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President’s Column
Muriel Médard

The writing of this column has been 
marked by many different emotions. 
When I began composing my mes-
sage, I was thinking about continuing 
our reflection on our Society in the 
context of our IEEE review and of the 
upcom ing ISIT. Having attended the 
TAB meeting in February, where I at-
tended our Transactions’ glowing re-
view, and being in the midst of prepar-
ing for ISIT in Cambridge, I was trying 
to distill for this column the promises 
and challenges that lie before us. Be-
fore I was able to commit my thoughts 
to text, the untimely death of our col-
league and friend Tom Cover made me 
re alize that my message could not be 
about the future without being, fore-
most, about the past. 

This column will not be an eulogy to 
Tom—there are many far better qual ified than I am to write 
such an article. Our Society extends its deepest condolences 
to Tom’s family and friends. Our thoughts particularly turn 
to Karen, whom many of us know well from her participation 
in the life of the Society. There will be events commemorating 
Tom, both within the Society (we are planning an event at ISIT 
in Cambridge) and at Stanford (please refer to the announce-
ment in the newsletter on this matter). In reflecting on our loss 
of Tom, it struck me that he embodied the best of our Society, 
both in mind and heart. 

That Tom was, to quote our Senior Past President Frank Kschis-
chang, an “information theory giant”, is unquestionable. Tom’s 
book opened infor mation theory to generations of students. 
Most of us have pored over his fundamental papers, trying 
to glean some of his insight and intuition, or at least capture 
in our own thinking traces of his intellectual elegance. Yet he 

 remained humble and kind. He treated 
all as peers, earnestly discussing tech-
nical points with colleagues and stu-
dents alike. I recall chatting with him 
in his office while, in a scheme that 
seemed to epitomize random access, 
fellow faculty and students from vari-
ous groups came and went with their 
own questions and comments. All were 
greeted with his hallmark warmth 
and humor. 

He was also a long-time member of our 
Society, who valued service to the So-
ciety, and recognized that the strength 
of the Society lies not only in the tech-
nical contributions of the individual 
members, but also in the community it 
provides to all of us. I had the pleasure 
and privilege to serve on our Board of 
Governors with Tom for several years. 

I marveled at how generously he shared his time and talents, 
and at how he took the time to encourage participation by more 
junior members in the governance of the Society. The fact that an 
academic of his stature never thought it beneath him to serve the 
Society in whatever capacity was needed explains in large part, 
I believe, the strength of our Society. 

Which brings back us to the examination of the state of our 
Society. It is clear that the quality of our Transactions, the 
vibrance of our conferences, the dynamism of our Summer 
schools, all rely on the fact that our Society is built on a combi-
nation of intellectual excellence and of devotion to community. 
This dual foundation we owe to people who, like Tom, have 
remained engaged in the Society with both intelligence and 
affection. Our most fitting tribute to Tom may be to strive to 
preserve his legacy, by maintaining a Society built on a shared 
basis of scientific pursuit and friendship.
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Dear IT Society members, 

With sadness, this issue of the newsletter 
starts with Tom Cover’s memorial infor-
mation communicated by Young Han Kim 
and Abbas El Gamal. In addition to our 
regular contributions by Tony Ephremides 
and Solomn Golomb, we have recaps of 
the plenary talk by Wojciech Szpankowski 
at ISIT 2012. 

All of us intellectually rely and depend on 
the IEEE Transactions on Information The-
ory. I would like to thank Helmut Bölcskei, 
the Editor-in-Chief of the Transactions, to 
provide a careful and detailed report on 
the state of the IT Transactions. This issue 
also includes reports on the first Software 
Radio Implementation Forum (SRIF) and 
the recent activities of the IEEE IT student 
committee, kindly submitted by Soung 
Liew and Elza Erkip. Last but not least, we 
have a call for participation in the IT soci-
ety mentoring program from the outreach 
committee. 

As a reminder, announcements, news 
and events intended for both the printed 

From the Editor
Tara Javidi

 newsletter and the website, such as award announcements, 
calls for nominations and upcoming conferences, can be sub-
mitted jointly at the IT Society website http://www.itsoc.
org/, using the quick links “Share News” and “Announce an 
Event.” Articles and columns also can be e-mailed to me at 
ITsocietynewsletter@ece.ucsd.edu with a subject line that in-
cludes the words “IT newsletter.” The next few deadlines are: 

Issue   Deadline 
September 2012 July 10, 2012
December 2012 October 10, 2012
March 2013 January 10, 2013 

Please submit plain text, LaTeX or Word source files; do not worry about fonts or layout as 
this will be taken care of by IEEE layout specialists. Electronic photos and graphics should 
be in high resolution and sent as separate files. I look forward to hear your suggestions 
and contributions for future issues of the newsletter. 
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Tom Cover, one of the greatest information 
theorists and a wonderfully inspiring teach-
er and mentor, passed away in Palo Alto on 
March 26, 2012. During his 48-year career as 
a professor of Electrical Engineering and Sta-
tistics at Stanford University, he graduated 
63 PhD students, published over 120 journal 
papers in learning, information theory, sta-
tistical complexity, and portfolio theory, and 
coauthored Elements of Information Theory, 
the most widely-cited book in the field. In 
recognition of his seminal contributions, Tom 
Cover received many awards and honors, in-
cluding the IEEE Richard W. Hamming Medal, 
the IEEE Information Theory Society Claude 
E. Shannon Award, and the IEEE Information 
Theory Paper Award. He was a Fellow of the 

IEEE and a member of the National Academy 
of Engineering and the American Academy of 
Arts and Sciences.

There will be a special session at the Interna-
tional Symposium on Information Theory 
(ISIT) on Monday, July 2, 2012, 8:00 PM–9:30 
PM. If you would like to say a few words in his 
memory, please contact Denise Murphy <de-
nise@ee.stanford.edu>.

A memorial service will be held in the after-
noon of Friday, October 12, 2012 at the Arril-
laga Alumni Center on the Stanford campus. 
For more details on this event, please visit 
the memoriam website http://tinyurl.com/
TomCoverMemorial

Thomas M. Cover in Memoriam 1938–2012

The Historian’s Column
Anthony Ephremides

In less than one year our Society lost two giants of our field. Jack 
Wolf and Tom Cover passed away leaving behind them a huge 
void, an immense legacy, and many mourning colleagues and 
friends in addition to their families. Jack and Tom have made his-
tory through their lives and so it is only fitting to reminisce about 
them in this column. 

I will not review here their technical work. Their accomplishments 
are well documented in their published works and the minds of 
those who have studied them. Their students and collaborators pop-
ulate our Society at all levels. Both were Shannon Award winners 
and both dominated the field for over forty years. Although there are 
many who carry on in their tradition, they are simply irreplaceable.

I will rather recall here, as a tribute to their memory, some spe-
cial moments and vignettes from their lives, as I experienced 
them, which show their human traits that made them so dear 
to us all. Both Jack and Tom had above all a unique sense of hu-
mor. Each in his own way, and underneath even their most sol-
emn moments, displayed a twinkle of levity and warmth that 
none could emulate. 

Let me start with Jack. As everyone who has met him remembers, 
Jack was capable of presenting a somber and serious expression 

on his face that could create some-
times concern and, even, foreboding. 
You might feel a threat of criticism or 
disapproval when he put his grave 
face on. Yet, within an instant, a slight 
set of lines around the eyes and the 
mouth would appear, and a set of 
white teeth would sparkle, as all the 
seriousness dissolved into a broad smile and a face beaming with 
delight, kindness, and a hilarious mood. His laughter was conta-
gious and his jokes innumerable and delightful.

I have recorded before his legendary performance with Jim Massey 
at one of the NATO Advanced Study Institutes in England when 
he teased Jim and staged a medieval “fight” with him in front of 
the incredulous eyes of the audience. And I may have mentioned 
other light moments involving his sharp humor and inventive-
ness. Here I’d like to recall a couple of them.

In 1990, he and I, along with a broad delegation of the IEEE found 
ourselves touring South America. The trip was complex and inter-
esting, revealing untold aspects of life in that part of the work. At 
one point we were all put in a tour bus that proved to be a disaster. 
A rather boisterous and incompetent guide was taking us from 
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vendor to vendor to hopefully provide 
business for his friends (instead of taking 
us to the advertised sites). We were all ir-
ritated but helpless and endured the long 
hours of driving around as well as we 
could. The guide was constantly talking 
on the mike, saying inane things, thus 
adding to the frustration. At one point he 
tried to show that he was smart and tak-
ing good care of us by pointing out that 
he was taking us to only the best sites. He 
went on to claim that he avoided those 

who might take advantage of us. He said, “what do you think? We 
are not stupid!”. At which point Jack offered: “no, no! We are!”. 
The ensuing reaction by everyone (i.e. hearty laughter) helped re-
store a decent mood in our group.

At another NATO Advanced Study Insti-
tute in Southwestern France in 1983, the 
attendees were invited by the landlady, 
who had made her castle available for 
the meeting, to a pre-dinner reception 
of fine hors d’oeurvres and aperitives 
in the grand reception hall of her resi-
dence. The atmosphere was almost 17th 
century royal French, and everyone was 
somewhat overwhelmed. I recall taking 
one of the “fruit-glaces” into my mouth 
and just as I closed my jaw, the bite cut 

the fruit the wrong way forcing the pit of the fruit right out of my 
mouth and onto the glistening wooden floor. I was highly embar-
rassed and humiliated especially since, as one would expect in 
such a situation, everyone pretended they didn’t notice. And then 
my eyes crossed Jack’s. He had an almost comical expression on 
his face, as he looked at me with sympathy, understanding, and 
encouragement. Without saying a word, he managed to restore 
my composure and overcome the shock of the incident.

Tom’s humor was different. There was occasionally a touch of 
well-intentioned sarcasm in his remarks, a lot of self-depreciation, 
a unique propensity for two-sided, double-meaning comments. I 
know I have reported in the past the occasion where, during a ple-
nary talk at the ISIT in St. Lovite, Tom went through some inter-
mittent dozing-offs as he had been caught up with fatigue and jet 
lag. A young student who observed him, but had no idea who he 
was, thought he’d try a pleasantry with him and asked, after the 
talk was over, whether Tom had a nice nap. Tom looked at him and 
said dryly” “yes, except that I was awaken by some very interest-
ing theorems”. The student looked puzzled by the response and 
decided, wisely, not to continue.

Tom was also a gourmet and bon-vivant. We enjoyed many fab-
ulous dinners accompanied with fine wines in various places 
around the world. Yet, he was uniquely approachable and friend-
ly, especially to students and young researchers, with who he 
liked to mingle encouragingly during the social functions of our 
symposia and workshops.

One of Tom’s highest moments of hilarity occurred several de-
cades ago when an unnamed program director of NSF was requir-
ing lengthy, unproductive meetings of the PI’s he was supporting. 
Many had tried to find a polite way to express their displeasure. 
And then Tom decided to intervene. He spoke with a metaphor. 
He told of the farmer who was cleaning his pig every time it soiled 
itself from rolling over in the mud. When asked why he spent so 
much time doing that instead of waiting to do it only at the end of 
the day before placing the pig in the pen, the farmer said: “what is 
time to a pig?”. Needless to say that the Program Director did not 
speak to Tom again!

I have fond memories of sharing a dinner with Jack in December 
of 2010 at the Globecom in Miami and with Tom at the ITA in San 
Diego this past February. They both were their usual selves, look-
ing healthy, and up-beat. I felt privileged. And I, along with every-
one else, will miss them dearly.
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Algorithms, Combinatorics, Information, and Beyond
Plenary Talk at ISIT 2011, St. Petersburg, Russia, April 7, 2012

Wojciech Szpankowski* 
Department of Computer Science, Purdue University 

West Lafayette, IN 47907 U.S.A. 
spa@cs.purdue.edu 

Abstract–Shannon information theory aims at finding funda-
mental limits for storage and communication, including rates of 
convergence to these limits. Indeed, many interesting informa-
tion theoretic phenomena seem to appear in the second order 
asymptotics. So we first discuss precise analysis of the minimax 
redundancy that can be viewed as a measure of learnable or use-
ful information. Then we highlight Markov types unveiling some 
interesting connections to combinatorics of graphical enumeration 
and linear Diophantine equations. Next we turn our attention to 
structural compression of graphical objects, proposing a compres-
sion algorithm achieving the lower bound represented by the 
structural entropy. These results are obtained using tools of ana-
lytic combinatorics and analysis of algorithms, known also as ana-
lytic information theory. Finally, we argue that perhaps information 
theory needs to be broadened if it is to meet today’s challenges 
beyond its original goals (of traditional communication) in biol-
ogy, economics, modern communication, and knowledge extrac-
tion. One of the essential components of this perspective is to con-
tinue building foundations in better understanding of temporal, 
spatial, structural and semantic information in dynamic networks 
with limited resources. Recently, the National Science Foundation 
has established the first Science and Technology Center on Science of 
Information (CSoI) to address these challenges and develop tools 
to move beyond our current understanding of information flow in 
communication and storage systems. 

