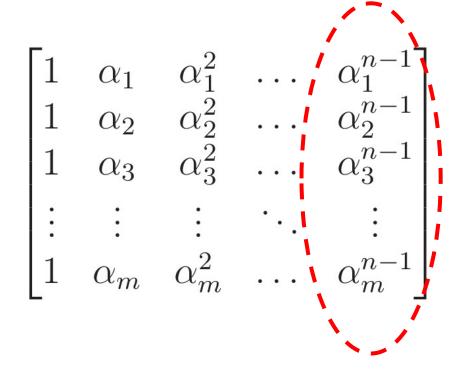


Coefficient = [6, -17, 0, -3, 12, 21, 22, -17, 1, -24]

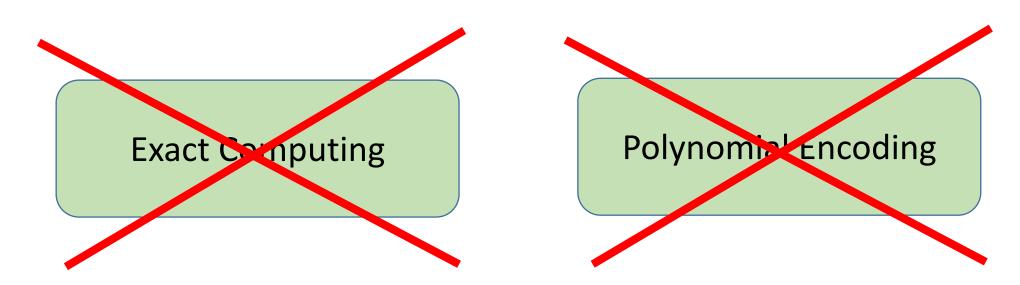
Coefficient=[1769.4, 16.5, -3721.2, -54.1, 2513.7, 855, -606.2, -9.8, 285, 4, -24.2]

On Numerical Instability





Inverting Vandermonde matrix is **numerically unstable** for $n \ge 25$.



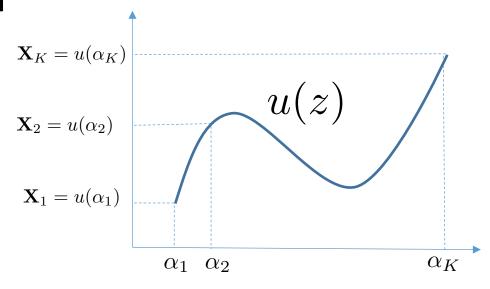
Berrut Approximated Coded Computing

Jahani-Nezahd, Maddah-Ali [2020]

Berrut Approximated Coded Computation

- ✓ Based on Approximation Theory and Numerical Analysis
- ✓ is **not limited** to polynomial function computation (Model Agnostic)
- ✓ works for any number of non-straggling worker nodes
- ✓ is **not limited** to computation over finite fields
- ✓ is **numerically stable**
- √ has low computational complexity

$$u(z) = \sum_{k=0}^{K-1} \frac{\frac{(-1)^k}{(z-\alpha_k)}}{\sum_{j=0}^{K-1} \frac{(-1)^j}{(z-\alpha_j)}} \mathbf{X}_k$$

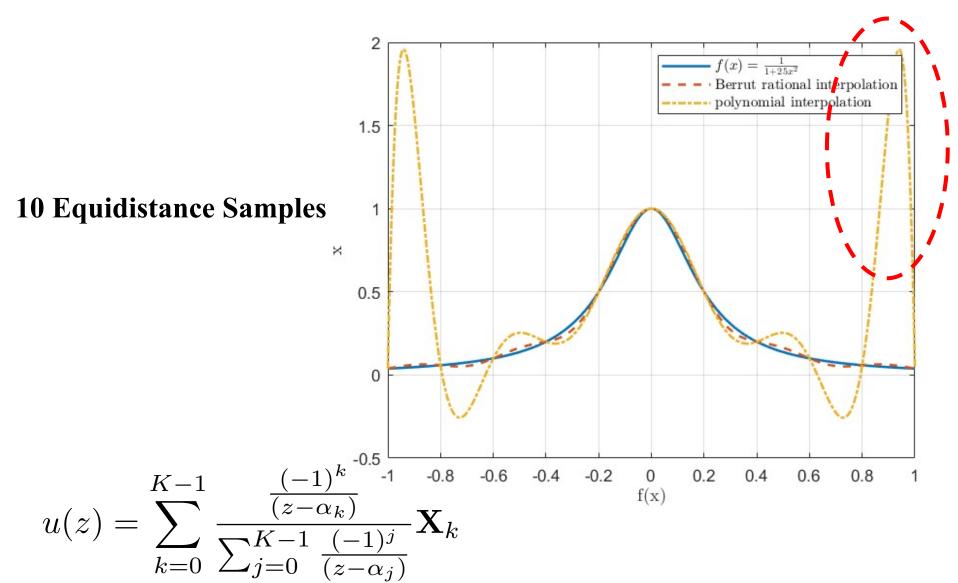


Chebyshev points of the first kind:

$$\alpha_j = \cos(\frac{(2j+1)\pi}{2K}), \qquad j \in [K-1]$$

Why Rational?

Why Rational Interpolation?

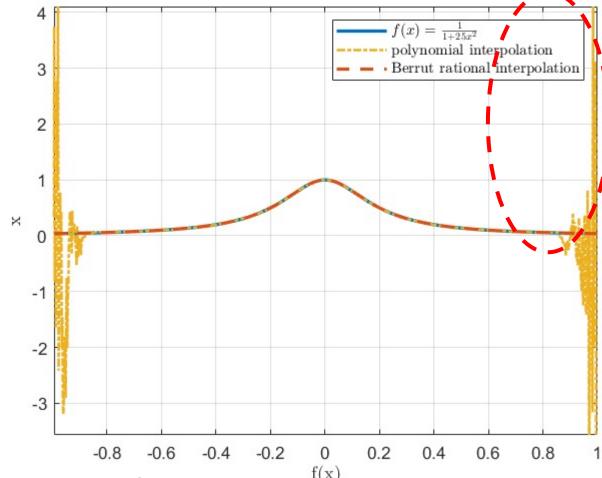


Runge's Phenomenon

$$f(x) = \frac{1}{1 + 2.5x^2}$$

Why Rational Interpolation?

