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Some of you might have noticed a monthly 
email from ITSOC in your mail box with the 
table of contents of the upcoming IT Transac-
tions (if not, check you spam filter and make 
sure you paid your dues!). This was suggest-
ed by Prakash Narayan, our Editor-in-Chief. 
Thanks also to Elza Erkip, our First Vice Presi-
dent, for her support, and to Anand Sarwate, 
the Chair of the Online Committee, for posting 
this information on our web page. We hope 
that you like the idea.  The early feedback has 
been very positive.  But we can do even better.  
Dave Forney has suggested that we bring the 
format into the 21st century and perhaps com-
bine with regular communication to our mem-
bers. After playing around with various HTML 
versions and mailers all I can say: Who knew that spamming 
could be so complicated! Please keep the comments coming.

On a related note, if you are looking for papers from our com-
munity make sure that once in a while you check out Xplore. 
And if you are writing a paper ensure that you also include 
the reference to the final version of the paper.  This is a small 
step for any author, but has potentially a large impact for our 
society since it will ensure that our click rates adequately re-
flect our work and contributions.

As part of the Shannon Centennial Celebration, the IEEE In-
formation Theory Society launched last year a pilot project to 
create short videos. The objective was to showcase intriguing 
results from Information Theory (in a broad sense) to a large 
non-expert audience. Two videos, one on Network Coding 
and one on Space Time codes, have almost been completed. 
We have decided to extend this project and we are now look-
ing for volunteers to help define and create the next three vid-
eos! If there is a concept or an idea, rooted in information the-
ory, that you think the whole world should know about, this 
is your chance. A call for video proposal has been released 
on the ITSOC website with more information.   We look for-
ward to your creative ideas and suggestions. http://www.

itsoc.org/news-events/recent-news/call-for-
short-video-proposal

Talking about movies. Mark Levinson, the di-
rector of the Shannon movie, has started edit-
ing the material from the February shoot and 
is making plans for additional shooting of 
flashback scenes and interviews. He has also 
begun speaking to a composer and graphics 
people. The role of Shannon has already been 
cast—sorry, you can stop practicing juggling. 
But if you have ideas about how best to ex-
plain central concepts of information theory 
to a large audience, let us know.

Unfortunately, I also have to bring you very 
sad news. Mary Elizabeth (Betty) Moore Shannon, the re-
markable wife of Claude, has died. You can find a reprint of 
the obituary that has appeared in the Boston Globe and online 
in the New York Times in this Newsletter.

Besides the Shannon movie, a Shannon biography, authored 
by Jimmy Soni and Rob Goodman, has just been published.   
You can order it at https://www.amazon.com/Mind-Play-
Shannon-Invented-Information/dp/1476766681

Read it, and if you enjoy it, recommend it to your friends, like 
it, and up-vote it. An enthusiastic support by our community 
will help push the book onto bestseller lists, boosting our out-
reach efforts.

And if you want to do more, follow Christina Fragouli’s sug-
gestion. Start your Christmas shopping early this year and get a 
few copies for your loved ones or anybody who is digitally chal-
lenged but not entirely hopeless. Want more ideas? How about 
donating a copy to your local library or placing a copy in the 
waiting room of a train station or dentist office. You never know 
where the next Claude will pass by, looking for inspiration.

President’s Column
Rüdiger Urbanke

(continued on page 10) 
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fellow colleagues for their outstanding research accom plish-
ments and service recognized by our community. Spe-
cifically, congratulations to Ido Tal and Alexander Vardy  
on their 2017 IEEE Communications Society and Informa-
tion Theory Society award winning paper “List Decoding 
of Polar Codes,” and to the members of our society that 
have recently been named Distinguished Lecturers. We 
continue with a special “Behind the scenes Q&A” with 
the authors of the upcoming Claude Shannon biography. 
Thanks to authors Jimmy Soni and Rob Goodman for pre-
paring the Q&A and for pursuing this impressive and im-
portant project.

We conclude with Tony Ephremides’s Historian’s column; our “Students’ Corner’’ 
column, by Mine Alsan and Basak Güler, presenting the recent initiatives of the In-
formation Theory Student Subcommittee; and a note by Emanuele Viterbo and Elza 
Erkip, “Thinking about organizing an ITW or ISIT?,” outlining the ins and outs of 
organizing a workshop or conference in our society. Thanks to the contributors for 
their efforts.

Continuing our remembrance and honoring of Sol Golomb, an extraordinary scholar 
and long time newsletter contributor, the fourth and final collection of Sol’s earlier 
newsletter puzzle columns appears in this issue. This last collection includes solu-
tions to the second collection of puzzles published in the December 2016 issue of the 
newsletter.
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Dear colleagues,

This issue opens with an intriguing survey 
article by Adam Smith, “Information, 
Privacy and Stability in Adaptive Data 
Analysis,” addressing the subtleties in 
data analytics when collected data is re-
used. The survey connects the study of 
adaptive data analytics with certain in-
formation measures and measures of dis-
tributional stability. The latter, termed 
“differential privacy,” has seen a sig-
nificant amount of interest lately and has 
recently awarded Adam Smith (together 
with Cynthia Dwork, Frank McSherry, 
and Kobbi Nissim) with the prestigious 
Gödel Prize on their outstanding work 
introducing differential privacy. Many 
thanks to Adam Smith for his generous 
willingness and significant efforts in pre-
paring the survey.

The issue continues with a number of 
announcements, regular columns, and 
reports. We start by congratulating our  

From the Editor
Michael Langberg

continued on page 15
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Information, Privacy and Stability in Adaptive  
Data Analysis

Adam Smith*

Abstract

Traditional statistical theory assumes that the analysis to be per-
formed on a given data set is selected independently of the data 
themselves. This assumption breaks downs when data are re-used 
across analyses and the analysis to be performed at a given stage 
depends on the results of earlier stages. Such dependency can arise 
when the same data are used by several scientific studies, or when a 
single analysis consists of multiple stages.

How can we draw statistically valid conclusions when data are re-
used? This is the focus of a recent and active line of work. At a high 
level, these results show that limiting the information revealed by 
earlier stages of analysis controls the bias introduced in later stages 
by adaptivity.

Here we review some known results in this area and highlight the 
role of information-theoretic concepts, notably several one-shot no-
tions of mutual information.

1 Introduction

How can one do meaningful statistical inference and machine learn-
ing when data are re-used across analyses? The situation is common 
in empirical science, especially as data sets get bigger and more com-
plex. For example, analysts often clean the data and perform vari-
ous exploratory analyses—visualizations, computing descriptive 
statistics—before selecting how data will be treated. Many times 
the main analysis also proceeds in stages, with some sort of feature 
selection followed by inference using the selected features. In such 
settings, the analyses performed in later stages are chosen adaptively 
based on the results of earlier stages that used the same data. Adap-
tivity comes into even sharper relief when data are shared across mul-
tiple studies, and the choice of the research question in subsequent 
studies may depend on the outcomes of earlier ones. Adaptivity has 
been singled out as the cause of a “statistical crisis” in science [27].

There is a large body of work in statistics and machine learning on 
preventing false discovery, for example by accounting for multiple 
hypothesis testing. Classical theory, however, assumes that the analy-
sis is fixed independently of the data—it breaks down completely 
when analyses are selected adaptively. Natural techniques, such as 
separating a validation set (“holdout”) from the main data set to 
verify conclusions or the bootstrap method, do not circumvent the 
issue of adaptivity: once the holdout has been used, any further hy-
potheses tested using the same holdout will again depend on ear-
lier results. Blum and Hardt [8] point out that this issue arises with 
leaderboards for machine learning competitions: they observe that 
one can do well on the leaderboard simply by using the feedback 
provided by the leaderboard itself on an adaptively selected sequence 
of submissions—that is, without even consulting the training data!