1. Introduction
It is widely accepted that the information revolution started in 
1948 with the publication of Shannon “A Mathematical Theory of 
Communication”. It not only inaugurated a new research field, 
that of information theory, but also paved the way to today’s 
technological advances in storage and communication such as 
CDs, iPod, DVD and the internet. Shannon accomplished it all by 
first introducing a mathematical definition of information that 
quantifies the extent to which a recipient of data can reduce its 
statistical uncertainty, and then formulating two fundamental 
results giving us a lower bound for compression and an upper 
bound for reliable communication. Furthermore, Shannon de-
clared “these semantic aspects of communication are irrelevant”, 
somewhat abandoning his own dictum in the rate distortion the-
ory (e.g., the distortion measure of audio is incompatible with 
image compression). 

In this article we shall follow another Shannon commandment [66] 
“it is hardly to be expected that one single concept of information 
would satisfactorily account for (all) possible applications”. So we 
shall argue that information theory may benefit by expanding its 
original goals to meet today’s challenges in biology, economics, 
modern communication, and knowledge extraction from mas-
sive datasets (see also [1]). For this to happen more foundational 
work in better understanding of temporal, spatial, structural and 
semantic information is essential. 

We are all aware of Shannon warning in his “bandwagon” paper 
[67] where he thundered “Information theory has, in the last few 
years, become something of a scientific bandwagon.” It is no won-
der that some developments in the 50’s irked Shannon. Let us just 
look at the early application of information theory, say to biology. 
Henry Quastler launched information theory in biology in 1949 
(just a year after Shannon’s landmark paper and four years before 
the inception of molecular biology shaped by the work of Crick 
and Watson) in the paper written together with Dancoff “The In-
formation Content and Error Rate of Living Things”. Continuing 
this effort, Quastler organized two symposiums on “Information 
Theory in Biology”. These attempts were rather unsuccessful as 
argued by Henry Linschitz [41], who pointed out that there are 
difficulties in defining information “of a system composed of 
functionally interdependent units and channel information (en-
tropy) to “produce a functioning cell”. To be fair, we need to point 
out that in 70’s Manfred Eigen, Nobel laureate in biochemistry 
opined, “the differentiable characteristic of the living systems is 
information. Information assures the controlled reproduction of 
all constituents, thereby ensuring conservation of viability. Infor-
mation theory, pioneered by Claude Shannon, cannot answer this 
question . . . in principle, the answer was formulated 130 years ago 
by Charles Darwin.” Eigen’s challenge was picked up recently in 
two new special issues [20, 53] on information theory in molecular 
biology and neuroscience. The editorial of [20] concludes: “Infor-
mation Theory is firmly integrated in the fabric of neuroscience 
research, and a progressively wider range of biological research 
in general, and will continue to play an important role in these 
disciplines.” 

We are now fifty years after the bandwagon paper. In today’s 
world the dynamic flow of information is around us from biology 
to modern communication to economy. Many scholars argue to 
broaden information theory beyond its original goals of point-to-
point communication and compression of sequences: Sudan and 
his collaborators [25, 40] suggest that the meaning of informa-
tion does start to become relevant whenever there is diversity in 
the communicating parties and when parties themselves evolve 
over time. For example, when a computer attempts to communi-
cate with a printer both parties must talk the same language in 
the same format (i.e., “printer driver”). This leads Sudan and his 
collaborators to consider communication in the setting where en-
coder and decoder do not agree a priori on the communication 
protocols, thus encoder and decoder do not understand each 
other. Bennett in [5] observes that from the earliest days of infor-
mation theory it has been appreciated that information is not a 
good message value. He continues to propose that the value of in-
formation lies in “parts predictable only with difficulties, things 

*The work of this author was supported by NSF Science & Technology Center Grant 

CCF-0939370, NSF Grant CCF-0830140, AFOSR Grant FA8655-11-1-3076, and NSA 

Grant H98230-11-1-0141.
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that the receiver could figure out without being told”. This led 
him to define the logical depth. However, we still do not have a 
good understanding of the value of information; particularly, in 
biology and economics. As a matter of fact, in biology, P. Nurse 
in his 2008 paper [55] claims that biology is on the crossroad and 
further advances may be required to understand information flow. 
In Nurse’s own words “focusing on information flow will help to 
understand better how cells and organisms work . . . and temporal 
order in cell memory and reproduction are not fully understood.” 
Furthermore, in computer science F. Brooks claims [8]: “we have 
no theory that gives us a metric for the information embodied in 
structure . . . this is the most fundamental gap in the theoretical 
underpinning of information and computer science.” Finally, Zeil-
inger goes even further in [9, 85] claiming that reality and infor-
mation are two sides of the same coin, that is, they are in a deep 
sense indistinguishable. In communication it is widely accepted 
that understanding (value and flow of) temporal information is 
the key to further advances in computer communication [29] and 
wireless ad-hoc networks [26]. 

As the matter of fact, in recent decades the information theory 
community has been pursuing post-Shannon challenges as wit-
nessed in [17, 20, 26, 29, 33, 45, 53, 58, 54, 79], to mention a few. To 
continue on this path, we propose two approaches that include 
short(er)-term and long-term research goals: 

i) Back off from infinity: Following Ziv’s 1997 Shannon Lecture, 
we propose to extend Shannon findings to finite size data struc-
tures (i.e., graphs, sets, social networks), that is, develop informa-
tion theory of data structures beyond first-order asymptotics. We 
shall argue (see Section 2) that many interesting information-
theoretic phenomena appear in the second-order terms. Analytic 
information theory—which applies complex-analytic tools to 
information theory—is particularly suited for such investiga-
tions. We illustrate it in the next section by studying the mini-
max redundancy problem. 

ii) Science of Information: In general, we endeavor to do some 
foundational work in structural, temporal, spatial and seman-
tic information in dynamic networks with cooperating users 
(see also recent panel discussion [1]). We also argue that we 
need a better understanding of complex systems with repre-
sentation-invariant information. In Section 3 we describe some 
attempts towards this goal.

In 2010 the National Science Foundation established the first Sci-
ence and Technology Center for Science of Information (http://
soihub.org) “ to advance science and technology through a new quantita-
tive understanding of the representation, communication and processing 
of information in biological, physical, social and engineering systems.” 
The center is located at Purdue University and partner institutions 
include: Bryn Mawr, Berkeley, Howard, MIT, Princeton, Stanford, 
Texas A&M, UIUC, and UCSD. Some specific Center goals are to: 
(i) define core theoretical principles governing transfer of informa-
tion; (ii) develop meters and methods for information; (iii) apply 
science of information to problems in physical and social sciences, 
and engineering; and (iv) offer a venue for multidisciplinary long-
term collaborations. 

The plan for the paper is as follows. In the next section we discuss 
the maximal minimax redundancy for memoryless, Markovian, 

and renewal sources solved by analytic and combinatorial meth-
ods. In Section 3 we present a few problems illustrating broader 
science of information. In particular, we offer some new results on 
graphical compression as an illustration of structural information. 

2. Analytic Information Theory
Jacob Ziv in his 1997 Shannon Lecture presented compelling argu-
ments for “backing off” from first-order asymptotics in order to 
predict the behavior of real systems with finite length description. 
To overcome these difficulties, the so called non-asymptotic analy-
sis, in which lower and upper bounds are established with control-
lable error terms, becomes quite popular. However, we argue that 
developing full asymptotic expansions and more precise analysis 
may be even more desirable. Furthermore, following Hadamard’s 
precept1, we propose to study information theory problems us-
ing techniques of complex analysis2 such as generating functions, 
combinatorial calculus, Rice’s formula, Mellin transform, Fourier 
series, sequences distributed modulo 1, saddle point methods, 
analytic poissonization and depoissonization, and singularity 
analysis [76]. This program, which applies complex-analytic tools 
to information theory, constitutes analytic information theory. 

Analytic information theory can claim some successes in the last 
decade. We mention a few: proving in the negative the Wyner-Ziv 
conjecture regarding the longest match [72, 73]; establishing Ziv’s 
conjecture regarding the distribution of the number of phrases in 
the LZ’78 compression scheme [35, 39]; showing the right order of 
the LZ’78 redundancy [62, 49]; disproving the Steinberg-Gutman 
conjecture regarding lossy pattern matching compression schemes 
[50, 84, 46]; establishing precise redundancy of Huffman’s code 
[75] and redundancy of a fixed-to-variable no prefix free code [77]; 
deriving precise asymptotics of minimax redundancy for mem-
oryless sources [81, 74, 78], Markov sources [59, 37] and renewal 
sources [23, 21]; precise analysis of variable-to-fixed codes such 
as Tunstall and Khodak codes [22]; designing and analyzing error 
resilient Lemple-Ziv’77 data compression scheme [48], and finally 
establishing entropy of hidden Markov processes [64] and the 
noisy constrained capacity [30, 38]. 

In this section, we illustrate the power of analytic information 
theory on a few examples taken from the analysis of the minimax 
redundancy and enumeration of Markov types. First, however, we 
interpret minimax redundancy as a measure of learnable or useful 
information capturing regularity properties of an object. 

2.1. Learnable/Useful Information 
and Redundancy
One of the fundamental questions of information theory and sta-
tistical inference probes how much “useful or learnable informa-
tion” one can actually extract from a given data set. To shed some 
light on this problem, let a binary sequence x x xn

n1f=  be given. 

We would like to understand how much useful information, struc-
ture, regularity, or summarizing properties are in xn . For example, 
for a binary sequence the number of ones is a regularity property, 
the positions of ones are not. Let in general S be such a summariz-
ing property. We can describe it in two parts. First, we describe the 

1 The shortest path between two truths on the real line passes through the complex 

plane
2 Andrew Odlyzko wrote: “Analytic methods are extremely powerful and when they 

apply, they often yield estimates of unparalleled precision.”
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set S, and then the location of xn  in S that requires Slog ; ; bits (the 
latter is a good measure of the string complexity). We denote by 
( )I S  the number of bits describing it. Usually, S can be described 

in many ways, however, one should choose S so that it extracts all 
relevant information and nothing else. It means we need S that 
minimizes ( )I S . We denote such a set as St  and call it I-sufficient 
statistic. It makes sense to call ( )I St  the learnable information. 

We now consider two concrete measures of learnable informa-
tion. If St  is the shortest program on a universal Turing ma-
chine, then ( )I St  becomes Kolmogorov-information [13] ( )K St , and 

( ) ( )K x K S Slogn = +t t . For example, if xn  is a binary sequence, 
we first describe the type of xn  (e.g., the number of ones) that 
requires ( )O nlog  bits, and then location of xn  within the type 
which requires ( ) ( / )nH k nk

nlog .  bits. While this sounds reason-
able, in general Kolmogorov information is not computable, so 
we need another approach. 

We now turn our attention to computable useful information con-
tained in a sequence xn  generated by a source belonging to a class 
of parameterized distributions ( ) { : }PM !iH H= i  for some k-
dimensional space H . We follow here Rissanen [60] and Grunwald 
[28]. Let ( )xnit  be the maximum likelihood (ML) estimator, that is, 

( ) ( )x P xarg maxn ni = !i iH
t . Observe that for a given sequence xn , 

produced either by i  or by il, we can use ( )xnit  to decide which 
model generates the data with a small error probability, provided 
these two parameters are far apart in some distance. If these two 
models, i  and il are too close to each others, they are virtually 
indistinguishable, and they do not introduce any additional use-
ful information. In view of this, it is reasonable to postulate that 
learnable information about xn  is summarized in the number of 
distinguishable distributions (models), as illustrated in Figure 1. In 
general, useful information is closely related to distinguishability. 
In summary, if there are ( )Cn H  such distinguishable distributions, 
it is natural to call ( ) ( )I Clogn nH H=  the useful information. 

Let us estimate ( )Cn H  in the MDL (Minimum Description Length) 
world, as discussed in [3, 28, 60]. As a distance between distribu-
tions/models we adopt the Kullback-Leibler (KL) divergence D. 
Using Taylor expansion around it , we find 

 
( | | ) [ ( )] [ ( )]

( ) ( )( ) ( )

D P P P X P X

I o
2
1

log log

,

E En n

T 2
i i i i i i i

-

= - - + -

i i i i=:

t t t t

t t

 
(1)

where ( ) { ( )}I Iij iji i=  is the Fisher information matrix defined as 

 ( ) ( )I P Xlog .Eij
i j

2

2 2
2i
i i

=- i; E

As a distance we use 

( ) ( ) ( )( )d I,I
T

0i i i i i i i= - -t t t   

which is the so called Mahalanobis distance [28]. This is a res-
caled version of Euclidean distance, and by (1) we have 

( ) ( ( ))d O D,I 0 0i i i i= . One property of the dI  distance is that 
the volume V of a ball (ellipsoid) at center i  and radius f  is 

 ( ( )) ( ) ( ( )V B I V B1, det ,I i f i f=

where ( )B f  is the regular Euclidean ball and ( )det I i  is the deter-
minant of ( )I i  [3, 28]. 