60 Chebyshev Samples



- \checkmark Prevents the problem of large oscillations near the endpoints (Runge phenomenon)
- ✓ Berrut's rational interpolation is more numerically stable

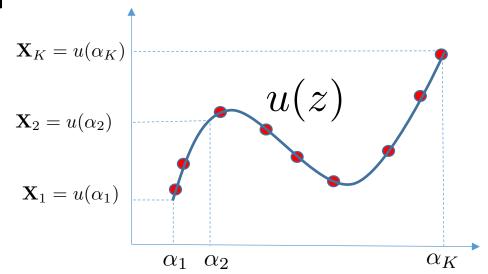
$$u(z) = \sum_{k=0}^{K-1} \frac{\frac{(-1)^k}{(z-\alpha_k)}}{\sum_{j=0}^{K-1} \frac{(-1)^j}{(z-\alpha_j)}} \mathbf{X}_k$$

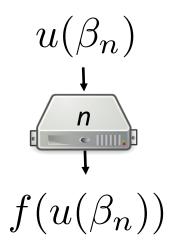
Chebyshev points of the first kind:

$$\alpha_j = \cos(\frac{(2j+1)\pi}{2K}), \qquad j \in [K-1]$$

Chebyshev points of the second kind:

$$\beta_j = \cos \frac{j\pi}{N}, \quad j \in [N]$$





$$u(z) = \sum_{k=0}^{K-1} \frac{\frac{(-1)^k}{(z-\alpha_k)}}{\sum_{j=0}^{K-1} \frac{(-1)^j}{(z-\alpha_j)}} \mathbf{X}_k$$

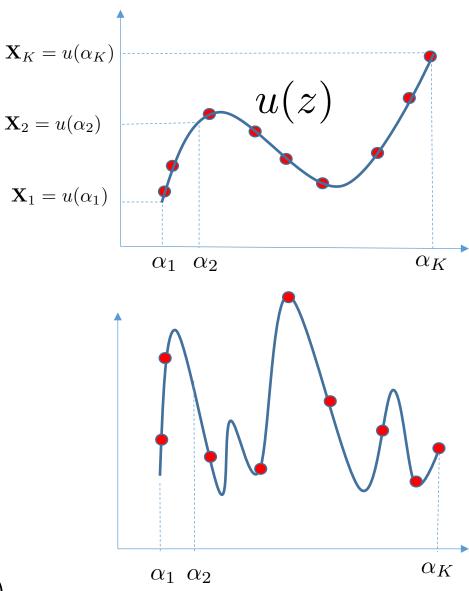
$$\alpha_j = \cos(\frac{(2j+1)\pi}{2K}), \quad j \in [K-1]$$

$$\beta_j = \cos\frac{j\pi}{N}, \quad j \in [N]$$

$$\mathcal{F} = \{\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_{|\mathcal{F}|}\}$$

$$g(z) = \sum_{n=0}^{|\mathcal{F}|-1} \frac{\frac{(-1)^n}{(z-\hat{\beta}_n)}}{\sum_{j=0}^{|\mathcal{F}|-1} \frac{(-1)^j}{(z-\hat{\beta}_j)}} f(u(\hat{\beta}_n))$$

$$f(\mathbf{X}_k) \approx g(\alpha_k)$$

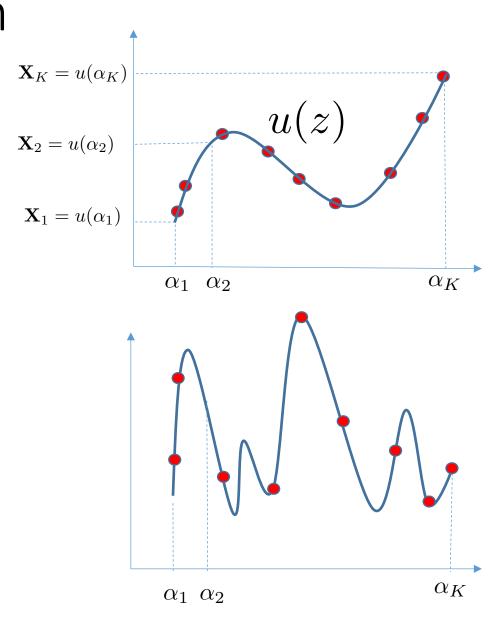


30

$$\mathcal{F} = \{\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_{|\mathcal{F}|}\}$$

$$g(z) = \sum_{n=0}^{|\mathcal{F}|-1} \frac{\frac{(-1)^n}{(z-\hat{\beta}_n)}}{\sum_{j=0}^{|\mathcal{F}|-1} \frac{(-1)^j}{(z-\hat{\beta}_j)}} f(u(\hat{\beta}_n))$$

- ✓ Complexity of Decoding $O(|\mathcal{F}|)$
- ✓ The computation is approximate.
- ✓ Works for any number of samples!
- ✓ Works for general functions



