Coding for Distributed
Information Systems

Mohammad Ali Maddah-Ali
Department of Electrical Engineering
Sharif University of Technology

Collaboration with: Mahtab Mirmohseni, Tayyebeh Jahani-Nezhad,
Nastaran Abadi, Ali Khalesi

Coding Theory

INFORMATION

SOURCE TRANSMITTER RECEIVER DESTINATION
> > >
SIGNAL RECEIVED
SIGNAL
Claude Shannon MESSACE MESSAGE
Father of the,
NOISE
SOURCE

We can achieve vanishing probability of error with a non-vanishing rate.

Multi-User Information Theory

Multi-Access Channels
Broadcast Channels
Interference Channels

Relay Networks

Wi

Wa

Encoder 1

n
X1

Encoder 2

Y

Y

Channel
p(y1,y2|z1, z2)

Yln Wl

> Decoder 1 p——
YQn W2

> Decoder 2 P——

New Applications

Database 1 D atabase 2 Database N
T —

wl\ll = /'M — /ll\L—

(Slun se Capacity)
(k]
~v¥<p<l 2[u ;..] 2[A . AN .
Am QY

N = Number of Databases
Wants Message k 1\ = Number of Messages
L\” = Size of one Message

Private Information Retrieval

Courtesy of Attia, Kumar, Tandon [2018]

Master @

Result

Distributed Computing/Storage

o pat
ab

Origin Server

Cache Server]

1
ot 4 g
| | Cache Server -3
[N
J N |
— <-- Cache Server
Cache Server ‘ TS i
" O

Distributed Cache Networks

Courtesy of Bruneau-Queyreix [2017]

Longest Proof-of-Work Chain

Block Header Block Header Block Header
—ﬂ Prev Hash ‘ ‘ Nonce ‘ » Prev Hash ‘ ‘ Nonce ‘ » Prev Hash ‘ ‘ Nonce ‘
Merkle Root Merkle Root Merkle Root
4

Hash01 ! Hash23 !

Blockchains e
Courtesy of Nakomoto [2008]

New Applications: New Aspect

Database 1 Database 2 Database N

e
AEL
| —
(Storage Capacity)
+<n<l1

N = Number of Databases
Wants Message k K = Number of Messages

User L = Size of one Message

Private Information Retrieval
Fig. Credit: of Attia, Kumar, Tandon [2018]

Receiver receives a file,
while transmitters don’t realize which!

Origin Server

2l
‘A -
=l Cache Server -3
] O
o Cache Server
i
Cache Server o> O
\‘ :‘
v
o £]
Koy v
] J
oo b=

Distributed Cache Networks
Figure Credit: Bruneau-Queyreix [2017]

Communication with limited budget for side-information

In this talk

Master

L8

Result

Distributed Computing/Storage

Approximate Decoding

Longest Proof-of-Work Chain

Block Header Block Header Block Header

fﬂ Prev Hash ‘ ‘ Nonce ‘ >} Prev Hash ‘ ‘ Nonce ‘ >} Prev Hash ‘ ‘ Nonce ‘ —

Merkle Root Merkle Root Merkle Root

Hash01 | Hash23 |

\ Merkle Branch for Tx3
Hash |

Blockchains
Courtesy of Nakomoto [2008]

Distributed Encoding

Coded Computing and
Approximate Decoding

Jahani-Nezahd, Maddah-Ali [2020]

The Size of Data is Exploding

* Big Data
* Social Networks: 10°
nodes and 1012 edges
e 10%'° Pages in internet

350 m Non-CDN Internet Traffic
300 (44%,28%)