To formalize our situation somewhat, imagine there is a popula-
tion that we wish to study, modeled by a probability distribution P.  
An analyst selects a sequence of analyses M1, M2, ..., that she wishes 
to perform (we specify the type of analysis to consider later). In an 
ideal world (Figure 1, left), the analyst would run each analysis Mi 
on a fresh sample X(i) from the population. For simplicity, we only 
discuss i.i.d samples in this article; we may assume that each sample 
X(i) has n points, drawn independently from P. In the real (adaptive) 
setting, the same data set X gets used for each analysis (Figure 1, 
right). The challenge is that we ultimately want to learn about P, 
not X, but adaptive queries can quickly overfit to X.

Our goal is to relate these two settings—to develop techniques that 
allow us to emulate the ideal world in the real one, and understand 
how much accuracy is lost due to adaptivity. As mentioned above, 
merely setting aside a holdout to verify results at each stage is not 
sufficient, since the holdout ends up being re-used adaptively. If the 
number k of analyses is known ahead of time, one can split the data 
into k pieces of n/k points each (assuming i.i.d. data, the pieces are 
independent). This practice, called data splitting, provides clear va-
lidity guarantees, but is inefficient in its use of data: data splitting 
requires n to be substantially larger than k, while we will see tech-
niques that do substantially better. Data splitting also requires an 
agreed upon partition of the data, which can be problematic with 
data shared across studies.

A line of work in computer science [21, 28, 20, 19, 40, 41, 6, 39, 
46, 23, 24] initiated by Dwork, Feldman, Hardt, Pitassi, Reingold, 
and Roth [21] and Hardt and Ullman [28] provides a set of tools 
and specific methodology for this problem. This article briefly 
surveys the ideas in these works, with emphasis on the role of 
several information-theoretic concepts. Broadly, there is a strong 
connection between the extent to which an adaptive sequence of 
analyses remains faithful to the underlying population P, and the 
amount of information that is leaked to the analyst about X. In 
particular, randomization plays a key role in the state of the 
art methods, with a notion of algorithmic stability—differential 
privacy —playing a central role.

Another approach, with roots in the statistics community, seeks to 
model particular sequences of analyses, designing methodology to 
adjust for the bias due to conditioning on earlier results (e.g., [36, 30, 
26, 22, 34, 32]). The specificity of this line of work makes it hard 
to compare with the more general approaches from computer sci-
ence. Other work in statistics hews an intermediate path, allowing 
the analyst freedom within a prespecified class of analyses [7, 10]. 
There are intriguing similarities between these lines of work and the 
work surveyed here, such as the use of randomization to break up 
dependencies (e.g., [42, 43, 29]); understanding these connections 
more deeply is an important direction for future work.

2 The Lessons of Linear Queries

A simple but important setting for thinking about adaptivity, in-
troduced by Dwork et al. [21] and Hardt and Ullman [28], is that of 
an analyst posing an adaptively selected sequence of queries, each of 

*Computer Science and Engineering Department, Pennsylvania State 
University, University Park, PA, USA. asmith@psu.edu. Supported by 
NSF award IIS-1447700, a Google Faculty Award and a Sloan Foundation 
research award.
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which asks for the expectation of a bounded function in the popula-
tion. Such queries capture a wide range of basic descriptive statistics 
(the prevalence of a disease in a population, for example, or the 
average age). Many inference algorithms can also be expressed in 
terms of a sequence of such queries [31]; for example, optimization 
algorithms that query the gradient of a Lipschitz, decomposable loss 
function.

Suppose each data point lies in a universe |, so that a data set 
lies in |n and the underlying population is a distribution on |. 
A bounded linear query is specified by a function : ,0 1"z | 6 @. The 
population value of a linear query is simply the expected value of the 
function when evaluated on an element of the data universe drawn 
according to P, denoted xEP x Pz z= +^ ^h h6 @.1
Consider now an interaction between an analyst wishing to pose 
such queries and an algorithm M (called the mechanism) holding a 
data set X sample i.i.d from P that attempts to provide approxi-
mate answers to the queries ,1 2z z , .... This is illustrated in Figure 2, 
where we use subscripts (as in M1,  M2, ...) to distinguish k different 
rounds of M . In general, neither the mechanism nor the analyst 
knows the exact distribution P  (otherwise, why collect data?), so 
the mechanism cannot always answer Pz^ h. A natural approach 
is to answer with the empirical mean X n X1 x ixi

z z=
!

^^ ^hh h/  
When queries are selected nonadaptively, this is the best estima-
tor of z(P). We shall see, however, this is not the best mechanism 
for estimating the expectations of adaptively selected queries!

Given a query answering mechanism M , a data analyst A, and a 
distribution P on the data universe | , consider a random interac-
tion defined by selecting a sample X of n i.i.d. draws from P, and 
then having A interact with M (X) for k rounds, where in each 
round i, (i) A selects iz  (based on a1, . . . , ai-1), (ii) M answers ai. 
The (population) error of M is the random variable 

1The “linear” in “bounded linear query” refers to the fact that we care 
about the expectation of a function, so the resulting functional is a 
linear map from the set of distributions om X to [0, 1]. In contrast, 
some statistics, such as the variance of a random variable, are not linear. 
“Bounded” refers to the image being limited to [0, 1] (or, equivalently, 
any other finite interval). 

err , .maxM A aPX
i

i iz= -^ ^h h
which depends on X as well as the coins of M and A.

Definition 1. A query answering mechanism M is ( ,a b )-accurate on 
i.i.d. data for k queries if for every data analyst A and distribution P, 
we have

err , .Pr M A 1x # $a b-^ ^ h h
The probability is over the choice of the dataset X . . .i i d+ . P and the 
randomness of the mechanism and the analyst. Similarly, the expected 
error of M is the supremum, over distributions P and data analysts A, 
of  err ,M AE X^ ^ hh. We sometimes fix the distribution P and take the 
supremum only over analysts A.

It is important to note that this definition makes no assumptions 
on how the analyst selects queries, except that the selection is based 
on the outputs of M and not directly on the data. The aim of this 
line of work is to design mechanisms with provable bounds on ac-
curacy. We aim for mechanisms that are universal, in the sense that 
they can be used in any type of exploratory or adaptive workflow.

2.1 Failures of Straightforward Approaches

As mentioned above, there are a couple of natural approaches 
to this problem. The first is to answer queries using each query’s 
empirical mean Xz^ h. When queries are specified nonadaptively, a 
standard argument shows that the population error of that strat-
egy is log k nH` ^ h j
In contrast, in the adaptive setting, the empirical mechanism’s er-
ror may be unbounded even with just two queries. For example, 
the query z may be selected such that the low-order bits of x1z ^ h 
reveal all the entries of the data set x. In that case, the analyst may 
construct a query 2z  which takes the value 1 for values in the data 
set x, and 0 otherwise. The empirical mean z2(x) will be 1, while 
the population mean P2z ^ h will be close to 0 for any distribution 
P with sufficiently high entropy.

This last example seems contrived, since it requires seemingly atyp-
ical structure from the initial query z1. For example, constraining 
the queries z to be predicates taking values in {0, 1} seems to elimi-
nate the problem. However, the example is instructive for at least 
two reasons. First, it illustrates the role that information about the 
data set can play: learning x allows the analyst to pose a query that 
is highly overfit to the data set, and thus difficult for the mechanism 
to answer accurately. Conversely, we will see that limiting the in-
formation revealed about the data strongly limits overfitting.