To proceed, we need to specify the error probability and distin-
guishability. Let ( ) { ( ) }B D, :KL 0 0 #i f i i i f=  be the KL-ball or 
radius f  around 0i . Observe that the KL-ball ( , )BKL i f  becomes 

( , )BI i f  ball in the dI  distance. The distinguishability of models 
depends on the error probability that can be estimated as follows 
[3] for some 0!i H  with ( )dim k0H =  [28] 

( ) ( ( ( ) ) )

( ( ) ( / )) 1 ( )

P P D X

P X B n O

arg min

, /

n

KL
k 2

0

! !

g. +

i i i i i

i i f f

=

-

!

i i
i i

i

t t

 

for some small 02f , where we use the fact that for Markov sourc-
es (more generally, for an exponential family of distributions) 

( )

( )

( )

( )
( )

P x
P x n

P X
P X nDlog log .En

n

i i= =
i

i
i

i

i tt
t

t

; E  

We conclude that the number of distinguishable distributions 
( )Cn H  is approximately equal to the volume ( )VI H  of H  under dis-

tance dI  divided by the volume of the ball size ( / )B n,I i f . In [3] 
it is proved that 

( ) ( ) ( ( ) ( / ( )) .V I d V B O Idet , , det/
I I

k 2
.i i i f f iH =

H
#  

Setting up the error probability at level ( )O n1  as indicated 
above, we conclude that the number of distinguishable distribu-
tions ( )Cn H  (i.e., the number of centers of the balls ( )B ,I i f ) is 
(see [21, 28, 60]) 

( ) ( ) ( ) ( )C n I d O P x
P
P

2
1det sup inf max log

/
n

k n

x
x

2

n
nr

i iH = + = =
!

!i
i

i i

i

H H H

t

` j /#

 (2)

where the second equality follows from [28, 59]. In order to justify 
the last equality we need to turn our attention to the maximal mini-
max redundancy. 

Let us begin with a precise information-theoretic definition of the 
minimax redundancy and its Shtarkov’s bounds. Throughout this 
section, we write ( , )L C xn

n  for the length of a fixed-to-variable 
code { }C 0, 1; A *

n
n
"  assigned to the source sequence xn  over 

the alphabet { }m1, 2, ,A f=  of size m that can be finite or not. 
In practice, one can only hope to have some knowledge about a 
family of sources S  that generates the data, such as the family of 

Indistinquishable Models

1 ⁄ n

Cn(Θ) Balls; log Cn(θ) useful bits

θ

θ θ′

Fig. 1. Illustration to C(i).
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memoryless sources M0  or Markov sources Mr  of order r 0.2  
Following Davisson [18] and Shtarkov [69], we define the mini-
max worst-case (maximal) redundancy ( )R S*

n  for a family S  as 

 ( ) ( ) ( )logR L C x P xmin sup min , ,S*
n

C P x
n

n n
1 1

Sn
n
1

= +
d

6 @  (3) 

where Cn  represents a set of prefix codes, and the source P S!

generates the sequence x x xn
n1 f= . If we ignore the integer na-

ture of the code length ( )L C x,n
n , then we can approximate it by 

1/log Pi  for some i . Furthermore, ( ) (1/ )P x Plog sup logP
n

S =! it , 
where it  is the ML estimator, so that 

 ( ) ( )R
P
P O 1inf max logS*

n
xn

= +
i i

it  (4)

which is the right-hand side of (2), and therefore 
( ) ( ) ( )C R O 1S*

nH = + . 

We still need to justify the last equality in (2). We derive now 
Shtarkov’s bound [69]. Define first the maximum likelihood dis-
tribution 

 ( )
( )

( )
Q x

P y
P x

sup

sup
.* n

P
n

y

P
n

S
A

S

n n

=
d

!

!

:
/

 

Then observe [21] 

 ( ) ( ( ) ( ))R L C x P xmin sup max , logS*
n

C P x
n

n n

Sn
n

= +
!

min max sup
C x

n
n

P

n

S
n

n
=

!

( ) ( )L C x P x, log+` j 

 ( ) ( ) ( )L C x Q x P ymin max , log log sup*

C x
n

n n

Py

n

SA
n

n
n n

= + +
!!

^ h /  

 ( ) ( ) ( ) ( )R Q P y P y O 1log sup log sup*
n
GS

Py

n

Py

n

SA SAn n n n

= + = +
d d! !

/ /  

where ( )R0 1Qn
GS1 #

)  is the redundancy of the optimal general-
ized Shannon code (see [21]). Therefore, ignoring again the integer 
constraint (i.e., setting ( )R Q 0*

n
GS = ) and using (4) rather than (3) 

we arrive at 

( ) ( )P x
P
P Rsup inf max log S*

x

n

x
n

n
n

= =
d di

i
i i

i

H H

t/

which establishes the right-hand side of (2). From now on, we as-
sume that ( ) ( )R Dlog SS*

,n m=  where 

 ( ) ( )D P xsup .Sn m
Px

n
,

SAn n

=
d !

/  (5) 

The (1)O  term in (4) can be computed for finitely parameterized 
sources as in [21], but we will not elaborate on it here. 

In summary, useful or learnable information is closely related to 
the minimax redundancy ( )R S*

n  which can be viewed as a mea-
sure of certain regularity properties of a source (regularity beyond 
the randomness/complexity expressed by the entropy). Next, us-
ing analytic tools we estimate asymptotically the minimax redun-
dancy for various classes of sources such as memoryless for fi-
nite and infinite alphabets, renewal sources, and Markov sources. 
When discussing Markov sources, we rather turn our attention to 
combinatorial aspects of Markov types. 

2.2. Minimax Redundancy for 
Memoryless Sources

In this section we study the minimax redundancy for a class of 
memoryless sources over finite and infinite alphabet of size m. 
We follow here [74]. Observe that ( )D D Mn m n m 0, ,=:  defined in (5) 
takes the form 

 D
n

k k n
k

n
k

, ,
,n m

m

k
m

k

k k n 1
,

1
m

m

1

1
f

g=
g+ + =

c c cm m m/  (6)

where ki  is the number of times symbol i A!  occurs in a string 
of length n. Indeed, observing that ( )P x p pn k

m
k

1
m1g=  where pi  are 

unknown parameters i  representing the probability for symbol 
Ai ,!  we proceed as follows 

 ( ) ( )D P xsupMn
P x

n

x

0 1

( )
nn
11

= /  

 p psup
, ,p pmx

k
m
k

1
n

m

1
1

1g=
f

/  

 
n

k k p p
, ,

sup
m p p

k
m
k

k k n 1
1

, , m

m

m 1

1

1
f

g=
fg+ + =

c m/  

 
n

k k n
k

n
k

, ,
,

mk k n

k
m

k

1

1

m

m

1

1

f
g=

g+ + =

c c cm m m/  

where the last line follows from 

( )P x p p
n
k

n
k

sup sup .
P x

n

p p

k
m
k

k
m

k

1 1
1

( ) ,n m

m
m

1
1

1
1

,

g g= =
f

c cm m  

We should point out that (6) has a form that re-appears in the 
redundancy analysis of other sources. Indeed, the summation is 
over tuples ( )k k, ,k m1 f=  representing a (memoryless) type (cf. 
Section 2.4) and under the sum the first term ( )k k, , m1 f

n
 counts the 

number of sequences xn  of the same type while the second term is 
the maximum likelihood distribution. 

It is argued in [74] that the asymptotics of such a sum can be ana-
lyzed through its so-called tree-like generating function defined as 

( )
!

.D z
n
n D zm

n

n m
n

n 0

,=
3

=

/  

Here, we will follow the same methodology and employ the con-
volution formula for tree-like generating functions (cf. [76]). Ob-
serve that ( )D zm  relates to another tree-like generating function 
defined as 

 ( )
!

.B z
k
k z

k

k

k

0

=
3

=

/  

This function, in turn, can be shown to be (cf. [76]) 
( ) (1 ( ))B z T z 1= - -  for z e 11 - , where ( ) ( / !)T z k k zk k

k
1

1
= 3 -

=
/  is 

the well-known tree function—that counts the number of rooted 
labeled trees on n vertices [24]—satisfying the implicit equation 

 ( )T z ze ( )T z=  (7) 

with ( )T z 1.1  The convolution formula [76] applied to (6) yields 

( ) ( ) 1.D z B zm
m= -6 @   (8)
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Consequently, ( !/ ) [ ] ( )D n n z B zn m
n n m

, = 6 @  where [ ] ( )z f zn  denotes 
the coefficient of zn in ( )f z . 

Defining ( ) ( / )z B z eb = , z 1,1  noticing that [ ] ( ) [ ] ( )z z e z B z ,n n nb = -

and applying Stirling’s formula, (8) yields 

( ) [ ] ( )D n O n z z2 1 .n m
n m1

, r b= + -^ h 6 @   (9)

Thus, it suffices to extract asymptotics of the coefficient at zn  of 
[ ( )]z mb , for which a standard tool is Cauchy;s coefficient formula 
[24, 76], that is, 

 [ ] [ ( )]
( )

z z
i z

z
dz

2
1n m

n

m

1
b

r
b

=
+

#  (10)

where the integration is around a closed path containing 0z =

inside which ( )zmb  is analytic. However, asymptotic evaluation 
of the above depends whether m is finite or is a function of n. We 
consider these two cases next. 

2.2.1. Finite Alphabet Size
First we assume that the size of the alphabet m is finite and does 
not depend on n. This case was analyzed in [74] (see also [81, 82]). 
To evaluate the integral in (10) we apply Flajolet and Odlyzko sin-
gularity analysis [24, 76] because [ ( )]z mb  has only algebraic singu-
larities. Indeed, using (7) it can be shown that the singular expan-
sion of ( )zb  around its singularity 1z =  is [12] 

 ( )
( )

( ) ( ) .z
z

z O z
2 1

1
3
1

24
2 1 1b =

-
+ - - + -  

From [24, 76] we know that 

 [ ] ( )
( )

{0 }z z n1 1 2, , , , .n
1

fg+
a

a
C

- - -a
a

-
-

 

This is illustrated in Figure 2. The singularity analysis then yields 
the minimax redundancy [74] 

R D m n

m m

m m e

n
O

n

2
1

2

2
3

2 2
1

2 2 1

log log

log
log

*
n m n m, ,

$r

C C

C

= =
-

+ +
-

+

: `

`
f

c

`

c

j

j
p

m

j

m

 

(11)

for large n and fixed m, where C  is the Euler gamma function. We 
conclude that the first term above coincides with Rissanen’s lower 
bound: we pay a penalty of /2nlog  per unknown parameter. 

2.2.2. Unbounded Alphabet
Now we assume that the alphabet size is unknown and unbounded. 
In fact, it may depend on n. When m grows with n, the singularity 
analysis does not apply because ( )zmb  grows exponentially with n. 
The growth of ( )zmb  determines that the saddle point method [24, 
76], which we briefly review next, can be applied to (10). We will 
restrict our attention to a special case of the method, where the 
goal is to obtain an asymptotic approximation of 

( )
D n

i z
z

dz n
i

e dz2
2
1 2

2
1 ,( )

n m n

m
g z

1, r
r

b
r

r
= =

+
# #  

where ( ) ( ) ( )g z m z n z1ln lnb= - + . For example, when 1m n= +  
the function under the integral grows as ( 1)[ ( ) ]n z zexp ln lnb+ -^ h

which becomes very large around z where ( )z zln lnb -  is maxi-
mized, and almost negligible everywhere else. This determines the 
asymptotics. 

In general for any m and n, the saddle point z0  is a solution of 
( )g z 00 =l , which yields 

 ( ) ( ) ( ) ( ) ( ( )( ) )g z g z z z g z O g z z z
2
1 .0 0

2
0 0 0

3= + - + -m n  

Under mild conditions (see Table 8.4 in [76]), satisfied by our ( )g z
(e.g., z0  is real and unique), the saddle point method leads to 

 
| ( ) | ( ( ))

( )
D n

g z
e O

g z
g z

2
2

1 ,
( )

n m

g z

0 0

0
,

0

#r
r

= + tm m

n
ee oo  

for some 3/21t . In our case, the saddle point z0  varies from 
near 1 to near 0 depending on the relation between n and m as 
illustrated in Figure 3. It turns out that three cases must be consid-
ered: ( )m o n=  (the saddle point z 10 . ), ( )m O n= (saddle point 

)z0 1 ,01 1  and the case ( )n o m=  (in this case z 00 . ). 