Exabytes 250 m CDN Internet Traffic

N

* Figures (n) referto 2017, 2022 traffic share

source: Cisco VNI Global IP Traffic Forecast, 2017-2(

(// s
10 1 h 1 D N 50
* 10~ weights in Deep IR
SO X % @ &
AR O TN Wt % O S0\

perMonth 5np (56%, 72%)
 Huge Models AR
Q 7 AN o
AN AN
{I/{A.w) \\\\\'llln () “\\‘z{//{A\\‘
A 4
N ARSI AT oKX
. 5 e«““f*"" W :1%.\\‘.@“,‘,;';’\‘\,‘)% 2017 2018 2019 2020 2021 2022
Learning B RS
KO SRS @ S0
:I;‘?\ 4 ,“‘\'.,;'l,'!‘ %?\"%%‘23&\'//} %\‘t
NS @ DN/ XN/ B o ¥4
//A\\""‘*‘\% %ﬁ\\@.{/,;mw/&\\
G

. /N0 N0
* Enormous Computing SV Y

We have to offload the computation to many servers

Offloading Computation

Source
X1, X9,...,. Xk

B
=

Data Collector Q(Xla ceey XK)

Offloading Computation

Source

N Servers

Data Collector

X17X27'°'7XK

10

Separating lines of research

3000
2800
2600
2400
2200

2000

- -
2] ©
o o
o o

Worker index
N
S

1200

800

600

400

I Stragglers

0 SI 100 150 200 250
Wallclock time (seconds)

200

Deadline
Courtesy of Gupta, et. al. [2019]

B Host submit
BN Job start
B Setup done
B Job done

300 350

11

Offloading Computation

Source
X, Xo, ... Xk

N Servers & E@] E@ &
7

Data Collector Q(Xla ceey XK)

How to deal with faulty/slow nodes?

Communication: Approaching Shannon
Capacity

INFORMATION

SOURCE TRANSMITTER RECEIVER DESTINATION
Claude Shannon Y / - - -y
—_—) SIGNAL RECEIVED

Father of the, \ SIGNAL
\ |nformat|on Age i' ;% i MESSAGE MESSAGE
£ o L
ft
mﬁj} ’
| n J Il [N\
NOISE

SOURCE

Coding for Commur

Ication

Source X, X, .. Xx
Encoder
N Channel Use xli i g/\l/
l
Decoder
Receiver X1, X9, ..., Xg

14

Reed-Solomon Codes

Source

Encoder

Channel

Decoder

Receiver

X1,Xo,..., XKk

— u(z) Polynomial

u(32)
!

Computation Efficiency

Reconstructing u(z)

Exact Decoding

X1, X, ..., Xk

Number of Samples > deg(u(Z)) + 1

Complexity = K log(K)

15

Coding for Computation

Source

Encoder

N Computation
Servers

Decoder

Data Collector

X17X27°"7XK

9(X1,..., Xk)

Computation Efficiency

Exact Decoding

Main Challenge: How to Design a Code that Goes Through The Computation

16

Coded Computing for Matrix Multiplication

A, B Polynomial Codes [Yu, Maddah-Ali, Avestimehr, 2016]

Entangle Codes [Yu, Maddah-Ali, Avestimehr, 2017]
Polynomial-Based Encoder

/A

2 3
s | =erammf

PolyDot Codes [Dutta, Fahim, Haddadpour,

\ Jeong, Cadambe, Grover [2017]
Deep Neural Network
| = AT

512xdxd 512x2x2 512x1x1

64x32x32 256x8x8

3x32x32 128x16x16

Decoder /
‘ S

= i 10

AB E 612

/

17

Coded Computing for Polynomial Computation

Xla X27 SRR XK Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017]
Encoder
(4 Ba @# AP
Decoder
f(Xq), ..., f(Xg) f(x): Any general polynomial

18

@@@

f(X1)

Lagrange Coded Computation

XK = u(aK)

= f(u(B1))

a1 2

f Xn) = f(u(Bn))

Forming f U (Z))

Computing f(u(ak)) = f(Xg)

K

F(X0), - [(Xx) a1 o

Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017]

oK

19

]