Second, when the analyst asks more queries, one can construct much 
more natural examples of analyses that go awry when using the em-
pirical mean. For instance, consider a data set where each k-individu-
al data point lies in | = {0, 1}k-1  × {0, 1}, where we think of the first 
k - 1 bits as a vector of binary features, and the last bit as a label. 
Consider a particular analyst (from [20]) aiming to find a good clas-
sification rule for the label. The analyst’s first k - 1 queries ask for the  
success rate of each of the k - 1 features in predicting the label. In 
the k-th query, the analyst constructs a classifier that takes a major-
ity vote among those features that had success rate greater than 50%.  
On uniformly random data (where the label is independent of the 

Figure 1. Ideally, we would collect fresh data from the 
same population P for each analysis (left). In many 
real settings, we have only a single data set that must 
be re-used, leading to adaptively selected analyses 
(right). The arrows pointing into the top of the analyses 
indicate that each analysis is selected based on the 
results of previous stages.
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features), the mechanism will report the success rate of this last classi-
fier to be 55% when nk 10= ^ h, and 67% when k = n (even though its 
success rate on the population would be 1/2). Generalizing the example  
somewhat, one can show that even with very simple data distribu-
tions, the error of empirical mechanism scales as k nH` j—expo-
nentially larger than the error one gets with nonadaptively specified 
queries. Encapsulating this discussion, we have:

Proposition 1. When answering k nonadaptively specified queries, the 
empirical mechanism has expected error log k nH` ^ h j When answer-
ing k adaptively selected queries, the empirical mechanism has expected 
error k nX` j, even for predicate queries on uniformly random 
data in {0, 1}k.

Data Splitting Another natural approach for handling adaptively 
specified queries is data splitting : when k is known in advance, 
one may divide the data set into k subsamples of n/k points each, 
and answer the i-th query using its empirical mean on the i-th data 
set. This approach means that we can truly ignore adaptivity and 
use all the tools of classical statistics; the downside is that we are 
limited to the accuracy one can get with sample size n/k. The fact 
that we want a bound that is uniform over all k queries adds a 
further logarithmic factor to the final error bound:

Proposition 2. When answering k adaptively specified queries, the data 
splitting mechanism has expected error logk k nH` ^ h j . 
For both of these natural mechanisms, answering queries with 
error a , even with constant probability, requires n to grow at least 
as fast as .k 2a  Can we do better? How good a dependency on a  
and k is possible?

2.2 A Sample of Known Bounds

In fact, there are mechanisms that can answer a sequence of k adap-
tively selected linear queries with much higher accuracy than that 
provided by the straightforward approaches. Namely, for a given 
accuracy a , we can get mechanisms that work for n that scales 
only as k 2a —a quadratic improvement in k. The bounds be-
low are stated in terms of expected error for simplicity; the un-
derlying arguments also provide high-probability bounds on the 
tail of this error.

Theorem 3 ([21, 6]). There is a computationally efficient mechanism for 
k statistical queries with expected error O /k n4^ h .
A simple mechanism that achieves this bound is one that adds Gauss-
ian noise with standard deviation about /k n4  to each query.

One can give a different-looking mechanism—which we do not 
describe in this survey—to automatically adjust to the actual 
“amount” of adaptivity in a given sequence of queries. Specifi-
cally, imagine that the k queries are grouped into r batches, where 
the queries in a given batch depend on answers to queries in previ-
ous batches but not on the answers to queries in the same batch. For 
example, in the classification example of the previous section, the 
number of rounds r is only 2.

Theorem 4 ([21]). If there are at most r rounds of adaptivity, then 
there is a computationally efficient mechanism with expected error 

 logO r k n` ^ h j The algorithm is not given the partition of the queries 
into batches.

The ideas underlying the two previous algorithms can also be adapt-
ed to give better results when we make further assumptions about 
the class of allowed queries, or the universe from which the data are 
drawn. One such result, due to Dwork et al. [21] (and tightened in 
[6]), recovers a logarithmic dependence on k in exchange for a depend-
ence on the size of the universe | in which the data lie.

Theorem 5 ([21, 6]). There is a computationally inefficient mecha-
nism with expected error log logO k n6 3|` ^ h j . The mechanism 
runs in time linear in || | (and not log || | as one would naturally 
want).

None of these upper bounds is known to be tight in all parameter 
regimes, but some lower bounds are known, in particular show-
ing that the scaling n = Ω ( k ) cannot be improved, and that inef-
ficiency of the mechanism in Theorem 5 is necessary.

Theorem 6 (Hardt and Ullman [28], Steinke and Ullman [41]). 
For every mechanism M that an swers k adaptively selected linear que-
ries, for a sufficiently large universe | (with log ||| exponential 
in n), there exist a distribution P and an analyst A for which the 
mechanism’s error err ,M Ax ^ h is k nX^ h with constant probabil-
ity. Furthermore, for mechanisms that answer faithfully with respect 
to both the distribution and the data set (that is, they provide answers 
close to both Xiz ^ h and iz (P )), the bound can be strengthened to 

k n4X^ h 
Finally, if we assume that one-way functions exist, then the bounds con-
tinue to hold when log ||| has polynomial size, for polynomial-time 
mechanisms (but not for those that can take exponential time).

We won’t discuss the proof of these lower bounds here, but we 
note that closing the gap between the upper and lower bounds 
remains an intriguing open problem.

2.3 Privacy and Distributional Stability

The upper bounds above are obtained via a connection between 
adaptive analysis and certain notions of algorithmic stability. 
Broadly, algorithmic stability properties limit how much the out-
put of an algorithm can change when one of its inputs is changed. 
Different notions of stability correspond, roughly, to different 
measures of distance between outputs. There is a long-standing 

Figure 2. Adaptively selected linear queries.
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connection between algorithmic stability and expected generaliza-
tion error (e.g., Devroye and Wag ner [14], Bousquet and Elisseeff 
[9]). Essentially, stable algorithms cannot overfit. It seems that if we 
could design adaptive query-answering mechanisms that are sta-
ble in an appropriate sense, we could get validity guarantees for 
adaptive data analysis.

Alas, there is a hitch. Recall that our goal is to design mechanisms 
that provide statistically valid answers no matter how the analyst 
selects queries. Even if each stage of the mechanism is stable, the 
overall process might not be—in an adaptive setting, the analyst 
ends up being part of the mechanism.

The resolution is to consider a distributional notion of stability. We 
will require that changing any single data point in x have a small 
effect on the distribution of the mechanism’s outputs. If we choose 
a distance measure on distributions that is nonincreasing under 
postprocessing, then we can limit the effect of the analyst’s choices.

Specifically, we work with “differential privacy,” a notion of sta-
bility introduced in the context of privacy of statistical data. Dif-
ferential privacy seeks to limit the information revealed about any 
single individual in the data set.

Definition 2 ([17, 16]). An algorithm :M On "|  is , de^ h-differen-
tially private if for all pairs of neighboring data sets x,x n! |l , and for 
all events S O3 :

x .Pr exp Pr xM S M S! # ! de +l^ ^ ^h h h6 6@ @
Differential privacy makes sense even for interactive mechanisms 
that involve communication with an outside party: we simply 
think of the outside party as part of the mechanism, and define 
the final output of the mechanism to be the complete transcript of 
the communication between the mechanism and the other party.

Differential privacy is a useful design tool in the context of adaptive 
data analysis because it is possible to design interactive differen-
tially private algorithms modularly, due to two related properties: 
closure under postprocessing, and composition:

Proposition 7. If :M On "|  is (e , d)-differentially private, and :f O O" l 
is an arbitrary (possibly randomized) mapping, then :f M On "% | l  is  
(e , d )-differentially private.