The following result is proved in [78] (see also [56]) 

Theorem 1 (Szpankowski and Weinberger, 2012). For memoryless 
sources M0  over an m-ary alphabet, where m " 3  as n grows, the mini-
max worst-case redundancy behaves asymptotically as follows: 

(i) For ( )m o n=

 

.

R m
m
n m e

m e
n
m

e
n
m O

n
m

m

2
1

2 3

2
1

4
1

log log
log

log

*
n m

2

, =
-

+ +

- - + +c m

 

(12)

(ii) For ( )m n n,a= + , where a  is a positive constant and ( ) ( )n o n, = , 

 

( )
( )

( ) ( )

R n B n C A
n A
n e

O
n
n

n
n

n

2

1

log log log
log

,

*
n m 2

2

2

3

, ,
,

, ,

a
= + - -

+ + +

a a a
a

c m

 

(13)

where 

C A C B C e
2
1

2
1 1 4 2, , .C

2 1

a a
a= + + = + =a a a a a

a+ -
a: :  

(iii) For ( )n o m=

  R n
n
m

m
n e

m
n e O

n m
n

2
3

2
3 1log log log .*

n m

2

2

3

, = + - + +c m  (14)

In summary, we conclude that for finite m and ( )m o n=  
the minimax redundancy, representing useful information 
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0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0 0.511.5
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Fig. 2. Singularity analysis.
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 embodied in  regularity properties of a sequence, grows like 
( )/ ( / )m n m1 2 log .#-  This coincides with Rissanen’s lower 
bound. However, for ( )m O n=  the minimax redundancy grows 
linearly with n while for m growing faster than n the growth of the 
minimax redundancy is ( / )n m nlog . 

2.3. Minimax Redundancy for Renewal Sources
Let us continue our analytic extravaganza and consider non-finitely 
parameterized sources before we return to Markovian sources over 
finite alphabets in the next section. We study here the so called re-
newal sources first introduced in 1996 by Csiszár and Shields [15]. 
Such a source is defined as follows: 

• Let ,T T1 2f be a sequence of i.i.d. positive-valued random vari-
ables with distribution ( ) { }PrQ j T ji= = . 

• The process T T T T T T, , ,0 0 1 0 1 2 f+ + +  is a renewal process. 

• In a binary renewal sequence the positions of the 1’s are at the 
renewal epochs T T T, ,0 0 1 f+  with runs of zeros of lengths 

1T1 - , 1T2 - , … in between the 1’s. 

• The process starts with x 10 = .

We follow here the analysis presented in [23]. A sequence gener-
ated by such a source becomes 

x 10 10 1 10 10 0n

k

0

*

n1 2 g g= a a a

Y
 

where km  is the number of i such that mia = . Then 

 ( ) [ (0)] [ (1)] [ ( 1)] { }PrP x Q Q Q n T k .n k k k
1 1

n0 1 1g 2= - )-  

The last term introduces some difficulties in finding the maximum 
likelihood distribution, but it can be proved that the minimax re-
dundancy ( ) ( )R DlogR R*

n n0 0=  of the renewal source R0  satisfies 

 ( )r D r1 Rn n m
m

n

1 0

0

# #-+

=

/  

where r rn n kk

n

0
,=

=
/  and 

 r
k

k k k
k

k
k

k
k

.
,

n k
nn k

k k
n

k

0 1

0 1 1
,

( )I

n0 1 1

g
g=

-

-
-

c c c cm m m m/  (15)

Above ( , )n kI  is is the integer partition of n  into k  terms, i.e., 

 1n k k nk k k k2 , .n n0 1 1 0 1g g= + + + = + +- -  

Since rn  is too difficult to analyze, we rather study s sn n kk

n

0
,=

=
/

where 

! !
!s e
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k
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s
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k e
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,

n k
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k

n k n k

n k
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0 1
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,

P

n0 1

g= =-

-
-

-

/  
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( ) ( / )
! !

( )

S z u s u e z z
e
u

k
k

k
k

z u

, n k
k n

k n

k k nk k k k

n

k

i

i

1 2

0 1

1

,

, P

n

n k

n
n

0 1 1 0 1
0 1

,

g

b

= =

=

g g

3

+ + + + +

-

=

- -
-

` j

%

/ /
 

where ( ) ( / )z B z eb =  is defined in the previous section. 

To compare sn  to rn , we introduce the random variable Kn  as 
 follows 

 { }Pr K k
s
s

.n
n

n k,
= =  

Stirling’s formula yields 

 [( ) ! ]
s
r

s
r

s
s K K eE

n

n

k

n

n k

n k

n

n k
n n

K K

0 ,

, , n n= =
=

-/  

 [ ] ( [ ])K O K2 .E En n
2
1

r= +
-

 

Thus 

 [ 2 ]( ( )) [ ] ( ( )) .r s K o s K o1 1 2 1 1E En n n n nr r= + = +  

To understand probabilistic behavior of Kn , we apply sophisti-
cated tools of analytic combinatorics such as Mellin transform and 
the saddle point [24, 76]. In particular, we must evaluate [ ] ( )z S z 1,n

by the saddle point that leads to the following 

[ ] ( ) [ ]s z S z z
z

c a
z

1
1 1

1, exp logn
n n= =

-
+

-
c m 

which is illustrated in Figure 4. We prove in [23] the following. 
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Fig. 3. Illustration of the saddle point method for Theorem 1.



11

June 2012 IEEE Information Theory Society Newsletter

Lemma 1. Let [ ]KEn nn =  and ( )KVarn n
2v = . Then 

 ( ) ( ) ( )
c
n

c
n o n O n n o

4
1 log , log ,n n n

2 2n v n= + = =  

where /c 6 12r= - , d c2
8
3

4
3log log log .r=- - -

This leads to our final result proved in [23]. 

Theorem 2 (Flajolet and Szpankowski, 1998). We have the following 
asymptotics 

 ( )s cn n O2
8
7 1exp log ,n + - +c m  

( )r cn n n O
2

2
8
5

2
1 1log

log
log log log .n = - + +  

that yields 

 ( ) ( ) .R cn O n
2

2
log

logR*
n 0 = +  

where c
6

1 0.645
2

.
r

= - . 

In passing we should point out that the renewal source technically 
is reminiscent of the memoryless sources with unbounded alpha-
bet (cf (3) and (15)). The analysis of renewal sources is, however, 
much more sophisticated. 

2.4. Markov Minimax Redundancy 
and Markov Types
In this section, we return to the finite size alphabet { }m1, ,A f=

but now we consider a class M1  of Markovian sources of order 
1r = . More precisely, the probability of a sequence xn  is given by 

 ( ) ( )P x P x p
,

n
ij
k

i j

m

1

1

ij
=

=

%  

where kij  is the number of pairs ( , )i j A2
!  in xn , pij  are the (un-

known) transition probabilities while ( )P x1  is the initial probabil-
ity. Then the minimax redundancy (ignoring again the integer 
 nature of coding) is [37] 

 ( ) ( ) ( )D P x
k
k

k
k

sup ,kM T
( )

n
Px

n
n

k

m

mm
k

mk
1

1

11

Qn

mm

n1

11

f; ;= =
!

c cm m/ /  (16)

where ( )Q mn  denotes a set of Markov types discussed in the sequel, 
and ( ) ( )T xk Tn n

n
1=:  is the number of sequences of the same Mar-

kov type represented by the frequency count matrix { }k .k Aij i j, 2= !

The frequency matrix k, which we also write [ ]kij , satisfies two im-
portant properties 

 k n 1,ij
,i j A

= -
!

/  (17)

and additionally for any Ai !  [37, 83] 

 ( ) ( ) Ak k x i x i i, ,ij
j

m

ji
j

m

n
1 1

1 6 !d d= + = - =
= =

/ /   (18)

where ( ) 1Ad =  when A is true and zero otherwise. The last prop-
erty is called the flow conservation property and is a consequence 
of the fact that the number of pairs starting with symbols Ai !  
must be equal to the number of pairs ending with symbol Ai !  

with the possible exception of the first and last pairs. To avoid this 
exception, hereafter we focus on cyclic strings in which the first el-
ement x1  follows the last xn . For such cyclic strings the frequency 
matrix k satisfies a simplified system of linear equations, namely 

k n,
, A

ij
i j

=
!

/  (19)

 Ak k i, .ij
j

m

ji
j

m

1 1

6 !=
= =

/ /  (20)

Such integer matrices k will be called balanced frequency matrices or 
simply balanced matrices. We also call (20) the “conservation law” 
equation or simply the balanced boundary condition (BBC). We de-
note by ( )mFn  the set of nonnegative integer solutions of (19) and 
(20). 

We are now ready to define cyclic Markov types. Two cyclic se-
quences have the same (cyclic) Markov type if they have the same 
empirical distribution 

 ( )P x p .
A

n
ij
k

i j,

ij
=

!

%  

Thus, we assume the initial condition is a cyclic one. We denote 
by ( )mPn  the set of cyclic Markov types and enumerate them by 
comparing them to the cardinality of ( )mFn , and also to the set of 
Markov types ( )Q mn  over linear strings. In passing, we should 
point out that for a given sequence xn , the type class is defined as 

 ( ) { : ( ) ( )}x y P x P yTn
n n n n= =  

for all empirical distributions Pxn  in a given model class. Clearly, 
( ) AxTn

n n
xn =' , and ( )xTn

n
; ; counts the number of sequences of 

the same type as xn ; it is required to estimate the minimax redun-
dancy for Markov sources as shown in (16). 

Our goal is to enumerate the number of cyclic Markov types 
( )P mn  that from now on we simply call Markov types. Enter 

combinatorics: we shall show that the number of Markov types 
is asymptotically equivalent to estimating: (i) the number of the 
balanced frequency matrices, (ii) the number of integer solutions 

( )F mn; ; of a system of linear Diophantine equations (19)–(20), and 
finally (iii) the number of connected Eulerian multigraphs, as de-
fined next. To see the latter, we present another characterization of 

2500

2000

1500

1000

500

0
–0.2 0 0.2 0.4 0.6 0.8 1.0

–0.5
0

0.5
–1

y

x

Fig. 4. Saddle Point.



12

IEEE Information Theory Society Newsletter June 2012

Markov types. Let us define a directed multigraph ( )G V E,=  with 
the set of vertices AV =  and kij  edges between vertices Ai j, !  
For {0 1}A ,=  such a graph is shown in Figure 5. Then, as already 
observed in [6, 27, 37], the number of sequences of a given type k, 
i.e., ( )T k; ;, is equal to the number of Eulerian cycles in G. On the 
other hand, the number of types ( )mPn; ; coincides with the num-
ber of Eulerian digraphs ( )G V E,=  such that V A3  and E n;; =

(here AV 3  since there may be sequences composed of only some 
symbols of the alphabet). The point we emphasize is that G may 
be defined over a subset of A , as shown in the next Figure 6 (i.e., 
there may be some isolated vertices). 

Let us explore further these two sets ( )P mn  and ( )F mn  in the lan-
guage of graphs. In fact, we need to introduce another set. We de-
note it by ( )E mn , the set of connected Eulerian digraphs on A ; 
the middle of Figure 6 shows an example of a graph in this set. 
Finally, the set ( )F mn  can be viewed as the set of digraphs G with 

( ) AV G = , ( )E G n=  and satisfying the flow conversation prop-
erty (in-degree equals out-degree). We call such graphs conserva-
tive digraphs. Observe that a graph in ( )F mn  may consist of several 
connected (not communicating) Eulerian digraphs, as shown in 
the third example in Figure 6. 

There is a simple relation between ( )mEn ;;  and ( )P mn; ;. Indeed, 

 ( ) ( )P m
m
k kEn

k
n= c m/  (21)

since there are k
m^ h ways to choose m k-  isolated vertices in 

( )m .Pn  Now, observe that a conservative digraph may have sev-
eral connected components. Each connected component is either a 
connected Eulerian digraph or an isolated node without an edge. 
This leads to 

 ( ) ( ) ( )F Am mE E
A AA

n n
i

m

n n n
n j

j

i

2 1j

j

i 11

= +
gg= + + = == ''

%/ //   (22)

where the sum is over all (unordered) set partitions 
A A Ai1 , ,g=  into 2i $  (nonempty) parts with nj  edges in 
each di-subgraph ( )AEn jj  over A j  vertices. Observe that every set 
partition A A Ai1 , ,g=  with A m 0j j 2=  is a partition of A  
into i distinguished subsets of cardinality mj . In fact, using the so 
called exponential formula [24] (page 118) we may conclude even 
more, namely [34] 

( ) ( )
!