Lagrange Coded Computation

X17X27°°°7XK

u(z) is a polynomial

~

Xy = u(Bn)
|

f(z) is a polynomial hﬂ I,

XK = u(aK)

Xy = u(as)

X1 = U(Oél)

f(u(z)) is a polynomial as well Xn) = f(u(BN))

Forming f (u (Z))
Computing f(u(ak)) = f(Xg)

a1 Q9 oK

flu(2))

a1 Q9 K

Yu, Li, Raviv, Mousavi Kalan, Soltanolkotabi, Avestimehr [2017] 20

Lagrange Coded Computation

XK = U(OéK)

Xy = u(as)

Challenges: u(z)
1. Number of samples needed K.de
P 8(7) { Not Efficient
of Samples = deg(f(u(z)) + 1 ar ax
— (K — 1) deg(f) + 1 N
2. Only works for polynomial functions [Not for é\enem[f(u(z))
Computing
3. It Is not numerically stable, for real , \]\/
computation [Not Working for Real J
Computation ax

21

pl(z)

-10 1

-20

-30

-40

-50

-60

-70

-801

-90

On Numerical Instability

10

Polynomial interpolation iE

-1 -0.8 06 -04 -0.2 0 02 04 06 038

T

Coefficient = [6, -17, 0, -3, 12, 21, 22, -17, 1, -24]

1

10

Polynomial Interpolation | (

O

>

The error
caused by
floating-
point
arithmetic

-1 -08 06 -04 -0.2 0 02 04 06 0.8 1

-

Coefficient=[1769.4, 16.5, -3721.2, -54.1, 2513.7, 855, -606.2, -9.8, 285, 4 ,-24.2]

22

On Numerical Instability

7 N\
/
i 2 / n—l\?
) _ I o of . Qq 1 A
L A I
I
; g n—1 |1
[] 1 a3 oz ..a o053
: : ; : I
Vandermonde ; : X " |
1 2 ' n—1 |/
Results of non-straggling nodes s Ckm am S \\ &m 4
/
\
N o /

Inverting Vandermonde matrix is numerically unstable for n = 25.

23

Berrut Approximated Coded
Computing

Jahani-Nezahd, Maddah-Ali [2020]

24

Berrut Approximated Coded Computation

v'Based on Approximation Theory and Numerical Analysis

v'is not limited to polynomial function computation (Model
Agnostic)

v works for any number of non-straggling worker nodes
v'is not limited to computation over finite fields

v'is numerically stable

v'has low computational complexity

25

Berrut Coded Computation

Xk = ulak)

K-—1 ((—1)"“)
u(z) = Z K—la?—l)j Xk Xa =l
v =0 Bmed) Xy =u(a)
Chebyshev points of the first kind: a1 as Y
29+ 1)m .
ij:COS(<])] je[K —1]

7544

Why Rational?

26

Why Rational Interpolation?

2 T T T T T T T T » T \

— f(z) = l' 4 \

= = = : Berrut rational iutfrpulat ion
polynomial intm‘p‘:lm ion

\
1.5 | 1 1
|
I

Runge’s Phenomenon

\ 1

10 Equidistance Samples 1| : 11
. : / f (513) — 2
& \ % 1 -+ 2.5x

N
05 F
0 {
k '.0.5 1 1 1 1 1 1 1 1 1
K—1 (_1) -1 08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

f(x)

27

Why Rational Interpolation?