Theoretical Guarantees

 $\mathbf{X}_K = u(\alpha_K)$

Theorem

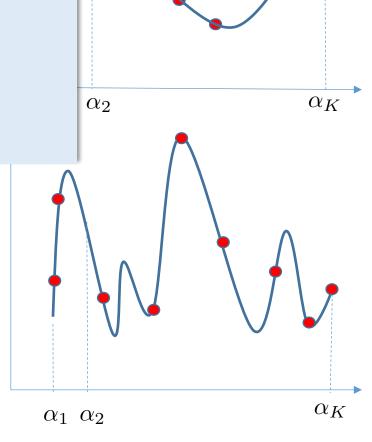
For a system with s stragglers, we have

$$||r_{\text{Berrut}}(z) - h(z)|| \le 2(1+R)\sin\left(\frac{(s+1)\pi}{2N}\right)||h''(z)||$$

where $R = \frac{(s+1)(s+3)\pi^2}{4}$.

$$u(z) = \sum_{k=0}^{K-1} \frac{\frac{(-1)^k}{(z-\alpha_k)}}{\sum_{j=0}^{K-1} \frac{(-1)^j}{(z-\alpha_j)}} \mathbf{X}_k$$

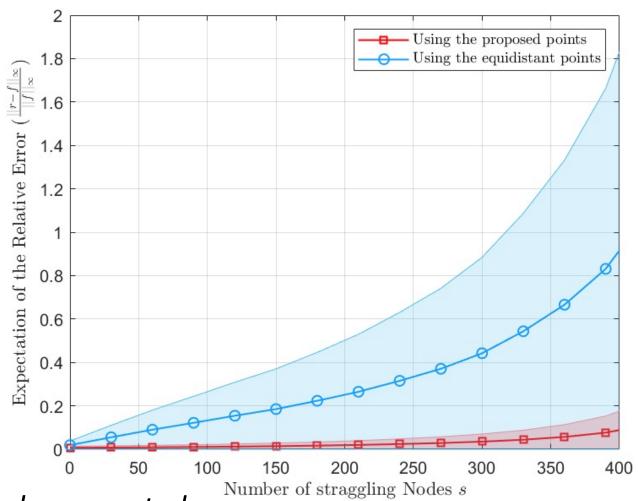
$$h(z) = f(u(z))$$



Performance

$$\deg f = 25, N = 500, K = 20$$

Lagrange Coded Computing needs 476 non-stragglers (Tolerates 24 Stragglers)

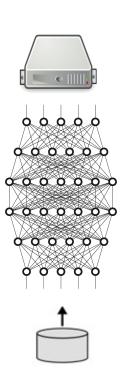


100 polynomial functions f, Randomly generated

Training a Deep Neural Network: Single Server

- The master node sends mini-batches of the data to the worker node
- II. Worker node computes the gradient based on the parameter of the model with its data samples.
- III. It updates the model using the gradients

This Computation is heavy! Let us do parallel processing

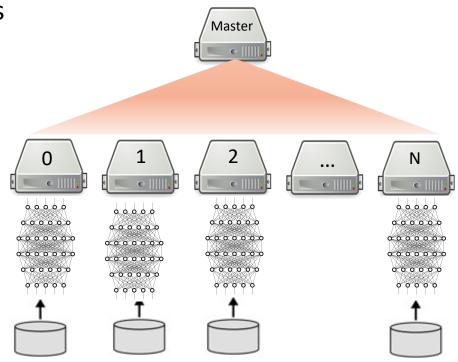


Training a Deep Neural Network: Parallel Processing

I. The master node sends independent mini-batches of the data to each worker node

II. Each worker node computes the gradient based on the parameter of the model with its data samples.

III. All server nodes the model using the gradients



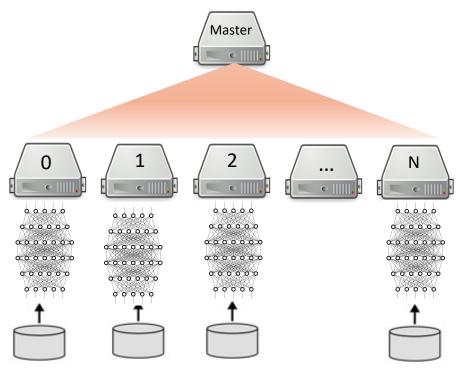
Challenge: Stragglers

Training a Deep Neural Network: BACC

 The master node encodes mini-batches of the data samples using encoding step of BACC.

II. Worker nodes compute the gradient based on the shared parameter with their local coded data samples.

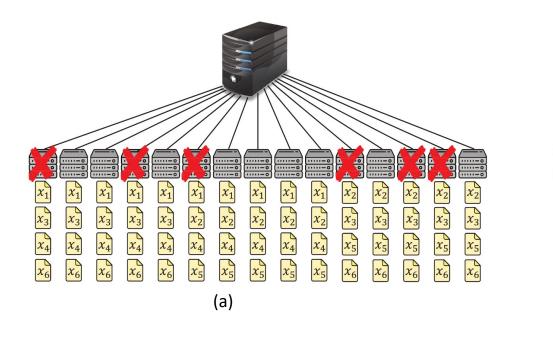
III. Having received the results from a set of nonstraggling worker nodes, the master node can approximately recover gradients using Berrut's rational interpolant.

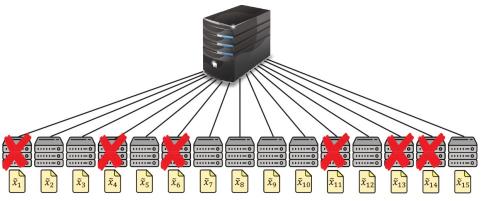


Training a Deep Neural Network

Comparison between two distributed learning approaches:

