Explicit and Implicit Inductive Bias in Deep Learning Nati Srebro (TTIC)

 Ryota Tomioka (TTIC \rightarrow MSR), Srinadh Bhojanapalli (TTIC \rightarrow Google), Blake Woodworth, Pedro Savarese, David McAllester (TTIC), Greg Ongie, Becca Willett (Chicago), Daniel Soudry, Elad Hoffer, Mor Shpigel, Edward Moroshko, Itay Golan (Technion), Shahar Azulai, Amir Globerson (Tel-Aviv), Ziwei Ji, Matus Telgarsky (UIUC), Ashia Wilson, Becca Roelofs, Mitchel Stern, Ben Recht (Berkeley), Russ Salakhutdinov (CMU), Jason Lee, Zhiyuan Li (Princeton), Yann LaCun (NYU/Facebook)
Plan

-What io mean by "Inductive Bias"?

- Inductive Bias in Deep Learning: The Role of Implicit Optimization Bias
- The "complexity measure" approach for understanding Deep Learning

(break)

- Examples of Identifying the Implicit Bias and "complexity measure"
- Squared Loss vs Logistic Loss
- Effect of initialization and other parameters
- Explicit Regularization vs Implicit Bias
- Can implicit bias be described in terms of a complexity measure?
- Supervised Learning: find $h: \mathcal{X} \rightarrow \mathcal{Y}$ with small generalization error

$$
L(h)=\mathbb{E}_{(x, y) \sim \mathcal{D}}[\operatorname{loss}(h(x) ; y)]
$$

based on samples S (hopefully $S \sim \mathcal{D}^{m}$) using learning rule:

$$
\left.A: S \mapsto h \quad \text { (i.e. } A:(\mathcal{X} \times \mathcal{Y})^{*} \rightarrow \mathcal{Y}^{X}\right)
$$

- No Free Lunch: For any learning rule, there exists a source \mathcal{D} (i.e. reality), for which the learning rule yields expected error $1 / 2$
- More formally for any A, m there exists \mathcal{D} s.t. $\exists_{h^{*}} L\left(h^{*}\right)=0$ but

$$
\mathbb{E}_{S \sim D^{m}}[L(A(S))] \geq \frac{1}{2}-\frac{m}{2|X|}
$$

- Inductive Bias:
- Some realities (sources \mathcal{D}) are less likely; design A to work well on more likely realities
e.g., by preferring certain $y \mid x$ (i.e. $h(x)$) over others
- Assumption or property of reality \mathcal{D} under which A ensures good generalization error
e.g., $\exists h \in \mathcal{H}$ with low $L(h)$
e.g., $\exists h$ with low "complexity" $c(h)$ and low $L(h)$

Flat Inductive Bias

- "Flat" inductive bias: $\exists h^{*} \in \mathcal{H}$ with low $L\left(h^{*}\right)$
- (Almost) optimal learning rule:

$$
E R M_{\mathcal{H}}(S)=\hat{h}=\arg \min _{h \in \mathcal{H}} L_{S}(h)
$$

- Guarantee (in expectation over $S \sim \mathcal{D}^{m}$):

$$
L\left(E R M_{\mathcal{H}}(S)\right) \leq L\left(h^{*}\right)+\mathcal{R}_{m}(\mathcal{H}) \approx L\left(h^{*}\right)+\sqrt{\frac{\operatorname{capacity}(\mathcal{H})}{m}}
$$

\rightarrow can learn with $O(\operatorname{capacity}(\mathcal{H}))$ samples

- E.g.
- For binary loss, capacity $(\mathcal{H})=V \operatorname{Cdim}(H)$
- For linear predictors over d features, $\operatorname{capacity}(\mathcal{H})=d$
- Usually with d parameters, capacity $(\mathcal{H}) \approx \tilde{O}(d)$
- For linear predictors with $\|w\|_{2} \leq B$, with logistic loss and normalized data: $\operatorname{capacity}(\mathcal{H})=B^{2}$

Machine Learning

- We want model classes (hypothesis classes) that:
- Are expressive enough to capture reality well
- Have small enough capacity to allow generalization

Complexity Measure as Inductive Bias

- Complexity measure: mapping $c: \mathcal{Y}^{\mathcal{X}} \rightarrow[0, \infty]$
- Associated inductive bias: $\exists h^{*}$ with small $c\left(h^{*}\right)$ and small $L\left(h^{*}\right)$
- Learning rule: $S R M_{\mathcal{H}}(S)=\arg \min L(h), c(h)$
e.g. $\quad \arg \min L(h)+\lambda c(h) \quad$ or $\arg \min L(h)$ s.t. $c(h) \leq B$ and choose λ or B using cross-validation
- Guarantee:

$$
\mathcal{H}_{B}=\{h \mid c(h) \leq B\}
$$

$$
L\left(S R M_{\mathcal{H}}(S)\right) \leq \approx L\left(h^{*}\right)+\sqrt{\frac{\operatorname{capacity}\left(\mathcal{H}_{c\left(h^{*}\right)}\right)}{m}}
$$

- E.g.:
- Degree of poly
- Sparsity
- \|w\|

Feed-Forward Neural Networks (The Multilayer Perceptron)

$$
\begin{aligned}
& a[v]=\sum_{u \rightarrow v \in E} w[u \rightarrow v] o[u] \\
& o[v]=\sigma(a[v])
\end{aligned}
$$

Architecture:

- Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V .
- "Input Units" $v_{1} \ldots v_{d} \in V$, with no incoming edges and $o\left[v_{i}\right]=x[i]$
- "Output Unit" $v_{\text {out }} \in V, h_{w}(x)=o\left[v_{\text {out }}\right]$
- "Activation Function" $\sigma: \mathbb{R} \rightarrow \mathbb{R}$. E.g. $\sigma_{R E L U}(z)=[z]_{+}$

Parameters:

Feed Forward Neural Networks

- Fix architecture (connection graph $G(V, E)$, transfer σ)

$$
\mathcal{H}_{G(V, E), \sigma}=\left\{f_{w}(x)=\text { output of net with weights w }\right\}
$$

- Capacity / Generalization ability / Sample Complexity
- $\widetilde{O}(|E|)$ (number of edges, i.e. number of weights) (with threshold σ, or with RELU and finite precision; RELU with inf precision: $\widetilde{\Theta}(|E| \cdot$ depth))
- Expressive Power / Approximation
- Any continuous function with huge network
- Lots of interesting things naturally with small networks
- Any time T computable function with network of size $\widetilde{\boldsymbol{O}}(T)$

Free Lunches

- ML as an Engineering Paradigm: Use data and examples, instead of expert knowledge and tedious programming, to automatically create efficient systems that perform complex tasks
- We only care about $\{h \mid h$ is an efficient system $\}$
- Free Lunch: $T I M E_{T}=\{h \mid h$ comp. in time $T\}$ has capacity $O(T)$ and hence learnable with $O(T)$ samples, e.g. using ERM
- Even better: $\boldsymbol{P R O} \boldsymbol{G}_{T}=\{$ program of length $T\}$ has capacity $O(T)$
- Problem: ERM for above is not computable!
- Modified ERM for TIME (truncating exec. time) is NP-complete
- $\mathrm{P}=\mathrm{NP} \rightarrow$ Universal Learning is possible! (Free Lunch)
- Crypto is possible (one-way functions exist) \rightarrow No poly-time learning algorithm for $T I M E_{T}$ (that is: no poly-time A and uses poly (T) samples s.t. if $\exists h^{*} \in T I M E_{T}$ with $L\left(h^{*}\right)=0$ then $\left.\mathbb{E}[L(A(S))] \leq 0.4\right)$

No Free (Computational) Lunch

- Statistical No-Free Lunch: For any learning rule A, there exists a source \mathcal{D} (i.e. reality), s.t. $\exists h^{*}$ with $L\left(h^{*}\right)=0$ but $\mathbb{E}[L(A(S))] \approx \frac{1}{2}$.
- Cheating Free Lunch: There exists A, s.t. for any reality \mathcal{D} and any efficiently computable \boldsymbol{h}^{*}, A learns a predictor almost as good as h^{*} (with \#samples=O(runtime of h^{*}), but a lot of time).
- Computational No-Free Lunch: For every computationally efficient learning algorithm \boldsymbol{A}, there is a reality \mathcal{D} s.t. there is some comp. efficient (poly-time) h^{*} with $L\left(h^{*}\right)=0$ but $\mathbb{E}[L(A(S))] \approx \frac{1}{2}$.
- Inductive Bias: Assumption or property of reality \mathcal{D} under which a learning algorithm A runs efficiently and ensures good generalization error.
- \mathcal{H} or $c(h)$ are not sufficient inductive bias if ERM/SRM not efficiently implementable, or implementation doesn't always work (runs quickly and returns actual ERM/SRM).

Feed Forward Neural Networks

- Fix architecture (connection graph $G(V, E)$, transfer σ)

$$
\mathcal{H}_{G(V, E), \sigma}=\left\{f_{w}(x)=\text { output of net with weights } w\right\}
$$

- Capacity / Generalization ability / Sample Complexity
- $\widetilde{O}(|E|)$ (number of edges, i.e. number of weights) (with threshold σ, or with RELU and finite precision; RELU with inf precision: $\widetilde{\Theta}(|E| \cdot$ depth $))$
- Expressive Power / Approximation
- Any continuous function with huge network
- Lots of interesting things naturally with small networks
- Any time T computable function with network of size $\widetilde{\boldsymbol{O}}(T)$
- Computation / Optimization
- Even if function exactly representable with single hidden layer with $\Theta(\log d)$ units, even with no noise, and even if we allow a much larger network when learning: no poly-time algorithm always works [Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz '14]
- Magic property of reality that makes local search "work"

For valid generalization, the size of the weights is more important than the size of the network

- What is the relevant "complexity measure" (eg norm)?
- How is this minimized (or controlled) by the opt algorithm?
- How does it change if we change the opt algorithm?

Cross-Entropy

0/1 Training Error

0/1 Test Error

SGD vs ADAM

Results on Penn Treebank using 3-layer LSTM
[Wilson Roelofs Stern S Recht, "The Marginal Value of Adaptive Gradient Methods in Machine Learning", NIPS'17]

Different optimization algorithm

\rightarrow Different bias in optimum reached \rightarrow Different Inductive bias
\rightarrow Different generalization properties

Need to understand optimization alg. not just as reaching some (global) optimum, but as reaching a specific optimum

Different optimization algorithm
\rightarrow Different bias in optimum reached \rightarrow Different Inductive bias
\rightarrow Different generalization properties

Need to understand optimization alg. not just as reaching some (global) optimum, but as reaching a specific optimum

The Deep Recurrent Residual Boosting Machine Joe Flow, DeepFace Labs

Section 1: Introduction
We suggest a new amazing architecture and loss function that is great for learning. All you have to do to learn is fit the model on your training data

Section 2: Learning Contribution: our model
The model class h_{w} is amazing. Our learning method is:

$$
\begin{equation*}
\arg \min _{w} \frac{1}{m} \sum_{i=1}^{m} \operatorname{loss}\left(h_{w}(x) ; y\right) \tag{*}
\end{equation*}
$$

Section 3: Optimization
This is how we solve the optimization problem (*): [...]
Section 4: Experiments
It works!