LT N
4f :

T T T , I
4 \ l
— j(lJ — T2 I ‘
| polynomial imeipnlntinn A
3§ == == : Berrut rational interpolation

—_— e =

|
60 Chebyshev Samples | |
: \

0.8 06 04 -02 0 0.2 0.4 0.6 0.8 —1
1y) .
v Prevents the problem of large oscillations near the endpoints (Runge

phenomenon)
v’ Berrut’s rational interpolation is more numerically stable 28

Berrut Coded Computation

XK = u(aK)

K—1 (—D*

w)= Y X,
k=0]:O (Z—Oéj)

X1 = U(Oél)

Chebyshev points of the first kind: 0 o S

(4 D .
aj = cos(—77"—); j €K —1] w(fB)
|
Chebyshev points of the second kind: @
T
Bj = cos N € |N] f(u(Bn))

29

Berrut Coded Computation

K—1 (—D*

u(z) =) K(iza?zl)j Xk
k=0 jZO (Z—Oéj)

25+ 1)m
o)

a; = cos(je K —1]

jT
B :cosﬁ, j € [N]

J = {817827"'7B|}_|}

|F|-1 (=D

9(z)= > Z;Z‘f?l)j f(u(Bn))
e)
f(Xk) =~ glag)

XK = u(aK)

Xy = u(as)

X1 = U(Oél)

a1 2

a1 2

oK

30

Berrut Coded Computation

F = {817327”'78\”:’}

Fl-1 (D™

9(2) = Y = fu(B)
= T S

v' Complexity of Decoding O(|F|)
v' The computation is approximate.
v' Works for any number of samples!

v' Works for general functions

XK = u(aK)

Xy = u(as)

X1 = u(al)

a1 2

a1 2

oK

31

Theoretical Guarantees

For a system with s stragglers, we have

||TBerrut(Z) — h(z)” < 2(1 s R) SiIl(

R — (s+1)(s+3)m> .

where 7

(CANED)

K

32

Performance

~——g— Using the proposed points
2 I8F iy Using the equidistant points | -

degf =25, N=500,K =20 |

1.4 1

-
N
T

—_
T

Lagrange Coded Computing
needs 476 non-stragglers
(Tolerates 24 Stragglers)

© o o
BN (@) o
T

Expectation of the Relative Error (—

o
N

— HM

0 50 100 150 200 250 300 350 400

. . Number of straggling Nodes s
100 polynomial functions f, Randomly generated

o

Training a Deep Neural Network: Single Server

I. The master node sends mini-batches of the data
to the worker node

Il. Worker node computes the gradient based on the
parameter of the model with its data samples.

Ill. 1t updates the model using the gradients

This Computation is heavy!
Let us do parallel processing

34

Training a Deep Neural Network: Parallel
Processing

I. The master node sends independent mini-batches .
of the data to each worker node e i

Il. Each worker node computes the gradient based

on the parameter of the model with its data {0 \] { 1j (2 } / \ / N \
o 1111 e Il o 111111 e 111111 o 111111

samples.

o &
<
&

IIl. All server nodes the model using the gradients

Challenge: Stragglers
35

Training a Deep Neural Network: BACC

I. The master node encodes mini-batches of the -
data samples using encoding step of BACC. ~ I

II. Worker nodes compute the gradient based on the
shared parameter with their local coded data
samples.

Ill. Having received the results from a set of non-
straggling worker nodes, the master node can
approximately recover gradients using Berrut’s
rational interpolant.

36

Training a Deep Neural Network

Comparison between two distributed learning approaches

ion as a baseline scheme

t

(a) data replica

(b) the proposed scheme

AN
X11

N
X10)

AN
£

AN
8

N
%, 7

(b)

AN
6

0\
%] |%

AN
4

AN
X3 X

N|Ldon|ldwm| o

mxxxx
L SR

37

Test Accuracy (%)

Training a Deep Neural Network

98

96

94

90

88

86

= The Proposed Scheme =—#=— Data Replication Scheme === The Proposed Scheme =—e— Data Replication Scheme

(a) MNIST

90
85

X

> 8o

g

=

Q

Q

<

-

3

- 75
70

200 400 600 800 1000 1200 1400

Wall-clock Training Time (second)

(b) Fashion-MNIST

0 500 1000 1500 2000

Wall-clock Training Time (second)

Jahani-Nezhad, Maddah-Ali [2020] 38

Open Problems

e Using Approximation Technique for Coded Computing is a Wide Open
Area
* Jahani-Nezhad, Maddah-Ali [2018]
 Fahim, Cadambe [2019]
* Jeong, Devulapalli, Cadambe, Calmon [2021]

e Soleymani, Mahdavifar, Avestimehr [2021]

* Connection with Joint Source-Channel Coding
* Uncoded Coded!