( )F m m
i

m
m m m1 .E En n

i

m

im m m
n j

j

i

n n n2 1 1i

j

i1 1
g

; ; ; ;= +
g g= + + = =+ =

c m %/ / /  

A direct consequence of this is the following asymptotic equiva-
lence [34]. 

Lemma 2. The following holds for all 2m $  and n " 3

 ( ) ( ) ( )PF m m O m n2 .n n
m m m3 3 32

= + - +  (23)

In view of the above we need to enumerate the number of solu-
tions ( )F mn  of the system of linear Diophantine equations (19)–
(20). Again, we accomplish it by analytic methods. Let 

 ( ) ( ) .FzF m z*
m

n
n

n

0

=
$

/  

However, to find ( )F z*
m  we need to evaluate a more complicated 

generating function that enumerates all balanced matrices, that is, 

 ( )F ,z z*

F

m
m( )

k

k n

=
!

/  

where z .z ij
k

ij
k ij

=: %  Notice that the summation is over all balanc-
es matrices ( )F mk n! . This is a daunting task, but we can easily 
compute the above generating function if the summation is over 
all matrices (satisfying only (19)). Indeed, 

 ( ) (1 ) .F zz zm ij
ij

1k

k

= = - -%/   (24)

The remaining problem is to translate ( )F zm  into ( )F z*
m . This is pre-

sented in the next lemma, where we consider a multivariate gener-
ating functions ( )G gz zk

k

k
= /  and ( )G gz z*

F n 0k
k

k= =
! $

/ /
g z

( )m k
k

k Fn!
/  over general sequences gk  indexed by matrices k. 
The following was proved in [37]. 

Lemma 3. Let ( )G gz zk
k

k
= /  be the generating function of a complex 

matrix z . Then 

k =
1 2
2 2

0 1

Fig. 5. A frequency matrix and its corresponding 
Eulerian graph.
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( )G g
x
dx

x
dx G z

x
x

2
1
i

z z*

Fn

m

m

m
ij

i

j

0 1

1
k

k

k n

g
r

= =
$ !

: c cm m; E/ / # #

with the convention that the ij-th coefficient of the matrix [ ( / )]z x xij j i

is ( / )z x xij j i , and 1i = - . In other words, [ ( / )] ( ) ( )z x x x xzij j i
1D D= -

where ( ) ( )x x xdiag , , m1 fD = . 

Proof. Observe that 

 ( ( ) ( ))G x x G z
x
x

g x .z zij
i

j
i

k k

i

m
1

1

k
k

k

jij jijD D = =- -

=

c m; E %/ / /
 (25)

Therefore, ( )G z*  is the coefficient of ([ ( / )])( )G z x xij j i $  at x x xm1
0

2
0 0g

denoted as x xm1
0 0g6 @ since k k 0jij jij

- =/ /  for matrices F.k !

The result follows from the Cauchy coefficient formula (cf. [76]). 

Now we are ready to enumerate ( )F mn . Setting in Lemma 2 
/z zx xij i j=  and using (24) we conclude that 

 ( )
( )

F z
z

x x x z
x
x

1
1 1 .*

m m m
j

i

i j

1

1
0

2
0 0g=

-
-

!

-

6 ;@ E%  (26)

Thus, by the Cauchy formula 

( ) [ ] ( )
( )

F m z F z
i z

F z dz
2
1 .*

*

n
n

m n
m

1r
= =

+
#  

This allows us to formulate our main result on the enumeration of 
(cyclic) Markov types. 

Theorem 3 (Knessl, Jacquet, and Szpankowski, 2012). (i) Cyclic 
Types. For fixed m and n " 3  the number of cyclic Markov types is 

 ( ) ( )
( ) !

( )P m d m
m m

n O nn

m m
m m

2

1
2

2

=
-

+
-

- -   (27)

where ( )d m  is a constant that also can be expressed by the following 
integral 

 ( )
( )

d m
2

1

1

1
m

j

m

j
1 2

1

1

( )m fold1

g
r {

=
+3

3

3

3

-
- - =

-

- -
1 2 3444 444

%# #  

 
( )

d d d
1

1 .
k k

m2 1 2 1# g
{ {

{ { {
+ -, ,!

-%  (28) 

When m " 3  we find that 

 ( )P m
m

m e n
2

2 .
/

/

n m m m

m m
m m

2 2

3 2

2

2
2

; ; +

r
-  (29)

provided that ( )m o n4 = . 

(ii) Markov Types. The number of Markov types ( )Q mn  with arbi-
trary initial conditions satisfies 

 ( ) ( ) ( ) ( ( ))PQ m m m m O n1 1n n
m2 2

; ;= - + - -  

where ( )P mn; ; is presented in (i). 

In order to finish our analysis of the minimax redundancy, we 
need to estimate the number of sequences of a given type. First, 
we replace (16) by 

 ( ) ( [ ]) ( ) ( )M TD m k kk 1 ,
,FA

n
b

n
ba

ba b
k

k
i

k

i b
1

1[ ]

0

k

k

ba b

n ba

id= - -
2 !! !

d- - + -%/ /  

 (30)

where ( )T kn
ba

; ; is the number of cyclic strings xn  of type k starting 
with b and ending with a. To compute it we first introduce 

 B
k

k k
k

k km

m

m mm

1

11 1 1
k

g
g

g
= c cm m 

where k k .i j ij= /  It may be viewed as the number of ways to de-
part from all m vertices in the multiple graph G associated with the 
frequency matrix k (but not necessarily completing an Eulerian 
cycle). Observe that 

 ( ) 1B B z .z z ,

A

a b
b Aa

1

k

k
k= = -

dd

-

c m%/ /  

Lemma 2 yields [37] 

 ( )
( )

B B 1
det

z z
I z

*

F m( )k

k
k

n

= =
-d

/  

where I is the m m#  identity matrix. Using this approach we can 
finally estimate the number of sequences starting with an a and 
finishing with a b of a given Markov type as follows 

 ( ) ( )T
k
k B O

n
1 1det ,k I k*

n
ba

b

ba

bb
k $= - + cc mm  

where k*  is the matrix whose ij-th element is /k kij i , that is, 
[ / ]k kk*

ij i=  (cf. [83, 37]). 

Putting everything together, in [37] we prove the following as-
ymptotic expansion for the minimax redundancy of Markov 
sources (cf. [59]). 

Theorem 4 (Rissanen, 1996, Jacquet and Szpankowski, 2004). (i) 
Let M1  be the class of Markov sources over a finite alphabet A  of size m. 
The worst case minimax redundancy is ( ) ( )M MR Dlog*

n n1 1=  where 

 ( )MD n A O
n2

1 1/
n

m m
m1

( 1) 2
#

r
= +

-
` ccj mm (31)

with 

 ( )A m F y
y

y
dy

A

A

A

m m ij
ijj

ijj

i
ij

ij(1)K A 2

=
d

d!
! %
% %

/
#  

where 

 : 0, 1, :y y y i y y ,ij ij ij
ij

ij
j

ji
j

6$ = =(1)K = ' 1/ / /  

( ) (1 )F dety ym bb
*/= -Ab! , and y*  is the matrix whose ij-th coef-

ficient is y y/ .ij ijj l
l

/

(ii) Let Mr  be the class of Markov sources of order r over a finite alphabet 
A  of size m. The minimax redundancy is ( ) ( )M MR Dlog*

n n r1 =  where 

 
r

( )MR n A O
n2

1 1* ( )/
n r

m m
m
r1 2
#

r
= +

-
` ccj mm (32)

with 

 ( ) ,A m F
y

y
y

,K
A

m
r r

m
r

w jj

w

w(1)r r

=
d %
%#  

where (1)Kr  is the convex set of m mr #  matrices y with non-negative 
coefficients such that 1y ,w j w j, ,/ =  Aw .r

!  The function 

 ( ) ( )F det ,y I y*
m
r

r ww r
w

= -/  
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where yr
*  is the m mr r#  matrix whose ( )w w, l  coefficient is equal to 

/y yAw a wi, i/ d  if there exist a in A  such that wl  is a suffix of wa, 
otherwise the ( )w w, l th coefficient is equal to 0. 

The evaluation of the constants Am  is not easy. But, for a binary 
alphabet (m 2= ) we have 

 ( ( ) ( ))A 2 det detI y I y* *

K
2

11(1) 22
= - + -#

.
y y

y
y y

y
dy dy dy dy

11 12

1

21 22

2
11 12 21 22#  (33)

Since ( ) ( / )y ydet I y*
11 21 2- =  and ( )det I y*

22 -  by symmetry, and 
since the condition (1)Ky !  means 1y y1 2+ =  and y y12 21=  we 
arrive at, A G162 $=  where G is the Catalan constant defined as 

( ) /( ) . .G i1 2 1 0 915965594i
i

2
.= - +^ h/

3. Science of Information: Beyond Shannon
In science of information the goal is to pursue the theory of informa-
tion beyond Shannon’s original objectives (of communication), by 
applying it to problems of biology, neuroscience, economics, phys-
ics, and massive data where knowledge extraction is the game 
changer. We believe that in order to make fundamental contribu-
tions to these applications, we first need better understanding of 
new aspects of temporal, spatial, structural and semantic informa-
tion. In this section, we first briefly review some recent results on 
semantic and temporal properties and on cooperation, to focus on 
structural information. 

3.1. Delay, Semantic, and Cooperation
The mathematical theory of information arose from Shannon’s 
theorem on channel capacity, defined as the maximum rate that 
can be achieved over a channel with asymptotically small prob-
ability of error. Shannon capacity of a channel places no restric-
tions on complexity or delay in transmission or reception. Meth-
ods to properly characterize the complexity and the delay could 
potentially fill a large gap that would extend Shannon capacity to 
dynamic networks with multi-point communication and often un-
predictable delays [26, 29]. Furthermore, the increasing demands 
for using wireless networks require such delay guarantees. Ap-
plications include VoIP, video streaming, real time surveillance, 
networked control, etc. One common characteristic of these ap-
plications is that they have a strict deadline associated with each 
packet. Further, the channel reliabilities of different clients can be 
different, and can even vary over time. These are compelling rea-
sons why we need to understand the role of delay in distributed 
communication. 

In [58] Polyanskiy, Poor, and Verdu extend the fundamental chan-
nel coding theorem of Shannon to a finite block-length regime. In 
particular, it is shown that coding rate ( , )M n*

n f  for finite block 
length n is 

( , ) ( )
n

M n C
n
V Q1 log * 1

.f f- -  

where C  is the capacity, V  is the channel dispersion, f  is error 
probability, and Q is the complementary Gaussian distribution. 
This is a non-asymptotic result (i.e., precise lower and upper 
bounds are presented), and it allows us to compute the degrada-
tion in capacity, even for small block lengths. Recently, these re-
sults are extended to lossy compression [47]. 

In another line of research in a real time coding system with looka-
head, Asnani and Weissman [2] investigate the impact of delay on 
expected distortion. The system consists of a memoryless source; a 
memoryless channel; an encoder, which encodes the source sym-
bols sequentially, with knowledge of future source symbols up to a 
fixed finite lookahead, with or without feedback of the past channel 
output symbols; and a decoder, which sequentially constructs the 
source symbols using the channel output. The objective is to mini-
mize the expected per-symbol distortion using a control theory ap-
proach. The authors provide one of the first results in this line of 
research. This bridges the gap between causal encoding (delay = 0) 
and the infinite lookahead case (delay 3= ) where Shannon theoret-
ic arguments show that encoding-decoding separation is optimal. 

However, any further progress in information theory of networks 
requires us to understand distributed information and link delay 
with flow of information. In a novel line of research P.R. Kumar 
and co-authors [31, 42] design reliable scheduling policies with de-
lay constraints for unreliable wireless networks. They focus on a 
formulation that appears to provide a useful and tractable frame-
work for modeling, analyzing and designing real-time wireless 
communications. This framework is built on top of an analytical 
model that jointly considers the three important aforementioned 
challenges: a strict deadline for each packet, the timely throughput 
requirement specified by each client or application, and finally the 
unreliable and heterogeneous nature of wireless transmissions. 
An important feature is that this model is suitable for character-
izing the needs of a wide range of applications, and the model 
allows each application to specify its individual demand. 