Proposition 8 (Adaptive Composition [18, 35]—informal). Let M1, 
M2,  ..., Mk be a sequence of (e , d)-differentially private algorithms that are 
all run on the same data set, and selected adaptively (with the choice of Mi  
depending on the outputs of M1, ..., Mi-1, but not directly on x). Then no 
matter how the adaptive selection is done, the resulting composed process 
is (el, d’)-differentially private, for k.e el  and k.d dl .

Taken together, these two properties mean that in order to design 
differentially private algo rithms for answering linear queries, it 
is sufficient to make sure the mechanism run at each stage is dif-
ferentially private.

Perhaps even more importantly, in order to ensure statistical va-
lidity—that is, accuracy with respect to the underlying popula-
tion—it suffices to design differentially private algorithms that are 
accurate with respect to the sample x:

Theorem 9 (Main Transfer Theorem [21, 6]). Suppose a statistical 
estimator M is ( , $ df f )-accurate with respect to its sample, that is, for 
all data sets x,

x .Pr max a 1
i

i i $# $z dee- -` ^ h j
If M is also (e ,e  · d)-differentially private, then it i s  (O ( e ) ,  O (d))-
accurate with respect to the population (Definition 1) .

This theorem underlies two of the three upper bounds of the pre-
vious section (Theorems 3 and 5). Each is derived by using exist-
ing differentially private algorithms together with Theorem 9. For 
Theorem 4, Dwork et. al. [21] used a different argument, based on 
compressing the output of the algorithm to a small set of possibili-
ties; see Section 3.

2.4 A Two-stage Game, Stability and “Lifting”

We conclude this section with an outline of the proof of the main 
transfer theorem (Theorem 9). That theorem talks about, analyses 
with many stages of interaction, but it turns out that the core of the 
argument lies in understanding a seemingly much simpler, two-
stage process.

Consider a two-stage setting in which an analysis M is run on data 
set x, and the analyst, selects a linear query z : |  " [0, 1] based 
on M(x) (Figure 3). We say M robustly (a, b)-generalizes if for all 
distributions P over the domain |, for all strategies (functions) A 
employed by the analyst, with probability at least 1 - b over the 
choice of X ~ P n and the coins of M, we have that X P #z z a-^ ^h h  
where z = A(M (X ) ) .  (Similarly, we may talk about, the expect-
ed generalization error, that is, the maximum over A  and P  of 

X .E Pz z-^ ^ ^h h h h
The quantification over all selection functions A here is critical—
when the first, phase of analysis satisfies the definition, then a 
query asked in the following round cannot, overfit to the data, 
(except, with low probability), no matter how it is selected.

Differential privacy (and a few other distributional notions of stabil-
ity, such as KL-stability [6, 47]) limits the adversary’s score in this 
game. This connection had been understood for some time— for ex-
ample, McSherry observed that it could be used to break up depend-
encies in a clustering algorithm, and Bassily, Smith, and Thakurta 
[5] used a weak version of the connection to bound the population 
risk of differentially private empirical risk minimization.

However, the application to adaptive data analysis-and especially 
the understanding of the importance of post-processing to the de-
sign of universal mechanisms—came recently in [21]. Their initial 
result was subsequently sharpened, to obtain the following tight 
connection:

Figure 3. A two-stage overfitting game.

X M
a

φa

Analyst
P
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Theorem 10 (Differentially Private Algorithms Cannot Overfit [6]). 
If M is (e , de )-differentially private, then it is (O(e ), O(d))-robustly  
generalizing.

Lifting to Many Stages Bounds on the two-stage game can be 
“lifted” to provide bounds on the k-phase game either through a 
sequential application of the bound to each round [21] or through 
a more holistic argument, called the monitor technique [6], that 
yields Theorem 9 (and Theorems 3 and 5).

The monitor argument is a thought experiment—we argue that 
for any multi-stage process, there is a two-stage process in which 
the error on the population equals the maximum population error 
over all k stages of the original process. The argument applies quite 
generally, but it is a bit simpler to explain under the assumption 
that the mechanism answers queries accurately with respect to the 
data set X. The idea, given an interaction between an analyst and 
adaptively selected mechanisms M1, M2 ..., Mk, is to encapsulate the 
analyst and mechanisms into a single fictional entity M which gets, 
as additional input, the underlying distribution P. The fictional M 
executes an interaction and then outputs a single query z*—the 
one which maximizes the population error over all stages i.

Beyond Linear Queries The techniques described in this section 
extend to problems that are not described by estimating the mean 
of a bounded linear functional. One important class is minimizing 
a decomposable loss function where each individual contributes a 
bounded term to the loss function [6].

A Re-usable Holdout The techniques described in this section can 
appear somewhat onerous for the analyst, since they require ac-
cessing data via differentially private algorithms. As pointed out by 
Dwork et al. [20], however, one need not limit, access to the entire 
data set in this way. In fact, a more pragmatic approach is to give 
most, of the data, “in the clear” to the analyst, and protect, only a 
small holdout set via the techniques discussed here This still allows 
one to verify conclusions soundly, but additionally allows full explor-
atory analysis, as well as repeated verification (“holdout re-use”).

3 The Intrigue of Information Measures

Despite the generality of the approach of the previous section, 
many important classes of analyses are not obviously amenable to 
those techniques; in particular, problems that are not easily stated 
in terms of a numerical estimation task.

Consider the problem of hypothesis testing. Crudely, given a set 
of distributions H (called the null hypothesis), we ask if the data 
set is “unlikely to have been generated” by a distribution P H! .  
More precisely, we select an event T (the acceptance region) such 
that Pr X TX Pn !+ ^ h is at most a threshold c (often 0.05) for all dis-
tributions in H. If it happens that the observed data X lie outside 
of T, the null hypothesis is said to be rejected. If this happens when 
the true distribution P is actually in H, then we say a false dis-
covery occurs. Hypothesis tests play a central role in modern em-
pirical science (for better or for worse), and techniques to control 
false discovery in the classic, nonadaptive setting are the focus of 
intense study. Despite this, very little is known about hypothesis 
tests in adaptive settings.

Adaptivity arises when the event T is selected based on earlier 
analysis of the same data—conditioned on those earlier results Y = 

M(X), the probability that the test rejects the null hypothesis given 
X might be much higher than c even if P lies in H.

How much higher it can be depends on M and—as we will see—
on several measures of the information leaked by M. To formalize 
this, consider a game similar to the overfitting game, in which the 
analyst A, given Y = M(X), selects an arbitrary event TY = A(Y) 
(which depends on Y). For a particular output Y of M, the analyst’s 
“score” is

score
,
.

Pr Pr
Pr

T T
T

y
Y y

0
if
if

X X
X

, , ,

y y

y

M A

X X

X

P P

P

P

n n

n 2
! ! #

!
c

c
=

=+ +

+

c ^^
^
^

h
h

h
h)

Now consider the analyst’s expected score in this game:
score yE, , , ,M A

Y
M AP Ph c =^ ^ ^h hh. As we will see below, the analyst’s 

score in this game can be bounded using various definitions of the 
information leaked about X by Y. This score also plays a key role in 
controlling false discovery:

Proposition 11. Bounding the score η has several important implications:

1) (False discovery [39])2 If Y = M(X) is used by A to select a hypoth-
esis test with signifi cance c, then the probability of false discovery is at 
most ., ,M APh

2) (Robust generalization [19]) If Y = M(X) is used by A to se-
lect a bounded linear query zc, then XPr t nPY Y $z z-^ ^ ^h h h 

e, ,M A
t 3

P

2

# h -^ h
We are interested in universal bounds that hold no matter how the 
analyst uses the output Y, and no matter the original input distri-
bution. To this end, we define

sup
,

, ,M
A

M AP
P

h c h c=^ ^ ^h hh

3.1 Information and Conditioning

The function hΜ measures how much probabilities less than c can 
be amplified by conditioning on Y, on average over values of Y.