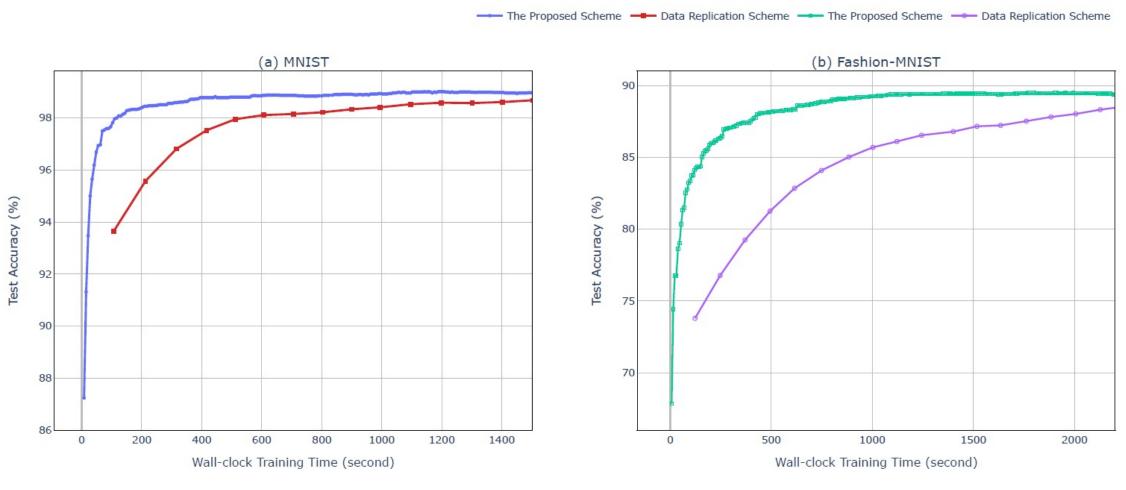
- (a) data replication as a baseline scheme
- (b) the proposed scheme





(b)

Training a Deep Neural Network



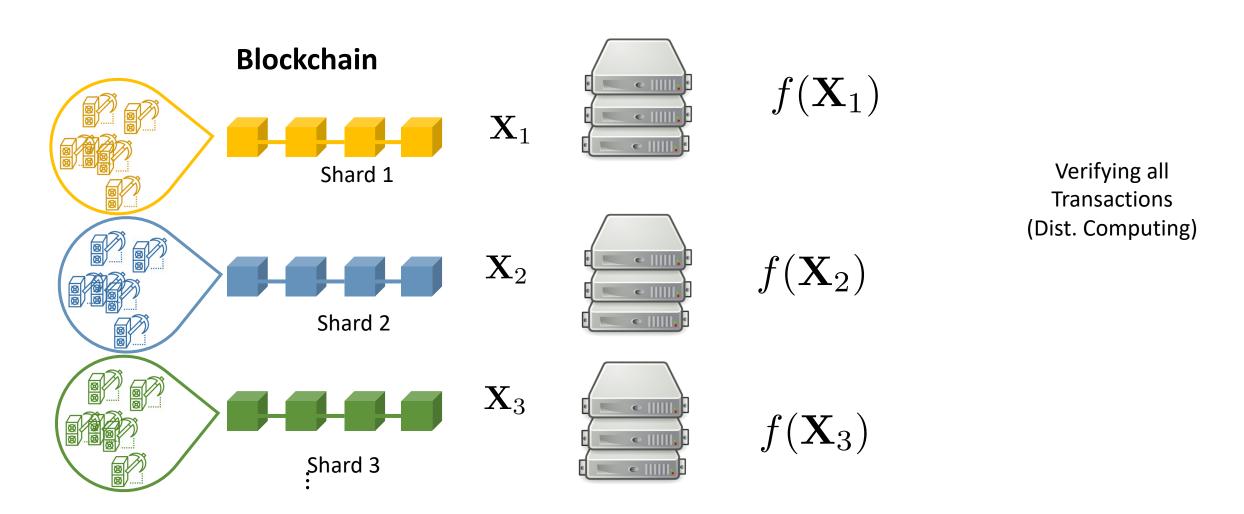
Open Problems

- Using Approximation Technique for Coded Computing is a Wide Open Area
 - Jahani-Nezhad, Maddah-Ali [2018]
 - Fahim, Cadambe [2019]
 - Jeong, Devulapalli, Cadambe, Calmon [2021]
 - Soleymani, Mahdavifar, Avestimehr [2021]
- Connection with Joint Source-Channel Coding
 - Uncoded Coded!
- Security/Privacy
- Federated Learning

Distributed Encoding

Abadi, Maddah-Ali [2021]