We turn now our attention to semantic aspect of information. 
Shannon in his 1948 paper asserted “Frequently the messages 
have meaning, that is, they refer to or are correlated according to 
some system with certain physical or conceptual entities. These 
semantic aspects of communication are irrelevant to the engineer-
ing problem.” However, Sudan and his collaborators [25, 40] ar-
gue that the meaning of information does start to become relevant 
whenever there is diversity in the communicating parties and 
when parties themselves evolve over time. For example, when a 
computer attempts to communicate with a printer they must talk 
the same language in the same format (i.e., “printer driver”). This 
leads Sudan and his collaborators to consider communication in 
the setting where encoder and decoder do not agree a priori on 
the communication protocols, thus encoder and decoder do not 
understand each other. In [25, 40] a mathematical theory of goal-
oriented communication is proposed from the complexity theory 
point of view. Perhaps these are among the first results that may 
lead to a new information theory of semantic communication. 

Finally, we discuss information theory of cooperation and depen-
dency. In an extension of the Shannon framework, Cuff, Permuter 
and Cover [17] initiate a theory of cooperation and coordination 
in networks. A general understanding of the limits of dependence 
yields rate distortion theory (data compression) as a special case 
and provides a general approach to distributed data compression 
and cooperation. It also elucidates such diverse processes as in-
tercellular biological communication. The role of dependence is 
exemplified by the telephone system, wireless communication, 
the internet, news services, the economies of large countries and 
the internal workings of computer architecture. The efficacy of all 
of these systems depends on fast communication and consequent 
cooperative behavior. Such distributed dependence is also found 
in chemical reactions, landslides, hurricanes, the dynamics of the 
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sun and the universe itself. What are the necessary information 
exchanges? What limits on physical dependence are imposed by 
the speed of information? Are there energy constraints on compu-
tation? Some of these vast generalities can be addressed by devel-
oping a science of information for dependence. In [17] the authors 
ask what dependence can be established among nodes given com-
munication constraints. More precisely, the authors compute the 
achievable joint distribution among network nodes, provided that 
the communication rates are given. Such a distributed cooperation 
can be the solution to many problems, such as distributed games, 
distributed control, and bounds on the influence of one part of a 
physical system on another. 

Dependency and rational expectation are critical ingredients in 
Sims’ work on modern dynamic economic theory [51]. Sims points 
out that existing theories of rational expectations with continuous 
optimization imply infinite mutual information between market 
and person actions. By imposing information flow constraints, 
discrete behavior emerges (as already seen in [61]) that better de-
scribe real economic behavior (cf. also [71]). 

3.2. Information Content of Graphical Structures
Structural information appears in myriad applications, from biol-
ogy to social networks to material sciences. In fact, in recent years 
we have become inundated with new (unconventional) data: the 
internet, social networks, biological networks, and medical records 
are all key examples that present grand challenges. For instance, in 
recent paper [80] Varshney et al. reported a pretty complete wiring 
(graph) of 302 neurons in the C.elegans worm that allows inference 
of biological functions from the neuronal network structure. 

Unconventional data often are represented by more sophisticated 
data structures such as graphs, sets, and trees. For example, a graph 
can be described by a binary matrix that further can be viewed 
as a binary sequence. However, such a sequence does not exhibit 
internal symmetries that are conveyed by the so-called graph au-
tomorphism (such automorphisms make certain sequences/ma-
trices “indistinguishable”). The main challenge in dealing with 
such structural data is to identify and describe these structural 
relations. In fact, these “regular properties” constitute “useful 
(extractable) information” discussed in Section 2.1. Furthermore, 
such data structures often have two types of information: the in-
formation conveyed by the structure itself, and the information 
conveyed by the data labels implanted in the structure. We still do 
not have good metrics of information embodied in structure. 

As the first step in understanding structural information, we re-
strict our attention to structures on graphs, specifically, we study 
unlabeled graphs (or structures). In particular, given n distinguish-
able (labeled) vertices, a random graph is generated by adding 
edges randomly. This random graph model G  produces a prob-
ability distribution on graphs, and the graph entropy HG  is de-
fined naturally as 

 [ ( )] ( ) ( )H P G P G P Glog log ,EG

GG
= - =

d

- /  

where ( )P G  is the probability of a graph G. However, to focus on 
structural properties, we consider here unlabeled graphs in which 
the vertices are indistinguishable. We denote such an unlabeled 
graph by S S!  and clearly 

 ( ) ( )P S P G .
,G S G G

=
, !

/  

Here G S, means that G and S have the same structure, that is, S 
is isomorphic to G. Thus, if all isomorphic labeled graphs have the 
same probability, then for any labeled graph G S, , 

 ( ) ( ) ( )P S N S P G ,$=   (34)

where ( )N S  is the number of different labeled graphs that have the 
same structure as S. The structural entropy HS  of a random graph 
can be defined as the entropy of a random structure S , that is, 

 [ ( )] ( ) ( )Hs P S P S P Slog log ,E
SS

= - =-
d

/  

where the summation is over all distinct structures. 

In order to compute the probability of a given structure S, one needs 
to estimate the number of ways, ( )N S , to construct a given structure 
S (i.e., unlabeled graph). For this, the automorphisms of a graph is 
to be considered. An automorphism of a graph G is an adjacency pre-
serving permutation of the vertices of G. The collection ( )GAut  of all 
automorphisms of G is called the automorphism group of G. In the 
sequel, ( )SAut  of a structure S denotes ( )GAut  for some labeled 
graph G such that G S, . In group theory, it is well known that 

 ( )
( )
!N S

S
n

Aut; ;
=  

and therefore, ( ) !S n1 Aut# # . 

This trivial observation leads to a relation between the graph en-
tropy and the structural entropy [10]. 

Lemma 4. If all isomorphic graphs have the same probability, then 

 ! ( ) ( )H H n P S Slog log AutGS
S S

= - +
!

/  

for any random graph G  and its corresponding random structure S , 
where ( )SAut  is the automorphism group of S. 

In order to further advance our theory, we need to adopt a graph 
generation model. From now on, we assume a memoryless Erdo”s-
Rényi model ( )G n p,  over n vertices in which edges are added inde-
pendently and randomly with probability p. Thus ( )P G p q ,k kn

2= -^ h

where q p1= - . To compute the entropy of ( )S n p,  we need to 
estimate ( )N S . For this, we must study an important property of 

( )G n p, , namely asymmetry. A graph is said to be asymmetric if its 
automorphism group does not contain any permutation other than 
the identity (i.e., ( )G 1Aut; ;= ); otherwise it is called symmetric. It is 
known that almost every graph from ( )G n p,  is asymmetric [7, 43]. 
In the sequel, we write a bn n%  to mean ( )a o bn n=  when n " 3 . 

Lemma 5 (Kim, Sudakov, and Vu, 2002). For all p satisfying 
(( / )) n pnln %  and 1 (( )/ )p n nln&- , a random graph ( )GG n p,!  is 
symmetric with probability O n w-^ h for any positive constant w. 

Using this property, we can now present the structural entropy 
and establish the asymptotic equipartition property (AEP), that is, 
the typical probability of a structure S. In [10] we prove. 

Theorem 5 (Choi and Szpankowski, 2009). For large n and all p sat-
isfying (( )/ )ln n n p%  and 1 (( )/ )p n nln&- , the following holds: 

(i) The structural entropy HS  of ( )G n p,  is 

 ( ) ! 0H
n

h p n O
n

n
for some

2
log

log
, ,S 2a= - + a

c cm m  
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(ii) (AEP) For a structure ( )SS n p,!  and 0,2f

 ( ) ( )
!

P
n

P S h p
n

n

2

1

2

1 2log
log

,1 2f f- - + -
` `

f
j j

p   (35)

where ( ) ( ) ( )h p p p p p1 1log log=- - - -  is the entropy rate of a bi-
nary memoryless source. 

By Shannon’s source coding theorem, the structural entropy com-
puted in Theorem 5 is a fundamental lower bound for the lossless 
compression of structures from ( )n p,S . However, the challenge 
is to design an asymptotically optimal compression algorithm 
matching the first two leading terms ( )h p n nlogn

2 -^ h  of the 
structural entropy with high probability. We discuss it next. 

Our algorithm, called Szip (Structural zip), is a compression 
scheme for unlabeled graphs. In other words, given a labeled 
graph G, it compresses G into a codeword, from which one can 
construct a graph S that is isomorphic to G. The algorithm consists 
of two stages. First it encodes G into two binary sequences and 
then compresses them using an arithmetic encoder. 

The main idea behind our algorithm is quite simple (see [10] for 
details and Figure 7): We select a vertex of a graph, say v1 ( v i1 =

in Figure 7), and store the number of neighbors of v1  in a binary 
string B1  (0100 in Figure 7). We remove this vertex, and then parti-
tion the remaining 1n -  vertices into two sets: the neighbors of 
v1  d f g i, , ,^  in Figure 7) and the non-neighbors of v1  a b c e h, , , ,^

in Figure 7). We continue by selecting (and removing) a vertex, 
say v2  (v f2 =  in Figure 7), from the neighbors of v1  and store two 
numbers in either string B1  or B2  (if there is only one neighbor or 
none): the number of neighbors of v2  among each of the above 

two sets. Then we partition the remaining n 2-  vertices into four 
sets: the neighbors of both v1  and v2 , the neighbors of v1  that are 
non-neighbors of v2 , the non-neighbors of v1  that are neighbors 
of v2 , and the non-neighbors of both v1  and v2 . This procedure 
continues until all vertices are processed. This process of selecting 
and splitting vertices can be described by a tree as illustrated in 
Figure 7. 

During the construction the number of neighbors of the selected 
vertex is appended to either sequence B1  or sequence B2 , where 
B2  contains those numbers for singleton sets (i.e., we store either 
“0” when there is no neighbor or “1” otherwise). The sequence B2

is represented by a “square” in the associated tree in Figure 7. We 
then compress B1  and B2  using an arithmetic encoder. 

In [10] we prove that the algorithm just presented achieves the 
structural entropy up to the first two leading terms by showing that 
the length of B2  (in compressed form) dominates the compression 
rate. In fact, we also observe that by the construction B2  can be 
viewed as generated by a memoryless source with probability p. 
We prove the following. 

Theorem 6 (Choi and Szpankowski, 2009). Let ( )L S  be the 
length of the codeword generated by our algorithm for Erdo”s-
Rényi graphs ( )G n p,G!  isomorphic to a structure S. Then: 
(i) For large n, 

 [ ( )] ( ) ( ) ( )L S
n

h p n n c n n o n
2

log log ,E # U- + + +c ^m h  

where c is an explicitly computable constant, and ( )nlogU  is a fluctuat-
ing function with a small amplitude independent of n. 

Fig. 7. Illustration to Szip.
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(ii) Furthermore, for any 0,2f

 ( ) [ ( )] ( )P L S L S n n o1 1log .E # $f- -^ h  

(iii) Our algorithm Szip runs either in time ( )O n2  in the worst case 
for any graph or in time ( )O n e+  on average for graphs generated by 

( )n p,G , where e is the average number of edges. 

In the remaining part of this section, we present a sketch of the proof 
of Theorem 6 (i). We need to compute the average lengths ( )L B1

and ( )L B2  of strings B1  and B2 , respectively. These lengths can be 
evaluated through the associated tree Tn  shown in Figure 7. In fact, 

 ( ) ( 1)L B Nlog x
x T N

1

1andn x

= +
d 2

^ h/  (36) 

 ( ) ( 1)L B N 1log x
x T N x T N

2

and 1 and 1n x n x

= + =
d d= =

^ h/ /  (37)

where Nx  is the degree of a node x in the associated tree Tn . 

To analyze ( )L B1  and ( )L B2  it is convenient to introduce an aux-
iliary tree that we call ( )n d, -tries3 and denote as Tn d, . The root of 
such a tree contains n balls (vertices of the underlying graph) that 
are consequently distributed between two subtrees according to 
a simple rule: In each step, all balls independently move down to 
the left subtree (say with probability p) or the right subtree (with 
probability 1 p- ), and a new node is created as long as there is 
at least one ball in that node. Finally, a non-negative integer d is 
given so that at level d or greater one ball is removed from the 
leftmost node before the balls move down to the next level (in our 
case we set 0d = ). These steps are repeated until all balls are re-
moved (i.e., after n+ d steps). Of interest are such tree parameters 
as the depth, path length (sum of all depths), size, and so forth. 

We compute now the averages of ( )L B1  and ( )L B2  for a randomly 
generated Erdős-Rényi graph. For ( )L B1 , in the tree T ,n d  define 

( )A N 1log ,n d x
x T N

,

and,n d x 1

= +
! 2

^ h/

and then [ ( )]L B aE ,n1 0= . Also let [ ]a AE, ,n d n d= . Clearly, 
a a 0, ,d d0 1= =  and a 0,2 0 = . For 2n $  and 0d = , we observe that 

 ( 1) ( )a n
n
k p q a alog ,n

k

n
k n k

k n k k1,0

0

0, ,= + + ++

=

-
-c m^ h /  (38)

 ( 1) ( )a n
n
k p q a alog .,n d

k

n
k n k

k d n k k d
0

1 1, ,= + + +
=

-
- - + -c m^ h /  (39) 

To estimate ( )L B2  we observe that 

 ( )
( )L B N B n n B

2

1
.x n n

x T
2 0, ,0

,n 0

= - =
-

-
!