	2			5					2	
3	1			2	2		5	5		4
4		2		4	1		3	3	1	
3				4		2				4
2				1		+3			2	
	2	2		V			4	4		5
	2		4	1	4	4	2	2	3	
1		3		1	1				4	3
	4		2	2			53	3	1	

$$
\min _{X \in \mathbb{R}^{n \times n}}\|\operatorname{observed}(X)-y\|_{2}^{2} \equiv \min _{U, V \in \mathbb{R}^{n \times n}}\left\|\operatorname{observed}\left(U V^{\top}\right)-y\right\|_{2}^{2}
$$

- Underdetermined non-sensical problem, lots of useless global min
- Since U, V full dim, no constraint on X, all the same non-sense global min

Different optimization algorithm
\rightarrow Different bias in optimum reached \rightarrow Different Inductive bias
\rightarrow Different generalization properties

Need to understand optimization alg. not just as reaching some (global) optimum, but as reaching a specific optimum

Deep Learning

- Expressive Power
- We are searching over the space of all functions...
... but with what bias? What (implicit) assumptions?
- How does this bias look? Is it reasonable/sensible?
- Capacity / Generalization ability / Sample Complexity
- What's the true complexity measure (inductive bias)?
- How does it control generalization?
- Computation / Optimization
- How and where does optimization bias us? Under what conditions?

Ultimate Question: What is the true Inductive Bias? What makes reality efficiently learnable by fitting a (huge) neural net with a specific algorithm?

The "complexity measure" approach

Identify $c(h)$ s.t.

- Optimization algorithm biases towards low $c(h)$
- $\mathcal{H}_{c(\text { reality })}=\{h \mid c(h) \leq c($ reality $)\}$ has low capacity
- Reality is well explained by low $c(h)$
- Mathematical questions:
- What is the bias of optimization algorithms?
- What is the capacity (三sample complexity) of the sublevel sets \mathcal{H}_{c} ?
- Question about reality (scientific Q?): does it have low $c(h)$?

Simple Example: Least Squares

- Consider an under-constraint least-squares problem $(n<m)$:

$$
\min _{w \in \mathbb{R}^{n}}\|A w-b\|^{2}
$$

```
A\in\mp@subsup{\mathbb{R}}{}{m\timesn}
```

- Claim: Gradient Descent (or SGD, or conjugate gradient descent, or BFGS) converges to the least norm solution

$$
\min _{A w=b}\|w\|_{2}
$$

$>$ Proof: iterates always spanned by rows of A (more details soon)

Implicit Bias in Least Squared $\min \|A w-b\|^{2}$

- Gradient Descent (+Momentum) on w
$\rightarrow \min _{A w=b}\|w\|_{2}$
- Gradient Descent on factorization $W=U V$
$\rightarrow \min _{A(W)=b}\|W\|_{*}$ with stepsize $\downarrow 0$ and init $\searrow 0$, only in special cases (commutative measurements; or incoherent problems)
- AdaGrad on w
\rightarrow in some special cases $\min _{A w=b}\|w\|_{\infty}$, but not always, and it depends on stepsize, adaptation parameters, momentum
- Coordinate Descent (steepest descent w.r.t. $\|w\|_{1}$)
\rightarrow Related to, but not quite $\min _{A w=b}\|w\|_{1}$ (Lasso) (with stepsize $\downarrow 0$ and particular tie-breaking \approx LARS)

Implicit Bias in Logistic Regression

$$
\begin{gathered}
\arg \min _{w \in \mathbb{R}^{n}} \mathcal{L}(w)=\sum_{i=1}^{m} \ell\left(y_{i}\left\langle w, x_{i}\right\rangle\right) \\
\ell(z)=\log \left(1+e^{-z}\right)
\end{gathered}
$$

- Data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$ linearly separable $\left(\exists_{w} \forall_{i} y_{i}\left\langle w, x_{i}\right\rangle>0\right)$
- Where does gradient descent converge?

$$
w(t)=w(t)-\eta \nabla \mathcal{L}(w(t))
$$

- $\inf \mathcal{L}(w)=0$, but minima unattainable
- GD diverges to infinity: $w(t) \rightarrow \infty, \mathcal{L}(w(t)) \rightarrow 0$
- In what direction? What does $\frac{w(t)}{\|w(t)\|}$ converge to?

Implicit Bias in Logistic Regression

$$
\begin{gathered}
\arg \min _{w \in \mathbb{R}^{n}} \mathcal{L}(w)=\sum_{i=1}^{m} \ell\left(y_{i}\left\langle w, x_{i}\right\rangle\right) \\
\ell(z)=\log \left(1+e^{-z}\right)
\end{gathered}
$$

- Data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$ linearly separable $\left(\exists_{w} \forall_{i} y_{i}\left\langle w, x_{i}\right\rangle>0\right)$
- Where does gradient descent converge?

$$
w(t)=w(t)-\eta \nabla \mathcal{L}(w(t))
$$

- $\inf \mathcal{L}(w)=0$, but minima unattainable
- GD diverges to infinity: $w(t) \rightarrow \infty, \mathcal{L}(w(t)) \rightarrow 0$
- In what direction? What does $\frac{w(t)}{\|w(t)\|}$ converge to?
- Theorem: $\frac{w(t)}{\|w(t)\|_{2}} \rightarrow \frac{\widehat{w}}{\|\widehat{w}\|_{2}} \quad \widehat{w}=\arg \min \|w\|_{2}$ s.t. $\forall_{i} y_{i}\left\langle w, x_{i}\right\rangle \geq 1$
[Soudry Hoffer S 2017] based on [Telgarsky 2013 "Margins, shrinkage, and boosting"]

How Fast is the Margin Maximized?