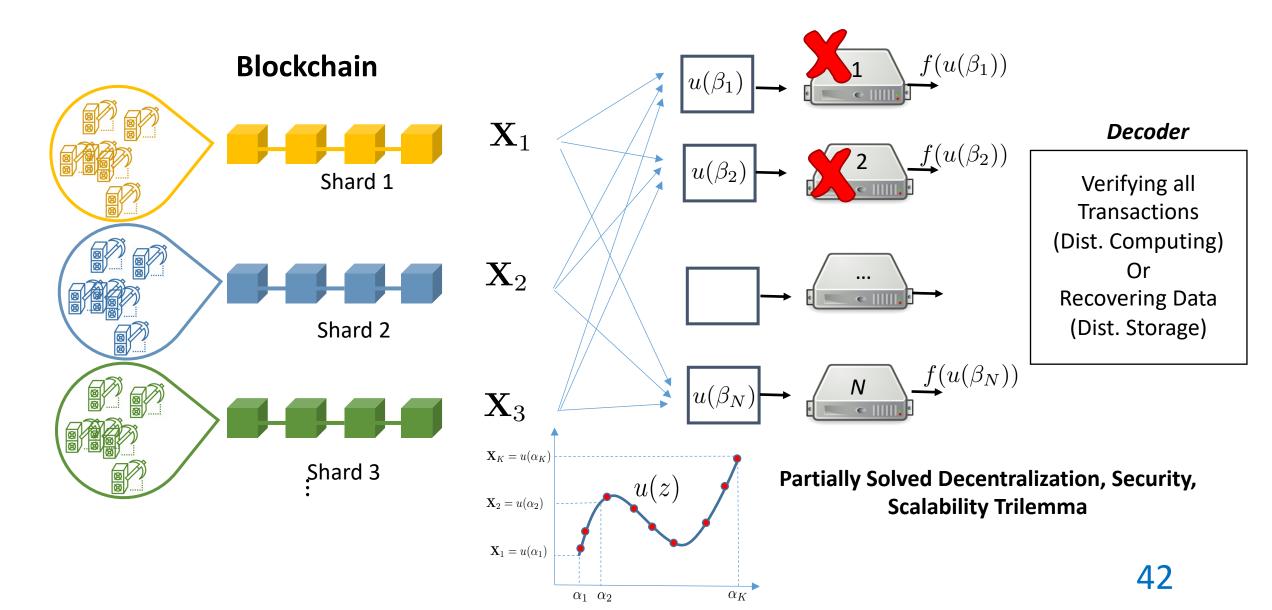
Sharding in Blockchain



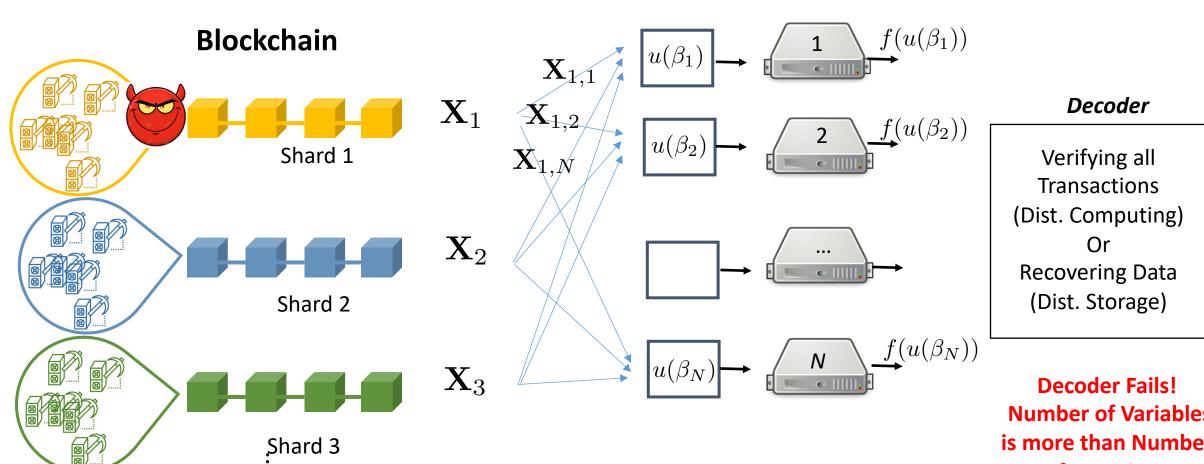
Not Very Secure!

PolyShard in Blockchain

Li, Yu, Yang, Avestimehr, Kannan and Viswanath [2020]