/  (40)

where .B Nn d x T N x, ,n d x 1,/= d 2  The last equality follows from the fact 
that the sum of Nx ’s for all x at level ,  in Tn 0,  is equal to n 1 .,- -  
Let [ ]b B .En d n d, ,=  Clearly, b b 0d d0 1, ,= =  and b 0,2 0 = . For 2n $ , 
we observe that to a ,n d : 

 b n
n
k p q b b n 2, for ,n

k

n
k n k

k n k k1,0

0

0, , $= + ++

=

-
-c m 6 @/   (41)

and 

 ,b n
n
k p q b b n d2 1for , .n d

k

n
k n k

k d n k k d
0

1 1, , , $ $= + +
=

-
- - + -c m 6 @/  (42)

Indeed, recurrence (41) follows from the fact that starting with 
1n +  balls in the root node, and removing one ball, we are left 

with n balls passing through the root node. The root contributes 
n since each time a ball moves down it adds 1 to the path length. 
Those n balls move down to the left or the right subtrees. Let us 
assume k balls move down to the left subtree (the other n k-  balls 
must move down to the right subtree); this occurs with probability 

p qk
n k n k-

^ h . At level one, one ball is removed from those k balls in 
the root of the left subtree. This contributes bk 0, . There will be no 
removal from n k-  balls in the right subtree until all k balls in 
the left subtree are removed. This contributes bn k k,- . Similarly, for 
d 02  we arrive at recurrence (42). 

We are then faced with the reduced problem to find asymptotic 
solutions of two-dimensional recurrences (38)–(39) and (41)–(42). 
We concentrate on the latter and follow [11]. 

If we let d " 3  in (42) and assume that b ,n d  tends to a limit b ,n 3 , 
then (42) becomes 

b n
n
k p q b b, , ,n

k

n
k n k

k n k
0

= + +3 3 3

=

-
-c m 6 @/  (43)

with 0b b0 1, ,= =3 3 . This is the same as the recurrence for the 
mean path length in a standard trie, discussed above. For example, 
in [44, 76] it is proved that 

 ( ) .b
n

p q
1

1
n

n

2

,
,

,
= -

- -
3

,

,
, ,

=

c m/  (44)

The asymptotic expansion of (43) and the above as n " 3  may be 
obtained by a combination of singularity analysis and depoisso-
nization arguments (see [24, 36, 76]). We obtain 

 ( ) ( )b
h

n n
h h

h n n o n1 1
2

log log ,n p
2

, c U= + + + +3 ; E  (45) 

where : ( )h h p=  is the entropy, h p p q qlog log2
2 2= + , c  is the Eul-

er constant, and ( )xU  is the periodic function 

 ( )x
p

k ir e2
log

,k rix

k k

2

0,

rU C= -
3

3

!

r

=-

c m/  (46)

provided that / /p q r slog log =  is rational, with r and s being in-
tegers with ( ) 1r sgcd , = . If /p qlog log  is irrational, then the term 
with U  is absent from the ( )O n  term of (45). 

Let now b b bn d n d n, , ,= - 3
u  measures how the path lengths in the 

( )n d, -trie differs from those in a regular trie. From (42) and (43), 
we then obtain 

( ) ( )b
n
k p q b k d b n k k d n d1 1 for 2 1, , , , ,n d

k

n
k n k

0

, $ $= - + - + -
=

-u u uc m 6 @/  

 (47)

which unlike (42) is a homogeneous recurrence. It turns out that 
the second term under the sum is negligible, which even further 
simplifies the recurrence. Then analytic techniques such as Mellin 
transform and depoissonization can be applied leading to asymp-
totic solution of (47). 

We summarize our main result proved in [11]. 

3 A trie [44, 76] is an ordered tree data structure that stores keys usually represented 

by strings. Tries were introduced by de la Briandais (1959) and Fredkin (1960) who 

also introduced the name trie derived from “retrieval”.
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Theorem 7. For n " 3  and (1)d O=  we have ( ) ( )b n d O n, log2=u . 
More precisely 

( ) ( )

b
h p

n
h
d n

h h p h
h n n O

2
1

2
1 1 1

2
1

log
log log

log
log log ,

n d

p

2

2

,

c W

= +

+ - + + + + +

u

c m; E

(48)

where ( )$W  is the periodic function 

 ( )x
p

k ir
p

k ir e1 2 2
log logk k

k irx

0

2

,

r rW C= + -
3

3

!

r

=-

c m; E/  (49)

and / /p q r tlog log =  is rational, as in (46). If /p qlog log  is irrational, 
the term involving W  in (48) is absent. Thus 

 ( ) ( )b
h

n n
h h

h n n O n1 1
2

log log logn p0
2 2

, c U= + + + +; E  

for large n. 

To complete the proof of Theorem 6 we need to evaluate the 
[ ( )]a L BEn 0 1, =  that satisfies the set of recurrences (38)–(39). Using 

the same approach as above we prove in [10, 11] 

[ ( )] ( 1) ( ), ( 1)
( )

( 1)
L B

h
n A o n A

1

log
E

*1

2 , ,

,
= - + - =

-

+

,

3

=
*

^ h
/

if /p qlog log  is irrational. If / /p q r slog log =  is rational, the con-
stant ( )A 1* -  must be replaced by the oscillatory function 

 A
p

k ir e1 2
log*

2k ir n

k k 0

log

,

pr
- +

3

3

!

r

=-

c m/  (50)

where 

( )
!

( 1)
( ) .A s

n
n

n s
log

n 2

C=
+

+
$

*

^ h
/

Summing up, we compute [ ( )] [ ( ) ( )] ( )L S L B L B O nlog ,E E 1 2= + +t t

where B1
t  and B2

t  are strings B1  and B2  compressed by the arith-
metic encoder, while ( )O nlog  bits are needed to encode n. The 
arithmetic encoder can compress a binary sequence of length m 
on average up to (1) ( )mh m O mh O mlog log2

1+ + = + , where h 
is the entropy rate of the binary source. For string B2  we know that 

( )h h p= , and this completes the part (i) of Theorem 6(i). 
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A Report on the State of the Transactions 

The IT Transactions is an extraordinarily successful journal that 
is in constant peril of being destroyed by its success. By any mea-
sure, it is one of the top journals in the IEEE, and indeed in applied 
mathematics, computer science, and engineering. Financially, it is 
the main revenue contributor to the IT Society. 

Perhaps in part because of its success and prestige, the IT Trans-
actions has continued to grow at a rate much greater than that 
of any other long-established journal of which we are aware. Six 
years ago a committee headed by Alexander Vardy estimated that 
“In ten years from now the Transactions will be publishing over 
10,000 pages per year”. In 2011, we published over 8000 pages and 
we seem to be on track to publish even more in 2012. We receive 
about 1100 submissions per year and our submission-to-publica-
tion time is hovering around an average of 21 months.The “thud 
factor” of the printed monthly volume has become embarrassing. 

All this has put extraordinary pressure on Associate Editors (AEs) 
and reviewers. In response, we have taken the following first mea-
sures: 

1) We have instituted a “fast-reject” system that now returns 
about 30% of submitted papers based on assessments by the 
editorial board. This is in line with the International 
Mathematical Union’s Best Practices stating, among others, 
that: “Manuscripts that are deemed not to adhere to the jour-
nal’s standards or scope can be quickly returned to the authors 
with a brief editorial justification.” 

2) We have raised standards in all editorial areas with regard not 
only to quality, but also to significance and relevance of papers. 
As a result, our acceptance rate has fallen to 40%. 

3) A number of senior colleagues have kindly agreed to serve as 
an AE for a second time. 

4) We have transitioned to the Scholar One paper handling 
system, which allows much closer tracking of paper status. 
Deadlines have been imposed for reviews and revisions. AEs 
and reviewers receive automated reminders. A part-time 
editorial assistant (Alison Larkin) has been hired, and she 

and I follow up with personal reminders on overdue papers 
as well. 

5) Accepted papers now appear on IEEE Xplore within about two 
weeks. This “preprint,” although not yet edited, has a DOI 
number and is fully citable. 

To date, the impact of these measures remains unclear. Further 
measures are being discussed in the Executive Editorial Board and 
among the society officers. 

I cannot emphasize too strongly that every member of our com-
munity who takes pride in and benefits from the success of our 
Transactions must pull his or her weight by agreeing to review 
a number of papers commensurate with the number of papers 
that he or she submits, and providing reviews that are not only 
thoughtful and professional, but also timely. As the International 
Mathematical Union has said in its “Best Practices for Journals:” 

“Researchers who benefit from the literature and contribute to it 
as authors also have an obligation to participate in the peer review 
process, in particular by serving as referees in their areas of ex-
pertise...While no one has an obligation to review any particular 
paper, the decision to do so or not should be communicated in 
a timely fashion. Once a referee has agreed to serve, that referee 
should adhere to the agreed-upon schedule (including revisions) 
and inform the editor of unanticipated delays.” 

The community as a whole must help to keep our prized Transac-
tions from foundering under its extraordinary growth, so that it 
can have a sustainable future. 

Finally, I would like to offer my most sincere gratitude to all of 
the Associate Editors, the Publication Editors, and the Executive 
Editorial Board for their hard work, dedication, and collegiality. 

Yours sincerely, 
Helmut Bölcskei 

Editor-in-Chief
IEEE Transactions on Information Theory
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The First Software Radio Implementation 
Forum (SRIF 2012; http://srif2012.inc.
cu hk.edu.hk/) was held by the Institute 
of Network Coding (INC) of The Chinese 
University of Hong Kong (CUHK) on Jan 
12–13, 2012.

SRIF aims to bring together researchers 
interested in all aspects of software radio 
implementations of wireless systems for 
exchange and sharing of ideas. Academic 
research efforts today in wireless com-
munications and networking are mostly 
theoretical in nature. With software radio, 
it is now possible to prototype many of 
the proposed systems. These prototype 
efforts serve two purposes: 1) demonstra-
tion of feasibility; and 2) identification of 
new critical problems that demand fur-
ther attention.

The barriers to the implementation efforts, 
however, can be substantial. The purpose 
of this forum is to bring together research-
ers and developers so that they can share 
their knowledge in software radio to ex-
pedite their prototyping efforts. 

Toward that end, SRIF has drawn active 
participation from many organizations, 
particularly those in the Greater China 
region. Responses were very positive, 
with more than 120 registrations. Four 
invited talks by leaders in software radio 
implementation, in particular, drew wide 
attendance: (i) Dr. Erran Li (Bell Lab); (ii) 
Dr. Tom Rondeau (Gnu Radio); (iii) Dr. 
Kun Tan (Microsoft Research); (iv) Dr. 
Yang Yang (WiCo, Chinese Academy of 
Science). 

Besides the four invited talks, there 
were 11 other technical talks and four 
demonstrations by eminent researchers 
in the field. One of the talks and dem-
onstrations were on the first implemen-
tation of a Physical-layer Network Cod-
ing system by a team of researchers led by Prof. Soung Liew of 
INC, CUHK. 

At the conclusion of SRIF 2012, the speakers and many organiz-
ing team members expressed that they gained much from the 

participation of the event, and expressed their interest to continue 
 organizing this event as a regular annual event. 

Slides and videos of SRIF 2012 talks can be found in http://
srif2012.inc.cuhk.edu.hk/schedule.shtml.

SRIF 2012 Report 
Soung Liew
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The IT Student Committee is off 
to a good start this year. As of 
February 2012, the faculty chairs 
of the committee are Elza Erkip 
and Sriram Vishwanath. We 
would like to extend a big thank 
you for Aylin Yener for getting 
the IT Student Committee off 
the ground and for being an 
awesome chair during the past 
few years. 