For several one-shot notions of mutual information, we have that if 
a procedure leaks k “bits” of information we have 2, ,M A

k
P $.h c c^ h . 

2The definitions here differ somewhat from those of [39]; in particular, our 
function h  is the inverse of a “p-valuecorrection function” from [39].

Figure 4. The “monitor” argument for lifting results about 
a two-stage game to many stages.
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Unfortunately, such a clean relationship is not known for the stand-
ard notion of Shannon mutual information. Instead, we consider 
two other notions here.

Fix two random variables X, Y  with joint distribution given by pXY 
(x, y )  = Pr(X = x, Y  = y) and marginals pX(·) and pY(·). Consider the 
information loss

,
logI p x p y

p x y
,x y

X Y

XY
= e ^

^
^h
h
h o.

The standard notion of mutual information is the expectation of 
this variable: I(X; Y) = E (IX,Y). The max-information [12, 19] between 
X and Y is the supremum of this variable. Unfor tunately, for many 
interesting procedures, the max-information is either unbounded 
or much larger than the mutual information.

One can get a more flexible notion by instead considering a high-
probability bound on the information loss: we say the β-approximate 
max information between X and Y is at most k (written :I X Y k#3

b ^ h ) 
if Pr I k 1, , ,x y x y x y # $ b-+ ^^ ^ hh h .3,4

For many algorithms of interest, the approximate max-informa-
tion turns out to be very close to the mutual information but, by 
providing a bound on the upper tail of Ix,y, allows for more precise 
control of small-probability events.

We can also define a related quantity, which we call the expected 
log-distortion:

;
,

log sup log supL X Y p x p y
p x y

2 EE
y Y x

I

y Y x X Y

XY,x y= =3
+ +

^ ` ^ e ^
^
^h hj h
h
h o·

This notion of information leakage is not symmetric in X, Y. It is 
closely related to, but in general different from, the min-entropy 
leakage H Y X H X-3 3^ ^h h [15, 1, 25, 2, 3].

Of these notions, expected log distortion is the strongest 
since it upper bounds the other two: I(X; Y) #  L3 (X; Y) and 

; ; logI X Y L X Y 1# b+33
b ^ ^ ^h h h.

Theorem 12 For every mechanism M and distribution P s.t. X +  P:
1) If X;I Y k#3

b ^ h , then for every analyst A, 2, ,A M
k

P $#c c bh +^ h ,  
and M robustly (α,2β)-generalizes for lnk n2 1a b= +^ ^ hh  
on P .

2) If L3 (X ; M(X)) # k, then for every analyst A, 2, ,A M
k

P $#h c c^ h ,  
and for every β > 0, M robustly (α,β)-generalizes for 

lnk n2 1a b= +^ ^ hh  on P.

We know much weaker implications based only on bounding the 
mutual information. Most significantly, the bounds for general hy-
pothesis testing are exponentially weaker than those one gets from 
the one-shot measures above 

3This condition is not exactly the definition of max-information of [19] 
(which requires that for all events E, Pr((X,Y) !  E) ≤ 2k Pr((Xl , Y ) !  E) 
where Xl  is identically distributed to X but independent from Y). The 
definition here implies that of [21].
4The b-approximate max information is equivalent to a smoothed version of 
max-information [37, 38, 44, 45, 12], in which we ask that the pair X, Y be 
within statistical distance b  of a joint distribution with ;XI Y k#3

b ^ h . See 
Corollary 8.7 in Bun and Steinke [11] for details.

Proposition 13 ([40, 39]). If I (X; M (X)) < k, then (i) for every ana-
lyst A, hp,M,A(c ) ,logk 1 12# c+^ ^ hh  and (ii) for every b > 0, M 
robustly (a, b)-generalizes for O k na b= ` j on P.

3.2 What procedures have bounded one-shot  
information measures?

The information-theoretic framework of the previous subsection 
captures several other classes of algorithms that satisfy robust 
generalization guarantees. In addition to unifying the previous 
work, this approach shows that these classes of algorithms allow 
for principled post-selection hypothesis testing.

The most important of these, currently, is for the class of differen-
tially private algorithms:

Theorem 14 (Informal, see [39]). If M is ( ,de )-differentially private, 
and the entries of X are independent, then ;X XI M O n2e=3

b ^ ^ ^hh h for 
.O nb d e= ^ h

This result, together with Theorem 12, implies that differentially-
private algorithms are ,O O n de e^ ^ ^h h-robustly generalizing for 
data drawn i.i.d from any distribution P. It essentially recovers 
the results of the previous section on linear queries (with a worse 
value of b ) ,  but additionally applies to more general problems 
such as hypothesis testing.

Description length [19] In many cases, the outcome of a statisti-
cal analysis can be compressed to relatively few bits—for example, 
when the outcome is a small set of selected features. If the output 
of M can be compressed to k bits, then the expected log-distortion 
L3  (X; M(X)) is at most k bits. An argument along these lines was 
used implicitly in [21] to prove Theorem 4.

Compression Schemes Another important class of statistical 
analyses that have good (and robust) generalization properties 
are compression learners [33]. These process a data set of n points 
to obtain a carefully selected subset of only k < <  n points, and 
finally produce an output fit to those points. A classic example is 
support vector machines: in d dimensions, the final classifier is 
determined by just d + 1 points in the data set.

Cummings, Ligett, Nissim, Roth, and Wu [13] used classic gener-
alization results for such learners to show that they satisfy robust 
generalization guarantees. The classic results as well as those of 
Cummings et al. [13] can be rederived from the following lemma 
(new, as far as we know) bounding the information leaked by a 
compression scheme about those points that are not output by the 
scheme.

Lemma 15 (Compression schemes). Let M : X Xn k"  be any algo-
rithm that takes a data set X of n points and outputs a subset xout = M 
(x) of k points from x. Let xin 2 Xn k! -  denote the remaining data points, 
so that xin , xout = x (as multisets). For any distribution P on X , if X 
P+ n, then

; logL X X
n
kn outi 2#3 ^ ch m.

Cummings et al. [13] used the robust generalization properties  
of compression learners to give robustly generalizing algorithms 
for learning any PAC-learnable concept class. In particular, this 
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implies robustly generalizing algorithms for tasks that do not 
have differentially private algorithms, such as learning a thresh-
old classifier with data from the real line.
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From the President continued from page 1

This is not the only book project in the works by the way. I hope to 
have more to report in the next column. 

By the time you read this, it will be time for ISIT in Aachen, Ger-
many. No doubt it will be perfectly organized and smoothly run 
like a well-oiled engine, emitting a maximal amount of excite-
ment. If you  have ever been involved in organizing one of these 
large  conferences, you know the incredible amount of effort that 

goes into such an event. Therefore, a great thank you to the orga-
nizing team! Hopefully their heroic efforts inspire you to check 
out the article written by Emanuele Viterbo, the head of our con-
ference committee, and Elza Erkip entitled “Thinking about orga-
nizing an ITW or ISIT?”.

I hope to see many of you in Aachen!
Ruediger

http://arxiv.org/abs/1311.0776
http://arxiv.org/abs/1311.0776
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IEEE Communications Society and Information Theory 
Society Joint Paper Award for 2017
The paper “List Decoding of Polar Codes”, IEEE Transactions on 
Information Theory, Vol. 61, No. 5, pp 2213–2226, May 2015 by  
Ido Tal and Alexander Vardy has been awarded the 2017 IEEE 

Communications Society and Information Theory Society Joint 
Paper Award for 2017.