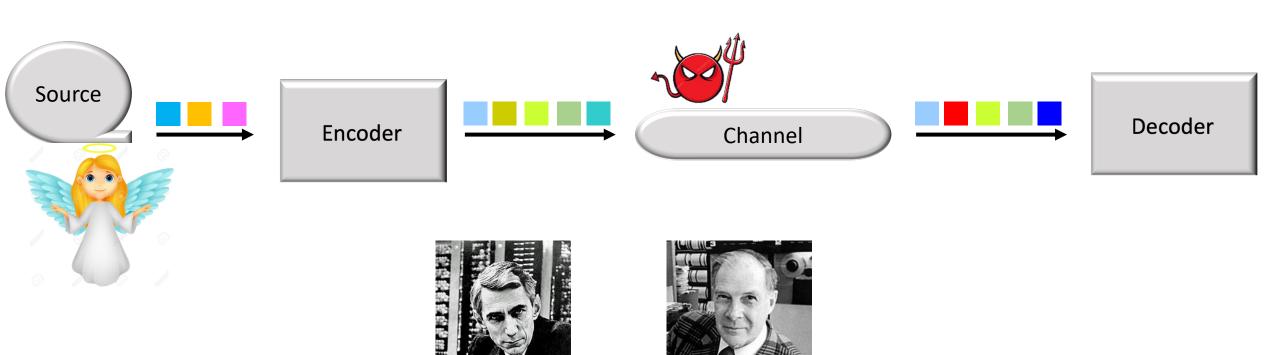


Challenge of Distributed Encoding



Number of Variables is more than Number of Equations

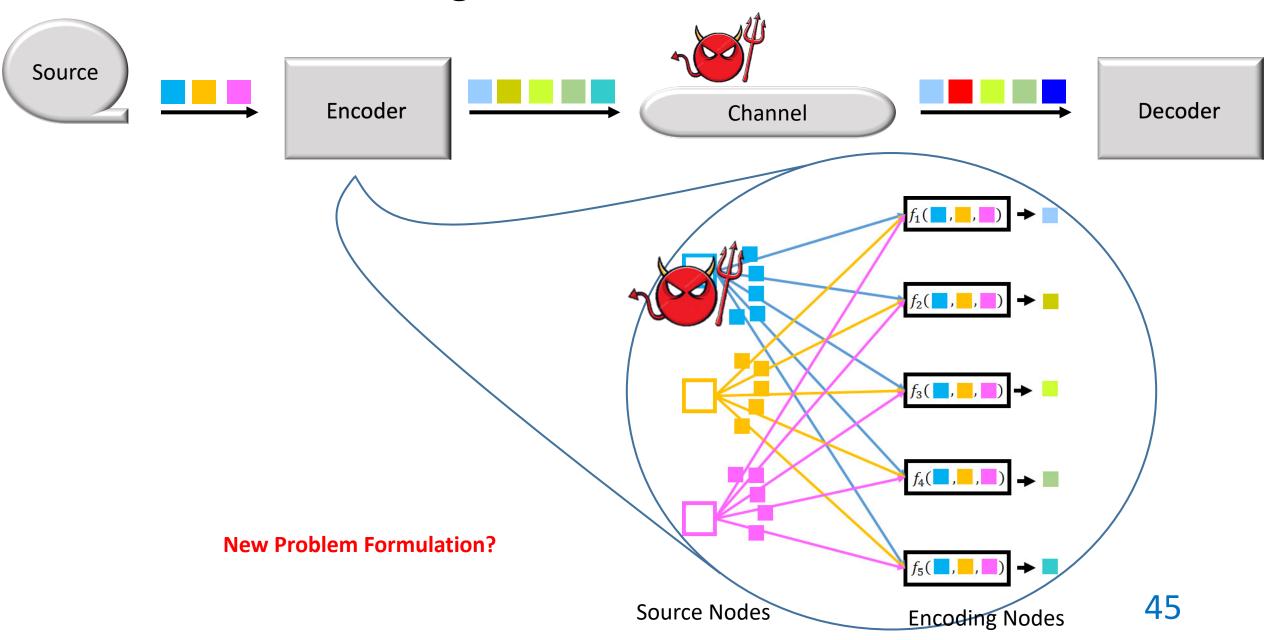
Classical Coding



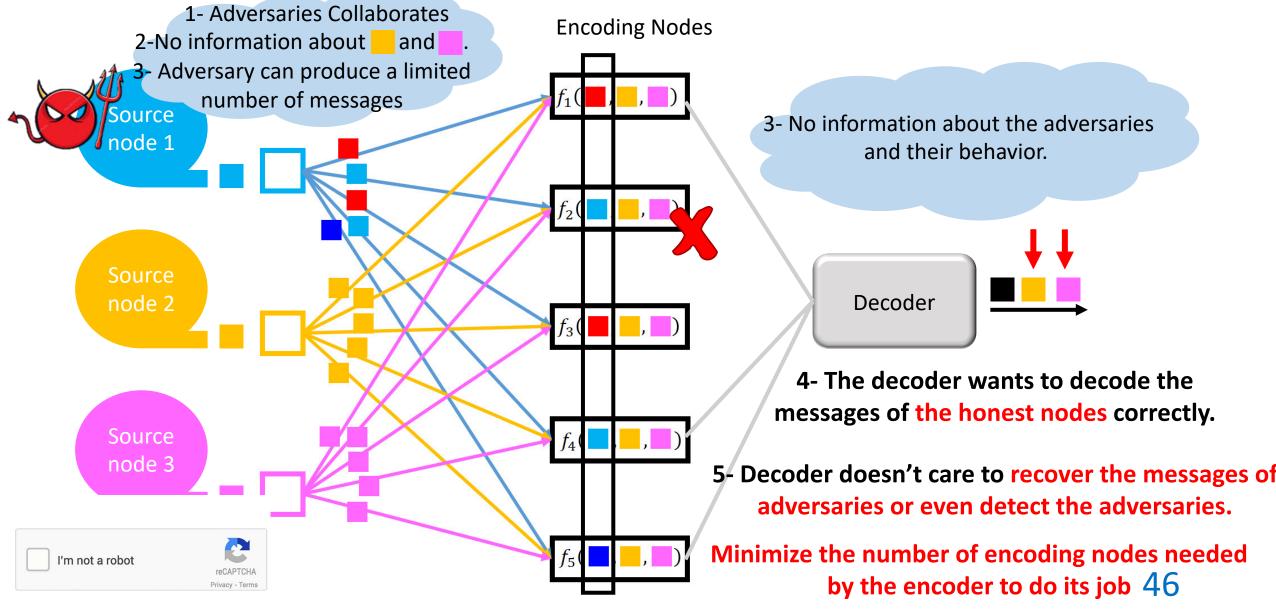
Shannon approach Probabilistic errors

Hamming approach
Adversarial errors

Distributed Encoding



Distributed Encoding: Problem Formulation



System Parameters

N=5

of encoding nodes

 $f_1(\blacksquare, \blacksquare, \blacksquare)$

of adversaries

v = 3

K = 3

of source nodes

of adversarial messages

 β : the number of adversaries

K: the number of source nodes

N: the number of encoding nodes

 $oldsymbol{v}$: the maximum number of the messages of one adversarial source node

t: the number of encoding nodes that decoder needs to connect to.

The problem

To characterize t^* , as the minimum of t in an (N, K, β, v) distributed encoding system.

(Informally, at least how many encoding nodes does the decoder need?)

Design Parameters:

- 1. Encoding Functions
- 2. Decoding Algorithm

Fundamental limit of t

Theorem

Abadi, Maddah-Ali [2020]

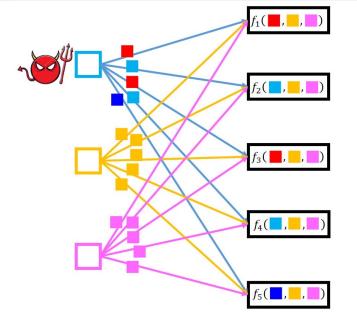
In an (N, K, β, v) distributed encoding system, with linear encoding function

• if $N \ge K + 2\beta(v - 1) + 1$

$$t_{\text{linear}}^* = K + 2\beta(v - 1)$$

• if $K \le N \le K + 2\beta(v-1)$

$$t_{\text{linear}}^* = N$$



 $\boldsymbol{\beta}$: the number of adversaries

 \emph{v} : the maximum number of the messages of one adversarial source node

K: the number of source nodes

N: the number of encoding nodes

t: the number of encoding nodes that decoder needs to connect to.