* Security/Privacy
* Federated Learning

39

Distributed Encoding

Abadi, Maddah-Ali [2021]

40

Sharding in Blockchain

Blockchain

o

Shard 1 Verifying all

Transactions
(Dist. Computing)

s -

Shard 2

M

:Shard 3

Not Very Secure!
41

PolyShard in Blockchain

Li, Yu, Yang, Avestimehr, Kannan and Viswanath [2020]

Blockchain w(61) f(u(B1))
’ ’ ! ’ Xl / Decoder
Shard 1 u(B2) = T Verifying all

Transactions
(Dist. Computing)

— Recovering Data

Shard 2 (Dist. Storage)

f(u(Bn))
Peee < oo} o™

Xk = u(ak)

Shard 3 Partially Solved Decentralization, Security,
X, = u(a) Scalability Trilemma
X; = u(ay)

a1 Qo aK

Challenge of Distributed Encoding

Blockchain
’ ’ ! ’ Xl Decoder
Shard 1 Verifying all

Transactions
(Dist. Computing)

e * ol
Recovering Data
Shard 2 (Dist. Storage)
._m X3 Decoder Fails!
Number of Variables

Shard 3 is more than Number
: of Equations

43

Classical Coding

-

_) = .> Decoder

— Encoder >
_ Channel

 Source

)
9/

A

NCT TEECTELY Y TR

Shannon approach Hamming approach
Probabilistic errors Adversarial errors

44

Distributed Encoding

Source W%
k_z .—.> Encoder .> Ch |) i .> Decoder
\ anne

AN, ED =
fZ(.i '.) *
N
\\
f3(.' l.) ->
(LR D] »
New Problem Formulation?
(M, ED]=» 1

Source Nodes Encoding Nodes 45

Distributed Encoding: Problem Formulation

1- Adversaries Collaborates
2-No information about and
Adversary can produce a limited

YK SH number of messages
> « /Source

'node 1

Encoding Nodes

[
(]
3- No information about the adversaries
I and their behavior.

(| iy

v

L Decoder —p

4- The decoder wants to decode the
messages of the honest nodes correctly.

5- Decoder doesn’t care to recover the messages of
adversaries or even detect the adversaries.

Minimize the number of encoding nodes needed
by the encoder to do its job 46

I'm not a robot

reCAPTCHA

System Parameters

K=3

of source nodes

-

of adversaries

v=3
of adversarial messages

N=5
of encoding nodes

K: the number of source nodes

N: the number of encoding nodes

[: the number of adversaries

v: the maximum number of the
messages of one adversarial source node

t: the number of encoding nodes
that decoder needs to connect to.

47

The problem

To characterize t*, as the minimum of tinan (N, K, 8, v) distributed encoding system.

(Informally, at least how many encoding nodes does the decoder need?)

Design Parameters:
1. Encoding Functions
2. Decoding Algorithm

48

Fundamental limit of t

Inan (N, K, B, v) distributed encoding system, with linear encoding function
e fN>K+20(v—1)+1

tl*inear =K+2,8(77—1)
« fKSN<K+28(w-1)
=N

*k
tlinear

S (., WD

B: the number of adversaries

-

v: the maximum number of the
messages of one adversarial source node

K: the number of source nodes

N: the number of encoding nodes

t: the number of encoding nodes
that decoder needs to connect to.