Congratulations!

IEEE Information Theory Society’s New Distinguished 
Lecturers
The Information Theory Society established the Distinguished Lec-
turer Program to promote interest in information theory by sup-
porting chapters who wish to invite prominent information theory 
researchers to give talks at their events. Distinguished Lecturers are 
selected by the Membership and Chapters (MC) Committee in con-
sultation with the Board of Governors. The Society aims to main-
tain ten Distinguished Lecturers each serving for two year terms.

Congratulations to five new lecturers that have been named by 
the Society as Distinguished Lecturers for 2017–2018:

Tara Javidi, Navin Kashyap, Chandra Nair, Osvaldo Simeone 
and Ram Zamir.

Behind the Scenes: A Q&A with the Authors of 
Claude Shannon’s New Biography

Jimmy Soni and Rob Goodman

We’ve spent the prior five years writing a 
biography about Claude Shannon. We are 
unexpected chroniclers of his life: We aren’t 
engineers or mathematicians or even scien-
tists; we are biographers (our first book was 
about an ancient Roman senator named 
Cato). It took a good deal of research—and 
lots of help from people more knowledge-
able than us!—to put together what we 
think is a compelling window into the life 
of one of the 20th century’s great minds.

Many people who work in information the-
ory have, understandably, wondered how 
two non-technical writers came to this proj-
ect. We figured we would share how we got 
here, what we learned along the way, and 
how this book came to be:

How Did You Come to Learn 
About Claude Shannon? What 
Got You Hooked?

The idea came from a friend, who sent Jimmy a copy of Jon Gert-
ner’s book, The Idea Factory, a narrative history of the Bell Labora-
tories. The gift included a note that said, half-jokingly, “Your next 
book ought to be about Claude Shannon.” Jimmy found Shannon 
to be an engaging figure. He went looking for a biography of him 
and couldn’t find one. And thus a book idea was born!

Our agent connected us with Alice Mayhew at 
Simon & Schuster, the editorial force behind Steve 
Jobs and Einstein by Walter Isaacson and A Beauti-
ful Mind by Sylvia Nasar. She’s shepherded books 
of this kind before, and she understood this idea 
instantly. Five years later, we have ourselves a 
book. And as interesting as we thought Shannon 
was when we knew only the barest details of his 
life and work, we find him all the more compelling 
now. He was a once-in-a-generation figure, and we 
hope our biography manages to capture that.

What Did You Learn About Him 
That Surprised You?

Those who know Shannon’s work appreciate its 
rigor, thoughtfulness, and depth. Those are his hall-
marks and they are why he still commands such 
respect today. What’s less understood, or what 
surprised us, at least, was Shannon’s artistic and 
creative bent. He had a flair for the visual—and it’s 
telling that, alongside the landmark papers pub-
lished in journals, he constructed objects that are, to 

this day, featured in museums. His son, spoke with us at length about 
this, probably because he was one of the few who had a front-row seat 
to all the tinkering and building that Shannon did as an adult. 

Many of the objects Shannon made have a theatrical quality: The 
fire-breathing trumpet, for instance, or the Ultimate Machine, 

http://amzn.to/2pasLMz
http://amzn.to/2pasLMz
https://www.amazon.com/Romes-Last-Citizen-Legacy-Mortal/dp/0312681232
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whose only purpose is to turn itself off. Even Theseus the maze-
solving mouse, his best-known creation, is designed for maxi-
mum visual impact: the mouse is just an accessory to the real  
“artificially intelligent” system, the 75 relays that operate  
below the maze and allow the mouse to locate a metal piece 
of cheese. His contraptions may have been private curiosities, 
but they long for an audience—and there’s real artistry and cre-
ativity baked into this work. That same artistry, we would con-
tend, drove Shannon’s most groundbreaking theoretical work, 
including his innovations in information theory. An engineer we 
spoke with called this quality “thinking not only about things, 
but through things.”

Who Do You Think Influenced His Work?

Shannon was the sort of student whose talent marked him out al-
most immediately as a promising protege, and he crossed paths 
with many of the most influential scientists and engineers of his 
day. Perhaps his most important early mentor was Vannevar 
Bush, the MIT engineering professor who went on to play a cru-
cial role in coordinating America’s scientists during WWII. It was 
Bush who hired Shannon to work on MIT’s differential analyzer, 
a massive analogue computer, as Shannon completed his Master’s 
degree; and it was during his work for Bush that Shannon wrote 
his famous thesis on the use of digital switches for Boolean logic, 
which Walter Isaacson called “the basic concept underlying all 
digital computers.” Another important early influence for Shan-
non was his dissertation supervisor, the geneticist Barbara Stod-
dard Burks, who oversaw his work developing what he called “an 
algebra for theoretical genetics.”

Shannon also drew inspiration from the histories of the fields he 
worked in. “A Mathematical Theory of Communication,” his land-
mark work on information theory, cites the earlier work of Harry 
Nyquist and Ralph Hartley in developing the scientific concept 
of information; our book describes how their work at Bell Labs 
shaped the field as Shannon found it. In another unpublished pa-
per on, of all things, juggling, he cites a wide range of sources: the 
science fiction author Robert Silverberg, Captain James Cook, Xe-
nophon, W.C. Fields, and the jazz drummer Gene Krupa, among 
many others—which should give you an idea of just how eclec-
tic Shannon’s influences and interests were. Shannon read very 
widely, and he found inspiration in equal parts from T.S. Eliot (his 
favorite poet) and Lewis Carroll. He was moved by music and art 
as much as by mathematics and engineering, and it’s important to 
include those among his influences.

What was the Process of Writing the  
Biography?

It involved a mix of in-depth research and interviews with Shan-
non’s family, friends, and associates. We were fortunate to have 
strong guides through the world of information theory, people 
like Dr. Sergio Verdú, as well as access to the people who knew 
Shannon and his work. Andrew and Peggy Shannon, his son and 
daughter, were very generous with their time. Betty Shannon 
opened up to us about the Claude she knew. Robert Gallager, Len 
Kleinrock, Henry Pollak, Bob Fano, Ed Thorp, and many others 
gave us vivid descriptions of what it was like to study under or 
work with Shannon. The interviews were the most useful, and 
the most enjoyable, part of writing the book. It was a pleasure 

to  absorb Shannon lore from the people who experienced it first-
hand, and to help preserve it for posterity.

Having Closely Studied His Life, What Do You 
Think is the Key to His Breakthroughs?

It’s hard to point to one thing. There are a few elements that run 
through his body of work, and each one, we think, is important.

He was a tinkerer from his earliest days. As a boy, he built a 
barbed-wire telephone line and a makeshift elevator in a friend’s 
barn; his hands were always busy, taking things apart and putting 
them back together. He brought this tinkering spirit to much of his 
work, building with his hands to test and refine what he dreamt 
up with his mind.

Shannon was persistent, especially early in his career. Even though 
he gave the impression of a carefree scholar, Shannon was phe-
nomenally hard-working, and he stuck with problems long past 
the point at which others might have given up. Shannon’s work on 
information theory is so elegant that we can sometimes overlook 
the fact that his “Mathematical Theory of Communication” was 
developed over the course of a decade—and he did the bulk of the 
work on it in his spare time.

There was, as our title suggests, an element of play throughout 
the work. You get the impression that each of these intellectual 
puzzles were a joy to figure out rather than a bore. Codebreaking, 
chess-playing machines, information theory—it all came from the 
same joyful place.