Achievable Scheme

Case: $N \ge K + 2\beta(v - 1) + 1$

 x_{nk} sent by source k to encoding node n

Encoding function:

$$f_n(x_{n1}, ..., x_{nK}) = \alpha_{n1}x_{n1} + \cdots + \alpha_K x_{nK}$$
, $1 \le n \le N$

 α_{n1} are generated randomly from the field

Decoding Procedure:

- 1. Consider every possible scenario for the set of adversaries and how they use their options.
- 2. Form the corresponding set of linear equations and try solve it.
- 3. If a case offers a solution, announce it.

Achievable Scheme

Lemma

In any feasible solution, formed with $t^* = K + 2\beta(v - 1)$ coded symbols, the symbols of honest nodes have been recovered correctly.

Proof:

- Consider (1) an arbitrary feasible solation, and (2) the real solution.
- Forms two sets of equations by these two and merge them.
- Prove that the gaps of honest symbols are zero.

Converse

Lemma

For any choice of coefficients, for $t < K + 2\beta(v - 1)$ coded symbols, there is a scenario, in which the decoder cannot decode the message of honest nodes correctly and uniquely.

Basically, with techniques such as interference alignment, and carefully choosing the coefficients of the linear codes, we cannot avoid confusing the decoder.

Open Problems

- Can nonlinear code offer gain?
 - If yes, what is the fundamental limits of the distributed encoding?
- For linear codes, can we reduce the complexity of decodoing?

• Other types of errors?

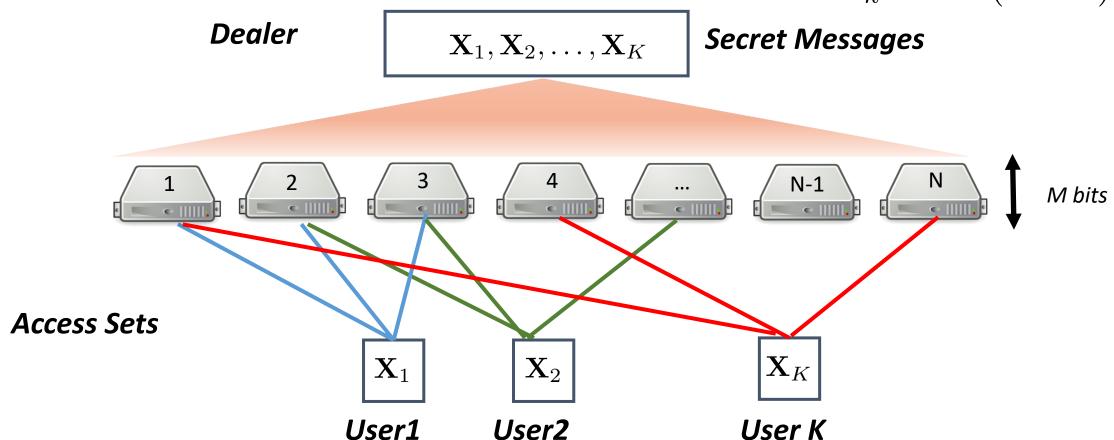
Fundamental limits of distributed coded computing?

Multiuser Secret Sharing

Khalesi, Mirmohseni, Maddah-Ali [2021]

Multi-User Secret Sharing

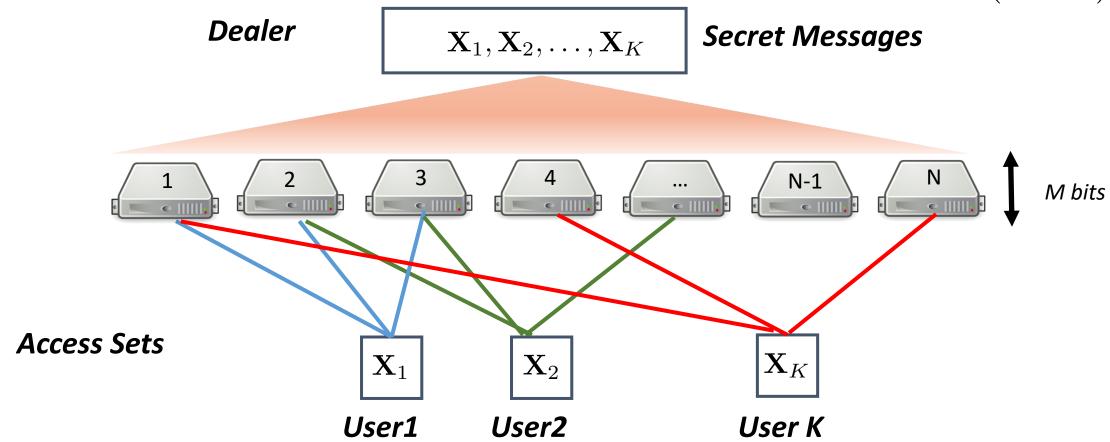
 $\mathbf{X}_k \in GF(2^{MR_k})$



- 1. Correctness: Each user can recover its own message
- 2. Privacy: Each user learns nothing about the message of other users

Multi-User Secret Sharing

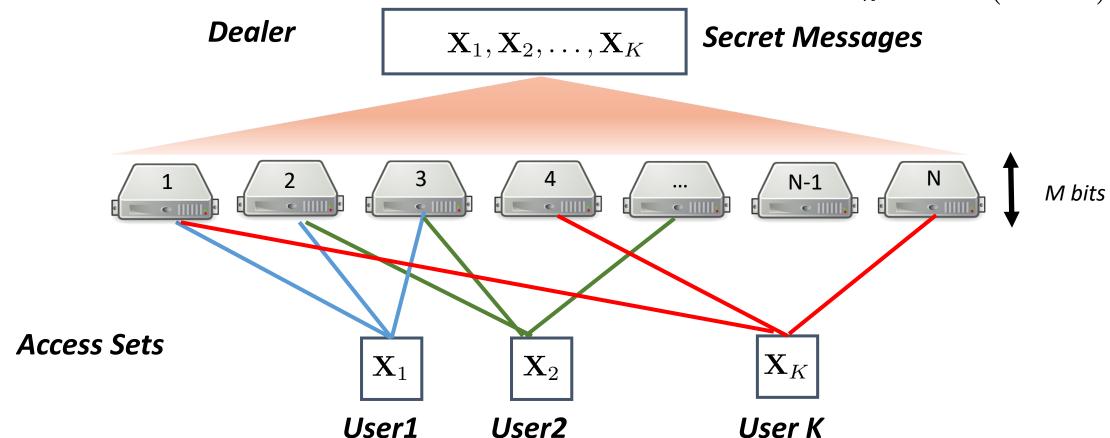
 $\mathbf{X}_k \in GF(2^{MR_k})$



Objective: To characterize the capacity region of multi-user secret sharing as the set of all possible $(R_1, R_2, ..., R_K)$, subject to correctness and privacy