49

Achievable Scheme

Case: N>K+28(v—1)+1

Xni Sent by source k to encoding node n
Encoding function:

fn(Xn1, oy Xng) = Op1Xpy + -+ Agxpng, 1 <N <N

a,1are generated randomly from the field

Decoding Procedure:

1. Consider every possible scenario for the set of adversaries and how they
use their options.

2. Form the corresponding set of linear equations and try solve it.
3. If a case offers a solution, announce it.

50

Achievable Scheme

Lemma

In any feasible solution, formed witht™ = K + 28(v — 1) coded symbols, the symbols
of honest nodes have been recovered correctly.

Proof:
e Consider (1) an arbitrary feasible solation, and (2) the real solution.

* Forms two sets of equations by these two and merge them.
* Prove that the gaps of honest symbols are zero.

51

Converse

Lemma

For any choice of coefficients, fort < K + 2f(v — 1) coded symbols, there is a
scenario, in which the decoder cannot decode the message of honest nodes correctly
and uniquely.

Basically, with techniques such as interference alignment, and carefully
choosing the coefficients of the linear codes, we cannot avoid confusing the

decoder.

52

Open Problems

e Can nonlinear code offer gain?
* If yes, what is the fundamental limits of the distributed encoding?

* For linear codes, can we reduce the complexity of decodoing?
* Other types of errors?

* Fundamental limits of distributed coded computing?

53

Multiuser Secret Sharing

Khalesi, Mirmohseni, Maddah-Ali [2021]

54

Multi-User Secret Sharing X, ¢ GF(2MP)

Dealer X, Xs,.... X5 | Secret Messages

L 2 3 4 N-1 N |

il u: u: ,, 1 M bits
Access Sets . \ \

X1 X2 XK

Userl User2 User K

1. Correctness: Each user can recover its own message
2. Privacy: Each user learns nothing about the message of other users 55

Multi-User Secret Sharing

Dealer

X1,Xo,..., Xk

X € GF(2MEr)

Secret Messages

s (0 T s 11 TR S | T S | A S | T S | T i

Access Sets

\“A\ X

Userl

User2

User K

Objective: To characterize the capacity region of multi-user secret sharing as
the set of all possible (Ry, R,, ..., Ry), subject to correctness and privacy 56

Multi-User Secret Sharing

Dealer

X, X, ...

7XK

X € GF(2MEr)

Secret Messages

N1 .

Access Sets

Userl

User2

Introduced by Soleymani and Mahdavifar [2019]

* R,=R,=..=R,

e Specific (Structured) Access Sets

S

User K

57

Main Result

The Capacity Region of Multi-User Secret Sharing Problem is the convex hull of all rate

tuples satisfying: -
Sk Ry < min | A\ Az, ¥k, & € [K],
k+k

Y R; <|Uses Ail,8 C [K].

1€S

58

Multi-User Secret Sharing: Naive Solution

Secret Messages X, Xo,.... Xk
Divide each message into k= (X&,0, - s Xperyo) Chosen i.i.d
Form the polynomial ux(2) = Xpo + ... + Xpp, 1271 T’“ + ..+ Up g 2"t
If ne Ay, store ug(5,),atservern Ty, = max |A N Az, k+ k

AR

Userl User2 User K 59

Multi-User Secret Sharing: Naive Solution

Secret Messages X1, X9, Xxg

Uy, are solved for such that ;(f,) = u;(8,)

for any two users i and j connected to server n

Divide each message into X = (Xk,05 5 Xiyrye_y)

Form the polynomial uy(2) = Xgo + ...+ Xppp 12+ Up 2™ + ... 4+ Up g 2"

If n € A, store ug(5,) ,atservern Ty, = max [A; N Az, k+k

oy (i AR

For any rate tuple in
the capacity region, it is possible

Userl User2 User K 60

Open Problems
* Connection to Caching, Computing, Storage?

* Fault Tolerance? Adversarial Settings?

61

Conclusion

* Some of the results that we have in distributed systems are motivated
and designed based on our conventional approach

* However, considering the new requirements necessitates new
techniques which offers significant gains

62