And finally, he had some gifts and some luck. A gift for simplifica-
tion, for instance, which led him to the essence of things. He’d also 
been fortunate: fortunate to have earned the early backing of Van-
nevar Bush; lucky to have found his way to Bell Labs, which might 
have been the one place on earth that would tolerate him; blessed 
to have spent World War II on cryptography and the mathematics 
of anti-aircraft fire rather than fighting in combat.

Why Do You Think He Doesn’t Have the Name 
Recognition of an Einstein or a Newton?

Partly because he didn’t chase the attention. Shannon had numer-
ous opportunities to become a scientific celebrity. In fact, in the 
1950s and 1960s, he got a taste of it: he made the rounds of media 
and was written up in Life and Time Magazine. But playing the part 
of celebrity intellectual was an odd fit for him, and he gave it up 
almost as soon as he got it. He preferred to follow his own curios-
ity rather than burnish a public profile.

Outside of his own indifference to the attention, it’s easy to take 
the information revolution for granted—to simply accept that the 
world is as it was destined to be. That goes double for contribu-
tions like information theory, which, even to the initiated, can be 
difficult to understand. The reason we wrote the book is because 
we thought there was something wrong about that: here we’ve 
been given this bounty of digital information and instant com-
munication, but we only have a vague appreciation for how we 
got here and who laid the theoretical groundwork for the world  
we now live in. Hopefully the book will help us all appreciate 
Shannon—and many of his contemporaries—a bit more.
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The Historian’s Column
Anthony Ephremides

This is it! It is time to say loud and clear that the King has no 
clothes! I am using this metaphor to address an issue that has been 
enveloping our profession (and not only). The proliferation of con-
ferences and journals that we have been experiencing over several 
years (if not decades) already, and which we have been ignoring 
and/or tolerating, has reached the point where it needs to be con-
fronted. Or, to use another cliché, we cannot ignore anymore the 
elephant in the room.

It used to be that scientific gatherings and publications were se-
rious affairs that were organized by reputable organizations and 
were indeed serving the needs for communication amongst sci-
entists and engineers. To be sure, the level of activity in numer-
ous fields, and especially in the areas that deal with communi-
cation, computation, control, and information, has been soaring 
and, hence, it is reasonable to expect that there would be more 
workshops, conferences, and symposia and more journals; espe-
cially so, since activity in these fields is no more confined to North 
America and Europe. In many parts of the world the needs for 
harnessing the creative talents and resources of local populations 
have yielded genuinely productive and constructive activities in 
intellectual and scientific discourse that has translated into more 
(and bigger) meetings and more periodicals and books. The free-
dom from the constraints that the use of traditional “print” media 
used to entail has led to massive use of web-based formats and has 
accelerated this growth.

Like any activity that acquires momentum, this one has attracted 
the attention of business oriented outfits (publishing houses, inter-
national meeting organizers, and creative new format inventors) 
and has been slowly altering the landscape we have been used 
to. What is worse, for the younger amongst us, there has been no 
alternative experience and the emerging new ecosystem is taken 
as the accepted status quo. And what is worst, the crowd attracted 
by the new opportunities of abuse and corruption in the existing 
system has included outright fraudsters who have grown from be-
ing a nuisance or a subject of jokes to becoming a serious threat to 
the foundations of the practice of science.

Every day we are bombarded with announcement of new meet-
ings and symposia that clearly smack of fraud or, at least, de-
graded imitations of erstwhile serious activities. Many of us re-
ceive “invitations” to organize sessions an ANY topic we choose 
in conferences with ambiguous names and organized by outfits 
of dubious stature. The reviewing process which is supposed to 
provide a filter for preserving quality through the seal of approval 
by reputable and recognized experts has been diluted to the point 
of becoming meaningless. I am serving as Editor-in-Chief of two 
publications (more on that later) and I am in disbelief when I re-
ceive messages that in essence say something like “I am “so-and-
so” and I am delighted to report to you that I am ready to edit a 
special issue in your esteemed journal”! Not only, in most cases, 
haven’t I ever heard of these individuals but sometimes they dare 
to include their resumes which are of unbelievably unacceptable 
nature. It seems that we have hit a rapid slope that threatens to 
lead us to a world of “alternative scientific facts” or, worse, “fake 
scientific news.”

Commercial publishers do share a 
great deal of responsibility for these 
developments. At best, they are guid-
ed simply by the lure of the bottom-
line and they place quality at a sec-
ondary level. Beyond them, there is 
also a growing set of individuals and 
other organizations that have been 
polluting the international scientific 
scene. Without naming them, I can 
report that there is an individual, with claimed positions between 
a northern Swedish University and a University in the Persian 
Gulf, who has an h-index in the thousands! And there has been an 
organization in Europe, operating out of northern Italy, that has 
been running dozens (if not hundreds) of “fake” conferences after 
a carefully planned exploitation of originally legitimate channels 
of Universities and official European funding agencies.

Friends, this is dangerous and needs to be controlled. Of course 
we are blessed to belong to an organization whose symposia, 
workshops, and publications do remain at a level of the highest 
standard. Nonetheless, as most of us are also active in areas out-
side mainstream Information theory, we are undoubtedly aware 
of this emerging phenomenon. Perhaps not all of us have encoun-
tered cases of egregious abuse. However, most of us do perceive, I 
believe, a dangerous trend that is changing the landscape.

For balance, I would like to acknowledge that not all new and 
unusual activities are deplorable. Among the many exceptions, I 
would like to mention some that I happen to be involved in (not 
to imply that they are worthwhile because of my involvement but, 
rather, that I am involved because they are worthwhile). One is 
the Journal of Communications and Networks that has been actu-
ally on the “scene” for many years. It emerged out of the desire 
of the Korean community, active in the areas of communications 
and networking, to harness the talents of their members to lead a 
world-class publication that would meet the standards of high in-
ternational quality. The main mover and shaker of this effort was 
Byung Lee, a leader in the Korea Information and Communication 
Society who saw that the way to establish a high quality venture 
was to gain the support of an organization like the IEEE. As a re-
sult of a long and sustained effort by him and others who worked 
with him, he managed to elevate the status of this journal through 
a technical sponsorship by the IEEE Communication Society and 
through Editorial Boards that included people like Ray Pickholtz, 
Steve Weinstein, Ezio Biglieri, Vince Poor, and several other well-
respected members of our community,

Another one is the NOW publishing company, based in the Nether-
lands, which aspired to replace Springer Verlag as the brand-name 
of quality in assembling monographs of exceptional standard. Its 
endeavors include a set of Series of periodical monographs (not 
a contradiction of terms) called “Foundations and Trends in X” 
where X takes the values “Information Theory,” “Networking,” 
“Signal Processing,” and several others. Many of our readers are 
familiar with these series since NOW is usually present, and ex-
hibits its products, during our major conference activities.
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Finally, I would also like to put a plug for some conferences that 
might appear of questionable motivation and quality, but for 
which there are strong supportive arguments that are accom-
panied by careful implementation. One of these, in which I was 
recently involved, is the BALKANCOM, a small new conference 
on Communications and Networking that aspires to harness the 
talents of a developing area of the world which includes the states 
of the Balkan Peninsula. By the time you read this, its first edition 
will have taken place in Tirana, Albania with the participation of 
people like Gerhard Kramer, Alexandre Proutiere, George Gianna-
kis, Petar Popovski, and other well-known members of our com-
munity. Without any sponsor, totally self-sustained, and not-for-

profit this is a regional effort to establish a model for worthwhile 
activities that meet solid standards of quality. I hope that its future 
will be similar to that of the WiOpt conference that Eitan Altman 
and I founded in 2003 and which has been thriving and enjoying 
respect and international recognition ever since.