Multi-User Secret Sharing

 $\mathbf{X}_k \in GF(2^{MR_k})$



Introduced by Soleymani and Mahdavifar [2019]

- $R_1 = R_2 = \dots = R_K$
- Specific (Structured) Access Sets

Main Result

Theorem

Khalesi, Mirmohseni, Maddah-Ali [2021]

The Capacity Region of Multi-User Secret Sharing Problem is the convex hull of all rate tuples satisfying:

$$R_k \leq \min_{k \neq \tilde{k}} |\mathcal{A}_k \setminus \mathcal{A}_{\tilde{k}}|, \forall k, \tilde{k} \in [K],$$

$$\sum_{i\in\mathcal{S}} R_i \le |\cup_{i\in\mathcal{S}} \mathcal{A}_i|, \mathcal{S} \subseteq [K].$$

Multi-User Secret Sharing: Naïve Solution

Secret Messages

$$\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_K$$

Divide each message into

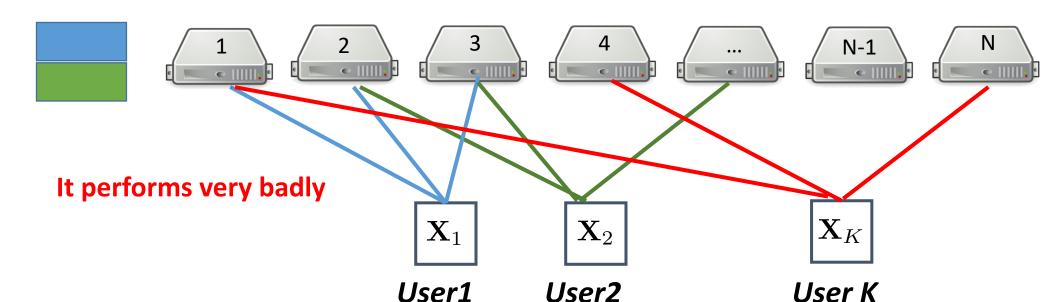
$$\mathbf{X}_k = (\mathbf{X}_{k,0}, \dots, \mathbf{X}_{k,r_{k-1}})$$

Chosen i.i.d

59

Form the polynomial $u_k(z) = \mathbf{X}_{k,0} + \ldots + \mathbf{X}_{k,r_k-1} z^{r_k-1} + \mathbf{U}_{k,1} z^{r_k} + \ldots + \mathbf{U}_{k,T_k} z^{r_k+T_k}$

If $n\in\mathcal{A}_k$, store $u_k(eta_n)$, at server n $T_k=\max|\mathcal{A}_k\cap\mathcal{A}_{ ilde{k}}|,\ ilde{k}
eq k$



Multi-User Secret Sharing: Naïve Solution

Secret Messages

 $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_K$

Divide each message into

$$\mathbf{X}_k = (\mathbf{X}_{k,0}, \dots, \mathbf{X}_{k,r_{k-1}})$$

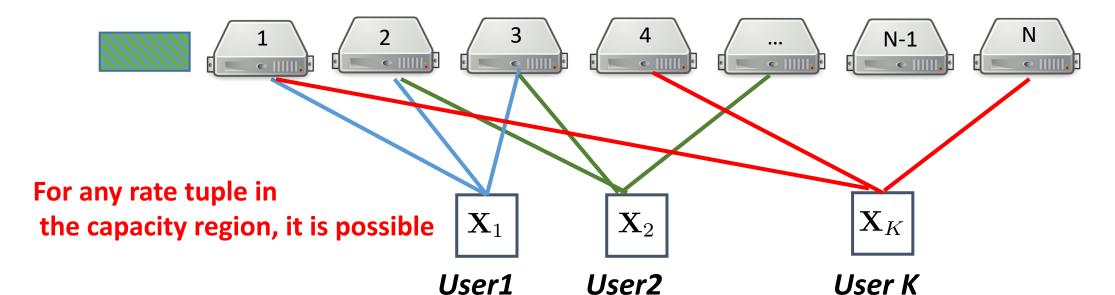
 $\mathbf{U}_{k,n}$ are solved for such that $u_i(eta_n) = u_j(eta_n)$

for any two users i and j connected to server n

Form the polynomial
$$u_k(z) = \mathbf{X}_{k,0} + \ldots + \mathbf{X}_{k,r_k-1} z^{r_k-1} + \mathbf{U}_{k,1} z^{r_k} + \ldots + \mathbf{U}_{k,T_k} z^{r_k+T_k}$$

If
$$n \in \mathcal{A}_k$$
 , store $u_k(\beta_n)$, at server n

$$T_k = \max |\mathcal{A}_k \cap \mathcal{A}_{\tilde{k}}|, \ \tilde{k} \neq k$$



60

Open Problems

Connection to Caching, Computing, Storage?

• Fault Tolerance? Adversarial Settings?

•

Conclusion

 Some of the results that we have in distributed systems are motivated and designed based on our conventional approach

 However, considering the new requirements necessitates new techniques which offers significant gains