Convergence to the max margin \widehat{w} : *

$$
\left\|\frac{w(t)}{\|w(t)\|}-\frac{\widehat{w}}{\|\widehat{w}\|}\right\|=O\left(\frac{1}{\log t}\right)
$$

Convergence of the margin itself:

$$
\max _{\|w\| \leq 1} \min _{i} y_{i}\left\langle w, x_{i}\right\rangle-\min _{i} y_{i}\left\langle\frac{w(t)}{\|w(t)\|}, x_{i}\right\rangle=O\left(\frac{1}{\log t}\right)
$$

Contrast with convergence of the loss:

$$
\mathcal{L}(w(t))=O\left(\frac{1}{t}\right)
$$

\rightarrow Even after we get extremely small loss, need to continue optimizing in order to maximize margin

Epoch	50	100	200	400	2000	4000
L_{2} norm	13.6	16.5	19.6	20.3	25.9	27.54
Train loss	0.1	0.03	0.02	0.002	10^{-4}	$3 \cdot 10^{-5}$
Train error	4%	1.2%	0.6%	0.07%	0%	0%
Validation loss	0.52	0.55	0.77	0.77	1.01	1.18
Validation error	12.4%	10.4%	11.1%	9.1%	8.92%	8.9%

Training a conv net using SGD+momentum on CFAIR10

Other Objectives and Opt Methods

- Single linear unit, logistic loss
\rightarrow hard margin SVM solution (regardless of init, stepsize)
- Multi-class problems with softmax loss
\rightarrow multiclass SVM solution (regardless of init, stepsize)
- Steepest Descent w.r.t. $\|w\|$
$\rightarrow \arg \min \|w\|$ s.t. $\forall_{i} y_{i}\left\langle w, x_{i}\right\rangle \geq 1$ (regardless of init, stepsize)
- Coordinate Descent
$\rightarrow \arg \min \|w\|_{1}$ s.t. $\forall_{i} y_{i}\left\langle w, x_{i}\right\rangle \geq 1$ (regardless of init, stepsize)
- Matrix factorization problems $\mathcal{L}(U, V)=\sum_{i} \ell\left(\left\langle A_{i}, U V^{\top}\right\rangle\right)$, including 1-bit matrix completion
$\rightarrow \arg \min \|W\|_{t r}$ s.t. $\left\langle A_{i}, W\right\rangle \geq 1$ (regardless of init)

Different Asymptotics

- For least squares (or any other loss with attainable minimum):
- w_{∞} depends on initial point w_{0} and stepsize η
- To get clean characterization, need to take $\eta \rightarrow 0$
- If 0 is a saddle point, need to take $w_{0} \rightarrow 0$
- For monotone decreasing loss (eg logistic)
- w_{∞} does NOT depend on initial w_{0} and stepsize η
- Don't need $\eta \rightarrow 0$ and $w_{0} \rightarrow 0$
- What happens at the beginning doesn't effect w_{∞}

Single Overparametrized Linear Unit

Train single unit with SGD using logistic ("cross entropy") loss

\rightarrow Hard Margin SVM predictor

$$
w(\infty) \propto \arg \min \|w\|_{2} \text { s.t. } \forall_{i} y_{i}\left\langle w, x_{i}\right\rangle \geq 1
$$

Even More Overparameterization: Deep Linear Networks

Network implements a linear mapping:

$$
f_{w}(x)=\left\langle\beta_{w}, x\right\rangle
$$

Training: same opt. problem as logistic regression:

$$
\min _{w} \mathcal{L}\left(f_{w}\right) \equiv \min _{\beta} \mathcal{L}(x \mapsto\langle\beta, x\rangle)
$$

Train w with SGD
\rightarrow Hard Margin SVM predictor
$\beta_{w(\infty)} \rightarrow \arg \min \|\beta\|_{2}$ s.t. $\forall_{i} y_{i}\left\langle\beta, x_{i}\right\rangle \geq 1$

L-1 hidden layers, $h_{l} \in \mathbb{R}_{D^{\prime}-1}^{n}$ each with (one channel) full-width cyclic "convolution" $w_{\ell} \in \mathbb{R}^{D}$:

$$
h_{l}[d]=\sum_{k=0}^{D^{\prime}-1} w_{l}[k] h_{l-1}[d+k \bmod D] \quad h_{o u t}=\left\langle w_{L}, h_{L-1}\right\rangle
$$

With single conv layer ($L=2$), training weights with SGD

$\rightarrow \arg \min \|\boldsymbol{D F T}(\boldsymbol{\beta})\|_{1}$ s.t. $\forall_{i} y_{i}\left\langle\beta, x_{i}\right\rangle \geq 1$

Discrete Fourier Transform
With multiple conv layers

$$
\rightarrow \text { critical point of } \min \|\boldsymbol{D F T}(\boldsymbol{\beta})\|_{2 / L} \text { s.t. } \forall_{i} y_{i}\left\langle\beta, x_{i}\right\rangle \geq 1
$$

for $\ell(z)=\exp (-z)$, almost all linearly separable data sets and initializations $w(0)$ and any bounded stepsizes s.t. $\mathcal{L} \rightarrow 0$, and $\Delta w(t)$ converge in direction

 $\min \|\boldsymbol{D F T}(\boldsymbol{\beta})\|_{2 / L}$ s.t. $\forall_{i} y_{i}\left\langle\beta, x_{i}\right\rangle \geq 1$

$\min \|\beta\|_{2 / L}$ s.t. $\forall_{i} y_{i}\left\langle\beta, x_{i}\right\rangle \geq 1$
L=5 Network solution

- Binary matrix completion (also: reconstruction from linear measurements)
- $\boldsymbol{X}=U V$ is over-narametrization of all matrices $X \in \mathbb{R}^{n \times m}$
- GD on U, V
\rightarrow implicitly minimize $\|X\|_{*}$
- Linear Convolutional Network:
- Complex over- β
- GD on weights (or explicitly minimize \|weights\| $\|_{2}$)
\rightarrow implicitly $\min \|\boldsymbol{D F T}(\boldsymbol{\beta})\|_{p}$ for $p=\frac{2}{\text { depth }}$ (sparsity in freq domain)