The Student Committee hosted 
a well–attended Roundtable Re-
search Discussion lunch event on 
the second day of the CISS con-
ference at Princeton University. 
More than 100 PhD students and 
postdocs had the opportunity to 
gather around nine tables to dis-
cuss their research interests and 
share lunch with other students. 
The event started with a welcome 
speech by Elza Erkip followed by 
a drawing for surprise prizes. The 
prizes consisted of five Barnes & 
Noble gift cards and the following 
three books that were generously donated by Cambridge Press:

1) Network Information Theory (El Gamal & Kim)

2) Information Theory (Csiszar & Korner)

3) Physical-Layer Security (Bloch & Barros)

In addition, we had a special prize this year: two lucky stu-
dents had their pictures taken with our “Information Theory 
Celebrity” Sergio Verdu and later on received an autographed 
copy. Thanks to Sergio for his generosity, and congratulations 
to winners Jing Huang (Notre Dame) and Arun Subramanian 
(Syracuse). We would also like to take this opportunity to thank 
the following students and postdocs for leading the roundtable 
discussions: 

• Sreechakra Goparaju (Princeton): Coding Theory 

• Inaki Esnaola (Princeton): Compressed Sensing 

• Pulkit Grover (Stanford): Control, Computation and 
Communication 

• Mustafa El Halabi (Texas A&M):  Cryptography and Information 
Theoretic Security 

• Victoria Kostina (Princeton): Finite Blocklength Information 
Theory 

• Viveck Cadambe (MIT): Interference Alignment 

• Achaleshwar Sahai (Rice): Interference and Cooperation in 
Networks 

• Salim El Rouayheb (Princeton): Network Coding 

• Ravi Tandon (Princeton): Network Information Theory 

We are currently preparing for the upcoming ISIT this summer. We 
plan to have two lunchtime events for students, one of which will be 
the ISIT 2012 Student Show. This will be a new, fun event for students, 
fully run by students. Please contact us at sriram@ece.utexas.edu if 
you are interested in participating or hosting the student show. We 
look forward to seeing all students and postdocs in our ISIT events.

Finally, we would like to call volunteers to action. The student 
committee events are organized with the help of the student and 
postdoc volunteers; this is your committee and we need your help! 
Please consider being involved in the committee as a volunteer or 
as a student/postdoc leader. Contact us by e-mail elza@poly.edu 
or sriram@ece.utexas.edu if you are interested.

Recent Activities of the IEEE IT Student Committee
Mustafa El Halabi, Salim El Rouayheb and Elza Erkip



24

IEEE Information Theory Society Newsletter June 2012

GOLOMB’S PUZZLE COLUMNTM 

Knight’s Tours 
Solomon W. Golomb

A KNIGHT’S TOUR on an a # b rectangular board is a se-
quence of moves by a “chess knight” that starts on one square 
of the board and lands on each of the other squares exactly 
once. If, from the last square visited, the knight could re-
turn, in one “knight’s move”, to the first square, it is called a 
“closed tour.” Otherwise it is an “open tour.” 

A. The smallest a # b board that has any knight’s tour is a 
3 #4 board. 
1) Find an open knight’s tour on the 3 # 4 rectangular 

board. (Only open tours exist.) 

2) Prove that such a tour must begin on one corner of the 
3 # 4 board and end on the opposite corner. 

B. The 4 # 5 board also has (only open) knight’s tours. 

3) Find four different knight’s 
tours on the 4 # 5 board. (Since 
a tour from square x to square y 
can be reversed to become a 
tour from square y to square x, 
two open tours that have both their end-points the same 
(in either order) will not be considered “different.” 

4) Prove that a closed knight’s tour on any 4 # n board is 
not possible. 

5) Find any knight’s tour (open or closed) on a 6 # 6 board. 

6) The original “knight’s tour” problem was to find a 
closed knight’s tour on the 8 # 8 chessboard. Euler is 
widely believed to have found the first solution. Can 
you find one? 

GOLOMB’S PUZZLE COLUMNTM 

Powers with Shared Digits Solutions 
Solomon W. Golomb

1) The number of powers from 1 to 106 is 1111, as follows. 
There are 103 = 1000 squares, 90 new cubes (since 10 of 
the 102 = 100 cubes were already counted as squares); 
11 new fifth powers (since, of the 15 fifth powers, 3 were 
already squares, 2 were already cubes, but 1– in both 
senses was already both); 5 new 7th powers, 2 new 11th 
powers; and one each of new 13th, 17th and 19th pow-
ers. Note that it was not necessary to consider nth pow-
ers for composite values of n. 

2) The number of non-powers from 1 to x, by inclusion/
exclusion, is given by

  ( ) 6 @d x ,/d

dQ

1n
;

/  

where µ(·) is the Möbius function, and summation is over 
all positive integer division of Q = the product of all 
primes ≤ log2 x. Hence, the number of powers from 1 to x is 

 ( ) ( )6 6 6@ @ @x d x d x ./ /d

dQ

d

dQ

1 1

1

n n- =-
1; ;

/ /  

3) Here are the same-digits 3-digit powers. 

 a. 169 = 132, 196 = 142, 961 = 312. 

 b. 125 = 53, 512 = 83. 

 c. 144 = 122, 441 = 212. 

 d. 324 = 182, 243 = 73. 

 e. 256 = 44( = 28), 625 = 54. 

4) Here are the sets of 4-digit powers that share the same 
digits. 

 a. 4216 = 962, 9261 = 213, 1296 = 64. 

 b. 1764 = 422, 4761 = 692. 

 c. 1089 = 332, 9801 = 992, 
     1024 = 322(= 210), 2401 =  492(= 74). 

5) 16, 384 = 1282(= 214). 

 38, 416 = 1962(= 144).

  31, 684 = 1782. 

 36, 481 = 1912. 

 43, 681 = 2092. 

6) a = 1024 = 322 = 210. a2 = 1, 048, 576 = 220. 

  b = 2401 = 492 = 74 . b2 = 5, 764, 801 = 78. 
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We have identified mentoring as being an important component 
of success and a particular challenge for some of our society 
members. We will therefore continue our successful mentorship 
program, open to all. A typical mentor/mentee pairing would 
be a faculty member or professional in industry mentoring a 
graduate student or postdoc, or a senior faculty or industry 
researcher mentoring a junior faculty or researcher. We would 
strongly encourage mentees to become also mentors currently 
or in the future. 

A mentor/mentee relationship will be a priori a two year one. 
A mentor will agree to communicating with his/her mentee 
roughly a few times per year to provide professional advice and 
feedback, e.g., by helping the mentee with proposal writing or by 

introducing him to potential collaborators. The mentor/mentee 
list will be posted on our society web site. We are also having a 
yearly mentor/mentee social event at ISIT, the next one will take 
place at ISIT 2012 in Cambridge, MA. The only requirement for 
our mentoring program is that a mentor/mentee should be part 
of the IEEE IT Society for the duration of the mentoring period. 

Anyone who is interested in joining the mentoring program (as 
a mentor/mentee or both) is invited to sign up at the following 
address: http://www.itsoc.org/people/committees/outreach/
mentoring/mentoring-program 

Society Outreach Committee
(Joerg Kliewer, Elza Erkip, Daniela Tuninetti, Bobak Nazer) 

IT Society Mentoring Network: Call for Participation 

ICC 2013 Call for Workshops

In 2013 the IEEE International Conference on Communications (ICC 2013) will be held for the first time in Eastern Europe, in the 
beautiful city of Budapest. As with previous editions of this IEEE ComSoc flagship conference, ICC 2013 will be hosting a set of 
workshops and therefore invites submission of workshop proposals.

Workshops should emphasize current topics of particular interest, and should include a mix of regular papers, invited presenta-
tions, and panels, while in general promoting the participation of attendees in active discussion.

Website: http://www.ieee-icc.org/2013/workshops.html

Workshop proposal submission deadline: 25 June 2012

ICC Workshop Chairs:

Thomas Michael Bohnert, Technical Director, SAP Research, Zurich, Switzerland

Christoph Mecklenbrauker, Professor, Vienna Univ. of Technology, Austria

Christina Fragouli, Assistant Professor, EPFL Lausanne Switzerland
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The Fiftieth Annual Allerton Conference on 
Communication, Control, and Computing will be held 
from Monday, October 1 through Friday, October 5,
2012, at Allerton House, the conference center of the 
University of Illinois. Allerton House is located twenty-
six miles southwest of the Urbana-Champaign campus of 
the University in a wooded area on the Sangamon River. 
It is part of the fifteen-hundred acre Robert Allerton Park, 
a complex of natural and man-made beauty designated as 
a National natural landmark. Allerton Park has twenty 
miles of well-maintained trails and a living gallery of 
formal gardens, studded with sculptures collected from 
around the world.

Papers presenting original research are solicited in the 
areas of communication systems, communication and 
computer networks, detection and estimation theory,
information theory, error control coding, source coding 
and data compression, network algorithms, control 
systems, robust and nonlinear control, adaptive control, 
optimization, dynamic games, multi-agent systems, large-
scale systems, robotics and automation, manufacturing 
systems, discrete event systems, multivariable control, 
computer vision-based control, learning theory, cyber-
physical systems, security and resilience in networks, 
VLSI architectures for communications and signal 
processing, and intelligent transportation systems.

Allerton Conference will be celebrating its Golden 
Anniversary this year. Because of this special occasion, 

the conference will be longer than its usual 2 ½ days 
format, to accommodate some special sessions and events 
in connection with the 50th celebration. 

Information for authors: Regular papers suitable for 
presentation in twenty minutes are solicited. Regular
papers will be published in full (subject to a maximum
length of eight 8.5” x 11” pages, in two column format) in 
the Conference Proceedings.  Only papers that are 
actually presented at the conference can be included in 
the Proceedings, which will be available after the 
conference on IEEE Explore.

For reviewing purposes of papers, a title and a five to ten 
page extended abstract, including references and 
sufficient detail to permit careful reviewing, are required. 

Manuscripts must be submitted by Tuesday, July 10, 
2012, following the instructions at the Conference 
website: http://www.csl.uiuc.edu/allerton/.

Authors will be notified of acceptance via e-mail by 
August 3, 2012, at which time they will also be sent 
detailed instructions for the preparation of their papers for 
the Proceedings.

Final versions of papers to be presented at the 
conference will need to be submitted electronically by 
October 5, 2012. 

Conference Co-Chairs: Bruce Hajek and 
Email: allerton@csl.uiuc.edu  URL: http://www.csl.uiuc.edu/allerton

University of Illinois at Urbana-Champaign

FIFTIETH ANNUAL
ALLERTON CONFERENCE

ON COMMUNICATION, 
CONTROL, AND COMPUTING

October 1 – 5, 2012
Call for Papers

COORDINATED SCIENCE LABORATORY AND THE
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
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DATE CONFERENCE LOCATION WEB PAGE DUE DATE

March 25–30, 2012 IEEE INFOCOM 2012 Orlando, FL, USA  http://www.ieee-infocom.org Passed

May 6–9, 2012 2012 IEEE 75th Vehicular Yokohama, Japan http://www.ieeevtc.org/ Passed
 Technology Conference  vtc2012spring
 (VTC2012-Spring)  

May 14–16, 2012 2012 IEEE Communication Ka’anapali,  http://www.ieee.ctw.org/ Passed
 Theory Workshop (CTW 2012) Maui, HI, USA

May 14–18, 2012 10th International Symposium Paderborn, Germany http://www.wi-opt.org/ Passed
 on Modeling and 
 Optimization in Mobile, Ad Hoc, 
 and Wireless Networks (WiOpt 2012) 

June 10–15, 2012 IEEE International Conference Ottawa, Canada http://www.ieee-icc.org/ Passed
 on Communications (ICC 2012)

July 1–6, 2012 2012 IEEE International Symposium Cambridge, MA, USA http://isit12.org/ Passed
 on Information Theory (ISIT 2012)

August 27–31, 2012 7th International Symposium on Gothenberg, Sweden http://www.ee.kth.se/ Passed
 Turbo Codes & Iterative  turbo-symposium-2012/
 Information Processing

August 28–31, 2012 9th International Symposium on Paris, France http://www.iswcs2012.org/ Passed
 Wireless Systems (ISWCS 2012)

September 3–6, 2012 2012 IEEE 76th Vehicular Quebec City,  http://www.ieeevtc.org/ Passed 
  Technology Conference Canada vtc2012fall/  
  (VTC2012-Fall)

September 3–7, 2012 2012 IEEE Information Theory Lausanne, Switzerland http://itw2012.epfl.ch/ Passed 
 Workshop (ITW 2012)

October 1-5, 2012 50th Annual Allerton Conference Monticello, IL, USA http://www.csl.uiuc.edu/allerton/ July 10, 2012
 on Communication, Control, 
  and Computing

October 28–31, 2012 2012 International Symposium Honolulu, HI, USA http://www.isita.ieice.org/2012 May 5, 2012
 on Information Theory and its
 Applications (ISITA 2012)

November 4–7, 2012 Asilomar Conference on Signals,  Pacific Grove,  http://www.asilomarssc.org/ May 1, 2012
  Systems, and Computers CA, USA 
  (ASILOMAR 2012)

November 19–20, 2012 5th International Workshop Dublin, Ireland http://www.macom.ws/ June 15, 2012 
  on Multiple Access  
  Communications (MACOM 2012)

December 3–7, 2012 2012 IEEE Global Communications Anaheim, California, http://www.ieee-globecom.org/ Passed 
  Conference (GLOBECOM 2012) USA

Major COMSOC co nferences: http://www.comsoc.org/confs/index.html

Conference Calendar
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