- Binary matrix completion (also: reconstruction from linear measurements)
- $\boldsymbol{X}=U V$ is over-parametrization of all matrices $X \in \mathbb{R}^{n \times m}$
- GD on U, V
\rightarrow implicitly minimize $\|X\|_{*}$
[Gunasekar Lee Soudry S 2018a]
- Linear Convolutional Network:
- Complex over-parametrization of all linear predictors β
- GD on weights
$\boldsymbol{\rightarrow}$ implicitly $\min \|\boldsymbol{D F T}(\boldsymbol{\beta})\|_{p}$ for $p=\frac{2}{\text { depth }}$ (sparsity in freq domain)
[Gunasekar Lee Soudry S 2018b]
- Infinite Width ReLU Net:
- Parametrization of essentially all functions $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- GD on weights
\rightarrow implicitly minimize $\max \left(\int\left|\boldsymbol{h}^{\prime \prime}\right| \boldsymbol{d} \boldsymbol{x},\left|h^{\prime}(-\infty)+h^{\prime}(+\infty)\right|\right) \quad(\mathrm{d}=1)$

$$
\begin{equation*}
\int\left|\partial_{b}^{d+1} \operatorname{Radon}(h)\right| \tag{d>1}
\end{equation*}
$$

(need to define more carefully to handle non-smoothness; correction term for linear part) [Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]

All Functions

Parameter Space

Optimization Geometry and hence Inductive Bias effected by:

- Geometry of local search in parameter space
- Choice of parameterization

Artificial Neural Networks Deep Learning Computer Netwc

How is an Embedding layer useful to a learning task if it is just a dense layer with no activation function? If this 'linear hidden layer' is taken out, the network should still be able to learn the same function.

Interesting

Request

- Binary matrix completion (also: reconstruction from linear measurements)
- $\boldsymbol{X}=U V$ is over-parametrization of all matrices $X \in \mathbb{R}^{n \times m}$
- GD on U, V (or explicitly minimize $\|U\|_{F}^{2}+\|V\|_{F}^{2}$)
\rightarrow implicitly minimize $\|X\|_{*}$
[Gunasekar Lee Soudry S 2018a]
- Linear Convolutional Network:
- Complex over-parametrization of all linear predictors β
- GD on weights (or explicitly minimize \|weights $\|_{2}^{2}$)
\rightarrow implicitly $\min \|\boldsymbol{D F T}(\boldsymbol{\beta})\|_{p}$ for $p=\frac{2}{\text { depth }}$ (sparsity in freq domain)
[Gunasekar Lee Soudry S 2018b]
- Infinite Width ReLU Net:
- Parametrization of essentially all functions $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- GD on weights (or explicitly min \|weights $\|_{2}^{2}$)
\rightarrow implicitly minimize $\max \left(\int\left|\boldsymbol{h}^{\prime \prime}\right| \boldsymbol{d} \boldsymbol{x},\left|h^{\prime}(-\infty)+h^{\prime}(+\infty)\right|\right) \quad(\mathrm{d}=1)$

$$
\begin{equation*}
\int\left|\partial_{b}^{d+1} \operatorname{Radon}(h)\right| \tag{d>1}
\end{equation*}
$$

(need to define more carefully to handle non-smoothness; correction term for linear part)
[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]

- Does Implicit Bias of Gradient Descent just boil down to regularizing $\|$ weights $\|_{2}$?
- Answer: sort of, at least asymptotically with logistic/exp loss, for D-homogenous models (details soon)
...but we'll later see that not quite

Model: $\boldsymbol{F}(w)=h_{w} \quad$ Model Class: $\mathcal{H}=\operatorname{range}(\boldsymbol{F})$

$f(w, x)=h_{w}(x)=$ prediction on x with params ("weights") w
Linear models: $f(w, x)=\left\langle\beta_{w}, x\right\rangle \quad F(w)=\beta_{w}$

$$
\text { Loss: } L_{S}(w)=\frac{1}{m} \sum_{i} \ell\left(f\left(w, x_{i}\right), y_{i}\right)
$$

D-homogenous: $F(c w)=c^{D} F(w)$, i.e. $f(c w, x)=c^{D} f(w, x)$

- 1-homogenous: standard linear $F(w)=w, f(w, x)=\langle w, x\rangle$
- 2-homogenous:
- Matrix factorization $F(U, V)=U V$
- 2-Layer ReLU: $f(W, x)=\sum_{j} w_{2, j}\left[\left\langle w_{1, j}, x\right\rangle\right]_{+}$
- D-homogenous:
- D layer linear network
- D layer linear conv net
- D layer ReLU net

$$
\ell_{\text {logistic }}(h(w), y)=\log \left(1+e^{-y h(w)}\right) \approx e^{-y h(w)}=\ell_{\exp }(h(w), y)
$$

Consider gradient descent w.r.t. logistic loss $L_{s}(w)=\sum_{i} \ell\left(f\left(w, x_{i}\right) ; y_{i}\right)$ (or other exp-tail loss) on a D-homogenous model $f(w, x)$

- 1-homogenous: standard linear $F(w)=w, f(w, x)=\langle w, x\rangle$
- 2-homogenous:
- Matrix factorization $F(U, V)=U V$
- 2-Layer ReLU: $f(W, x)=\sum_{j} w_{2, j}\left[\left\langle w_{1, j}, x\right\rangle\right]_{+}$
- D-homogenous:
- D layer linear network
- D layer linear conv net
- D layer ReLU net

$$
\ell_{\text {logistic }}(h(w), y)=\log \left(1+e^{-y h(w)}\right) \approx e^{-y h(w)}=\ell_{\exp }(h(w), y)
$$

Consider gradient descent w.r.t. logistic loss $L_{s}(w)=\sum_{i} \ell\left(f\left(w, x_{i}\right) ; y_{i}\right)$ (or other exp-tail loss) on a D-homogenous model $f(w, x)$:

Theorem [Nacson Gunasekar Lee S Soudry 2019][Lyu Li 2019]:
If $L_{S}(w) \rightarrow 0$, and small enough stepsize (ensuring convergence in direction):
$\boldsymbol{w}_{\infty} \propto$ first order stationary point of

$$
\arg \min \|w\|_{2} \text { s.t. } \forall_{i} y_{i} f\left(w, x_{i}\right) \geq 1
$$

Suggests implicit bias defined by $\boldsymbol{R}_{F}(\boldsymbol{h})=\arg \min _{F(\boldsymbol{w})=h}\|w\|_{2}$ and

$$
\boldsymbol{h}_{\infty}=\boldsymbol{F}\left(\boldsymbol{w}_{\infty}\right) \propto \text { first order stationary point of }
$$

$$
\begin{equation*}
\arg \min R_{F}(h) \text { s.t. } y_{i} f\left(x_{i}\right) \geq 1 \tag{*}
\end{equation*}
$$

But need to be careful: f.o.s.p of (*) does not imply f.o.s.p of (**)

- But what about squared loss?

$$
\begin{gathered}
\ell(h(w) ; y)=(h(w)-y)^{2} \\
\mathrm{GD} \text { on } L_{s}(w)=\sum_{i} \ell\left(f\left(w, x_{i}\right) ; y_{i}\right)
\end{gathered}
$$

- What optimization choices and hyperparameters effect the implicit bias and how? E.g.
- Stepsize
- Initialization
- Initialize $w(0)=\alpha w_{0}$ (we will want to take $\alpha \rightarrow 0$)
- Stepsize $\rightarrow 0$, so i.e. gradient flow:

$$
\dot{w}_{\alpha}=-\nabla L_{S}(w) \quad \text { and } \quad w_{\alpha}(0)=\alpha w_{0}
$$

We are interested in $w_{\alpha}(\infty)=\lim _{t \rightarrow \infty} w_{\alpha}(t)$

Consider a "linear diagonal net" (ie linear regression with squared parametrization):

$$
f(w, x)=\sum_{j}\left(w_{+}[j]^{2}-w_{-}[j]^{2}\right) x[j]=\langle\beta(w), x\rangle \quad \text { with } \beta(w)=w_{+}^{2}-w_{-}^{2}
$$

And initialization $w_{\alpha}(0)=\alpha 1$ (so that $\beta\left(w_{\alpha}(0)\right)=0$).
What's the implicit bias of grad flow w.r.t square loss $L_{s}(w)=\sum_{i}\left(f\left(w, x_{i}\right)-y_{i}\right)^{2}$?

$$
\beta_{\alpha}(\infty)=\lim _{t \rightarrow \infty} \beta\left(w_{\alpha}(t)\right)
$$

$$
f(w, x)=w^{\top} \operatorname{diag}(w)\left[\begin{array}{l}
+x \\
-x
\end{array}\right]
$$

$$
\beta(t)=w_{+}(t)^{2}-w_{-}(t)^{2} \quad L=\|X \beta-y\|_{2}^{2}
$$

$$
\dot{w}_{+}(t)=-\nabla L(t)=-2 X^{\top} r(t) \circ \frac{d \beta}{d w_{+}}
$$

$$
r(t)=X \beta(t)-y
$$

$$
\begin{array}{cc}
\beta(t)=w_{+}(t)^{2}-w_{-}(t)^{2} & L=\|X \beta-y\|_{2}^{2} \\
\dot{w}_{+}(t)=-\nabla L(t)=-2 X^{\top} r(t) \circ 2 w_{+}(t) & w_{+}(t)=w_{+}(0) \circ \exp \left(-2 X^{\top} \int_{0}^{t} r(\tau) d \tau\right) \\
\dot{w}_{-}(t)=-\nabla L(t)=+2 X^{\top} r(t) \circ 2 w_{-}(t) & w_{-}(t)=w_{-}(0) \circ \exp \left(+2 X^{\top} \int_{0}^{t} r(\tau) d \tau\right)
\end{array}
$$

$$
\beta(t)=\alpha^{2}\left(e^{-4 X^{\top} \int_{0}^{t} r(\tau) d \tau}-e^{4 X^{\top} \int_{0}^{t} r(\tau) d \tau}\right) \quad r(t)=X \beta(t)-y
$$

$$
\begin{gathered}
s=4 \int_{0}^{\infty} r(\tau) d \tau \in \mathbb{R}^{m} \\
\beta(\infty)=\alpha^{2}\left(e^{-X^{\top} S}-e^{X^{\top} S}\right)=2 \alpha^{2} \sinh X^{\top} S \\
X \beta(\infty)=y
\end{gathered}
$$

$\min Q(\beta)$ s.t. $X \beta=y$

$$
\nabla Q\left(\beta^{*}\right)=X^{\top} v
$$

$$
\beta(\infty)=\alpha^{2}\left(e^{-X^{T} S}-e^{X^{\top} S}\right)=2 \alpha^{2} \sinh X^{\top} S
$$

$$
X \beta^{*}=y
$$

$$
X \beta(\infty)=y
$$

$$
\begin{aligned}
& \nabla Q(\beta)=\sinh ^{-1} \frac{\beta}{2 \alpha^{2}} \\
& Q(\beta)=\sum_{i} \int \sinh ^{-1} \frac{\beta[i]}{2 \alpha^{2}}=\alpha^{2} \sum_{i}\left(\frac{\beta[i]}{\alpha^{2}} \sinh ^{-1} \frac{\beta[i]}{2 \alpha^{2}}-\sqrt{4+\left(\frac{\beta[i]}{\alpha^{2}}\right)^{2}}\right)
\end{aligned}
$$

$\min Q(\beta)$ s.t. $X \beta=y$

$$
\begin{gathered}
\nabla Q\left(\beta^{*}\right)=X^{\top} v \\
X \beta^{*}=y
\end{gathered}
$$

$$
\begin{gathered}
\sinh ^{-1} \frac{\beta(\infty)}{2 \alpha^{2}}=X^{\top} S \\
X \beta(\infty)=y
\end{gathered}
$$

Linear Diagonal Nets

$$
f(w, x)=\sum_{j}\left(w_{+}[j]^{2}-w_{-}[j]^{2}\right) x[j]=\langle\beta(w), x\rangle \quad \text { with } \beta(w)=w_{+}^{2}-w_{-}^{2}
$$

With initialization $w_{\alpha}(0)=\alpha 1$ (so that $\beta\left(w_{\alpha}(0)\right)=0$).

Implicit bias of grad flow w.r.t square loss: $\beta_{\alpha}(\infty)=\boldsymbol{\operatorname { a r g }} \min _{\boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{y}} \boldsymbol{Q}_{\alpha}(\boldsymbol{\beta})$
where $Q_{\alpha}(\beta)=\sum_{j} q\left(\frac{\beta[j]}{\alpha^{2}}\right)$ and $q(b)=2-\sqrt{4+b^{2}}+b \sinh ^{-1}\left(\frac{b}{2}\right)$

Induced dynamics:

$$
\dot{\beta}_{\alpha}=-\sqrt{\beta_{\alpha}^{2}+4 \alpha^{4}} \odot \nabla L_{s}\left(\beta_{\alpha}\right)
$$

If $\alpha \rightarrow \infty$ (Kernel Regime): $\beta_{\alpha}(\infty) \xrightarrow{\alpha \rightarrow \infty} \hat{\beta}_{L 2}=\arg \min _{X \beta=y}\|\beta\|_{2}$
If $\alpha \rightarrow 0$ ("Rich" Regime): $\beta_{\alpha}(\infty) \xrightarrow{\alpha \rightarrow 0} \hat{\beta}_{L 1}=\arg \min _{X \beta=y}\|\beta\|_{1}$

$$
\beta_{\alpha}(\infty)=\arg \min _{X \beta=y} Q_{\alpha}(\beta)
$$

where $Q_{\alpha}(\beta)=\sum_{j} q\left(\frac{\beta[j]}{\alpha^{2}}\right)$ and $q(b)=2-\sqrt{4+b^{2}}+b \sinh ^{-1}\left(\frac{b}{2}\right)$

Theorem 2. For any $0<\epsilon<d$,

$$
\alpha \leq \min \left\{\left(2(1+\epsilon)\left\|\boldsymbol{\beta}_{L 1}^{*}\right\|_{1}\right)^{-\frac{2+\epsilon}{2 \epsilon}}, \exp \left(-\frac{d}{\epsilon\left\|\boldsymbol{\beta}_{L 1}^{*}\right\|_{1}}\right)\right\} \Longrightarrow\left\|\hat{\boldsymbol{\beta}}_{\alpha}\right\|_{1} \leq(1+\epsilon)\left\|\boldsymbol{\beta}_{L 1}^{*}\right\|_{1}
$$

Theorem 3. For any $\epsilon>0$

$$
\alpha \geq \sqrt{2(1+\epsilon)\left(1+\frac{2}{\epsilon}\right)\left\|\boldsymbol{\beta}_{L 2}^{*}\right\|_{2}} \Longrightarrow\left\|\hat{\boldsymbol{\beta}}_{\alpha}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\boldsymbol{\beta}_{L 2}^{*}\right\|_{2}^{2}
$$

Sparse Learning

$$
\begin{gathered}
y_{i}=\left\langle\beta^{*}, x_{i}\right\rangle+N(0,0.01) \\
d=1000, \quad\left\|\beta^{*}\right\|_{0}=5, \quad m=100
\end{gathered}
$$

Sparse Learning

$$
\begin{aligned}
& y_{i}=\left\langle\beta^{*}, x_{i}\right\rangle+N(0,0.01) \\
& d=1000, \quad\left\|\beta^{*}\right\|_{0}=k
\end{aligned}
$$

How small does α need to be to get $L\left(\beta_{\alpha}(\infty)\right)<0.025$

Is implicit bias of GD just ℓ_{2} in param space + mapping to func space?

Is initializing to $w(0)=\alpha 1$ the same as regularizing distance to $\alpha \mathbf{1}$?

$$
\beta_{\alpha}^{R}=F\left(\arg \min _{L_{s}(w)=0}\|w-\alpha 1\|_{2}^{2}\right)=\arg \min _{X \beta=y} R_{\alpha}(\beta)
$$

Where $R_{\alpha}(\beta)=\min _{F(w)=\beta}\|w-\alpha \mathbf{1}\|_{2}^{2}$

Is implicit bias of GD just ℓ_{2} in param space + mapping to func space?

Is initializing to $w(0)=\alpha 1$ the same as regularizing distance to $\alpha \mathbf{1}$?

$$
\beta_{\alpha}^{R}=F\left(\arg \min _{L_{S}(w)=0}\|w-\alpha 1\|_{2}^{2}\right)=\arg \min _{X \beta=y} R_{\alpha}(\beta)
$$

Where $R_{\alpha}(\beta)=\min _{F(w)=\beta}\|w-\alpha \mathbf{1}\|_{2}^{2}$
$R_{\alpha}(\beta)=\sum_{j} r\left(\frac{\beta[j]}{\alpha^{2}}\right)$ where $r(b)$ is solution of quartic equation:

$$
r^{4}-6 r^{3}+\left(12-2 b^{2}\right) r^{2}-\left(8+10 b^{2}\right) r+b^{2}+b^{4}=0
$$

Deep Diagonal Linear Net

$$
\beta(t)=w_{+}(t)^{D}-w_{-}(t)^{D}
$$

Deep Diagonal Linear Net

$$
\begin{aligned}
& \beta(t)=w_{+}(t)^{D}-w_{-}(t)^{D} \\
& \beta(t)=\alpha^{D}\left(\left(1+\alpha^{D-2} D(D-2) X^{\top} \int_{0}^{t} r(\tau) d \tau\right)^{\frac{-1}{D-2}}-\left(1-\alpha^{D-2} D(D-2) X^{\top} \int_{0}^{t} r(\tau) d \tau\right)^{\frac{-1}{D-2}}\right)
\end{aligned}
$$

KKT for $\min Q(\beta)$ st. $X \beta=y:$

$$
X \beta^{*}=y
$$

$$
\begin{array}{r}
s=\alpha^{D-2} D(D-2) \int_{0}^{\infty} r(\tau) d \tau \in \mathbb{R}^{m} \\
\beta(\infty)=\alpha^{D} h_{D}\left(X^{\top} S\right) \\
X \beta(\infty)=y \\
\left.h_{D}(z)=\alpha^{D}\left(\left(1+\alpha^{D-2} D(D-2) z\right)\right)^{\frac{-1}{D-2}}-\left(1-\alpha^{D-2} D(D-2) z\right)^{\frac{-1}{D-2}}\right)
\end{array}
$$

$$
\begin{gathered}
q_{D}=\int h_{D}^{-1} \\
Q_{D}(\beta)=\sum_{i} q_{D}\left(\frac{\beta[i]}{\alpha^{D}}\right)
\end{gathered}
$$

Deep Diagonal Linear Net

$$
\beta(t)=w_{+}(t)^{D}-w_{-}(t)^{D} \quad \beta(\infty)=\arg \min Q_{D}\left(\beta / \alpha^{D}\right) \text { s.t. } X \beta=y
$$

- Depth 2
-Depth 3
- Depth 5
- Depth 15

$$
h_{D}(z)=\alpha^{D}\left(\left(1+\alpha^{D-2} D(D-2) z\right)^{\frac{-1}{D-2}}-\left(1-\alpha^{D-2} D(D-2) z\right)^{\frac{-1}{D-2}}\right)
$$

$$
\begin{aligned}
q_{D} & =\int h_{D}^{-1} \\
Q_{D, \alpha}(\beta) & =\sum_{i} q_{D}\left(\frac{\beta[i]}{\alpha^{D}}\right)
\end{aligned}
$$

Deep Diagonal Linear Net

$$
\beta(t)=w_{+}(t)^{D}-w_{-}(t)^{D} \quad \beta(\infty)=\arg \min Q_{D}\left(\beta / \alpha^{D}\right) \text { s.t. } X \beta=y
$$

- Depth 2
- Depth 3
- Depth 5
- Depth 15

For all depth $D \geq 2, \beta(\infty) \xrightarrow{\alpha \rightarrow 0} \arg \min _{X \beta=y}\|\beta\|_{1}$

- Contrast with explicit reg: For $R_{\alpha}(\beta)=\min _{\substack{\beta=w_{+}^{D}-w_{\mathrm{D}} \underline{D} \\ \text { also observed by [Arora Cohen Hu Luo 2019] }}}\|w-\alpha \mathbf{1}\|_{2}^{2}, \quad R_{\alpha}(\beta) \xrightarrow{\alpha \rightarrow 0}\|\beta\|_{2 / D}$
- Also with logistic loss, $\beta(\infty) \rightarrow \propto$ SOSP of $\|\beta\|_{2 / D}$
[Gunasekar Lee Soudry Srebro 2018]
[Lyu Li 2019]
- With sq loss, always $\|\cdot\|_{1}$, but we get there if quicker depth is higher

Logistic Loss vs Squared Loss

Depth two:

- Square loss: $\beta(\infty) \propto \arg \min _{X \beta=y} Q_{\alpha}(\beta)$
- Logistic loss: $\forall_{\alpha} \beta(\infty) \propto \arg \min _{X \beta=y}\|\beta\|_{1}$

Deeper Diagonal Nets:

- Squared loss, $\beta(\infty) \xrightarrow{\alpha \rightarrow 0} \propto \arg \min _{X \beta=y}\|\beta\|_{1}$
- Logistic loss, $\beta(\infty) \propto$ SOSP of $\|\beta\|_{2 / D}$

[Moroshko Gunasekar Woodworth Lee S Soudry 2020 "Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy"]

Implicit bias of optimization (and hence inductive bias) effected by:

- Parametrization (architecture)
- Optimization "geometry" (GD vs AdaGrad vs coordinate methods)
- Type (asymptotics) of loss function
- Initialization
- Optimization accuracy
- Early stopping
- Not so early stopping
- Stepsize, momentum, other opt. parameters
- Stochasticity (SGD vs GD, mini-batch size, label noise)
[Cheng Chatterji Bartlett Jordan 2018][HaoChen Wei Lee Ma 2020]
- ???

The "complexity measure" approach

Identify $c(h)$ s.t.

- Optimization algorithm biases towards low $c(h)$
- $\mathcal{H}_{c(\text { reality })}=\{h \mid c(h) \leq c($ reality $)\}$ has low capacity
- Reality is well explained by low $c(h)$

Can optimization bias can be described as $\arg \min \boldsymbol{c}(\boldsymbol{h})$ s.t. $\boldsymbol{L}_{\boldsymbol{S}}(\boldsymbol{h})=\mathbf{0}$??

- Not always [Dauber Feder Koren Livni 2020]
- Approximately? Enough to explain generalization??

Ultimate Question: What is the true Inductive Bias? What makes reality efficiently learnable by fitting a (huge) neural net with a specific algorithm?

Deep Learning

- Expressive Power
- We are searching over the space of all functions...
... but with what inductive bias?
- How does this bias look in function space?
- Is it reasonable/sensible?
- Capacity / Generalization ability / Sample Complexity
- What's the true complexity measure (inductive bias)?
- How does it control generalization?
- Computation / Optimization
- How and where does optimization bias us? Under what conditions?
- Magic property of reality under which deep learning "works"