Our community needs to engage in a vigorous effort to moni-
tor and maintain the quality that has made our Society so pro-
foundly respected, as we engage in parallel activities; these ac-
tivities occur amidst the cataclysmic environment of a veritable 
jungle of symposia and products that threaten the integrity of 
our profession.

Students’ Corner: The Information Theory Student 
Subcommittee Goes Social!

Mine Alsan (minealsan@gmail.com) and Basak Güler (basak@psu.edu)

In order to facilitate interaction and networking opportunities 
between our student and postdoctoral members, the Information 
Theory Student Subcommittee is now present on two online plat-
forms: Facebook and Slack.

The Facebook group was created in May 2016 with the goal to 
create a social media domain to connect students and postdoc-
toral scholars interested in information theory. The group is 
called the “IEEE Information Theory Society Student Group,” 
which is a public group and can be found easily by searching 
its name on Facebook. Members of this group can connect with 
each other and learn about important news and events targeted 
at the student members of the information theory community, 
including student events in upcoming conferences as well as 
travel support deadlines. Interested students can send a mem-
bership request using a Facebook account to join the group.

In addition to the Facebook page, a Slack group with the name 
“ISIT 20**: What’s up, Docs?” was initiated to create a conference-
wide channel which connects the student and postdoctoral attend-
ees of the main annual conference in our field. Slack is a commu-
nication platform exclusive for “teams” where members can post 
messages or share files within topic-specific channels. Attendees 
of ISIT can use this communication channel (which goes with a 
smartphone app) to engage more effectively with their fellow col-
leagues before, during, and after the conference. Just to highlight 
a few possible use cases:

Have you ever found yourself in a situation where you 
needed to find a shared accommodation to attend a confer-
ence, potentially with a person outside your own institute, 
but did not know who to ask? Next time, feel free to drop a 
message to the #logistics channel to quickly reach out to 
your colleagues.

Have you ever found yourself in a situation where you 
wished you could have presented your work to a broader 
audience during a conference? You can now advertise your 
talk to your peers via the channel #come-and-see-my-talk.

Have you ever wished there was a section on Quora for ask-
ing one of the many questions swirling in your head at the 
intersection of IT, research, academia, publications, etc., but 
thought that no one would probably be able to generate a 
useful answer? In 2016, a set of more senior IT Society mem-
bers kindly agreed to answer questions and give career 
advice in #ask-me-anything. Use this opportunity to reduce 
(or increase!) your uncertainties.

Have you ever found yourself in a situation you wanted to get 
more out of a conference, be more productive, and get in touch 
with more colleagues to discuss their research interests, but 
did not get the opportunity in the midst of the many parallel 
sessions? As a first step, you can now start a conversation in 
#post-an-open-problem or #tutorial-materials. Alternatively, 
you can use the application to create a separate channel to 
initiate a discussion group on a topic of your choice and even 
organize a reading group around the conference dates.

Have you ever found yourself in a situation where you wished 
there were a couple of activity buddies among the other 
attendees who share similar interests with you? If you don’t 
want to miss out on the opportunity to enjoy what the confer-
ence location has to offer, we suggest that you create your own 
#activity channel to find like-minded people to organize 
group activities. In 2016, #run-a-centennial-run and #isit-
bouldering were created to organize running and bouldering 
activities. In addition, local suggestions for restaurants around 
the conference venue were shared in #dinner-meet-ups. Take 
a holistic view during the next ISIT; you won’t regret it!
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In a nutshell, the goal of the Slack group is to provide the younger 
members of our community with a practical tool to manage more 
easily, shape more creatively, and enjoy to the fullest their confer-
ence experience. To join this group, simply send a private message 
to either Mine Alsan (minealsan@gmail.com) or Bernhard Geiger 
(geiger@ieee.org) with your name, surname, affiliation, and email 
address, and we will invite you!

Other than going social on Facebook and Slack, the IT Student 
Subcommittee continues to organize exciting events for IT stu-
dents. For example, at ITA 2017, the Information Theory Stu-
dent and Outreach Committees, together with the NSF Center 
for Science of Information, co-hosted the lunchtime panel “You 
and Your Research,” which discussed Richard Hamming’s re-
nowned lecture on how to do great work. In his lecture, Ham-

ming raises questions like: How do you manage to be a better 
researcher and be more successful? How can you become more 
productive even in a non-ideal environment? What are the 
most important characteristics of a good researcher? Serving 
as panelists, Professors Dan Costello, Michelle Effros, Emina 
Soljanin and Emre Telatar answered these thought-provoking 
questions and more.

Moreover, as in previous years, we are organizing our annual 
“Meet the Shannon Awardee’’ event at ISIT 2017. This is a great 
opportunity for students to learn more about this year’s Shannon 
Award Winner Professor David Tse. The event will take place over 
lunchtime and students will be provided with free lunch. Last 
year’s event with Professor Alexander Holevo can be viewed by 
following the link https://vimeo.com/185470703

From the Editor continued from page 2

With sadness, we conclude this issue with a tribute to Mary Eliza-
beth (Betty) Moore Shannon who passed away on May 1st at the 
age of 95. The tribute appeared in the Boston Globe and is repro-
duced here with permission.

Please help to make the newsletter as interesting and informative as 
possible by sharing with me any ideas, initiatives, or potential newslet-
ter contributions you may have in mind. I am in the process of search-
ing for contributions outside our community, which may introduce our 
readers to new and exciting problems and, as such, broaden the influ-
ence of our society. Any ideas along this line will also be very welcome.

Announcements, news, and events intended for both the printed 
newsletter and the website, such as award announcements, calls 
for nominations, and upcoming conferences, can be submitted 
at the IT Society website http://www.itsoc.org. Articles and col-
umns can be e-mailed to me at mikel@buffalo.edu with a subject 
line that includes the words “IT newsletter.”

The next few deadlines are:

July 10, 2016 for the issue of Sep. 2017.

Oct. 10, 2016 for the issue of Dec. 2017.

Please submit plain text, LaTeX, or Word source files; do not worry 
about fonts or layout as this will be taken care of by IEEE layout 
specialists. Electronic photos and graphics should be in high reso-
lution and sent as separate files.

I look forward to hearing your suggestions and contributions.

With best wishes,
Michael Langberg.
mikel@buffalo.edu

https://vimeo.com/185470703
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Thinking About Organizing an ITW or ISIT?
Emanuele Viterbo and Elza Erkip

One of the most rewarding experiences as volunteer in our Society 
is the organization of a workshop or conference. In this short note 
we would like to give some basic information and tips on how to 
approach this seemingly daunting task.

The team and key roles—To start, as the promoter you should try 
to put together a small team of volunteers possibly including 
someone with some prior experience, someone local (or as close 
as possible) to the venue, someone thinking about the technical 
program.  Consider diversity and gender balance.  The key roles 
that should be identified as early as possible are: General Chair 
(typically 1–2 persons), TPC Chair (typically 2–4 persons), Local 
Arrangements, Finance Chair, Publications. Other roles are also 
very important but can be assigned at a later stage.

The timeline—BoG meetings are scheduled three times a year around 
February, June/July (at the ISIT), and October.  The final selection for 
the next available ISIT is made only at the June/July BoG meeting. 
ITW’s can be selected at any BoG meeting. In order to prepare your 
bid for an ITW or ISIT you will need to submit an expression of in-
terest to the Conference committee chair at least one to two months 
before the BoG meeting preceding the one where the selection is to be 
made (for an ISIT the expression of interest is due in early January).

The location—The selection of the location within a country should 
be made in close contact with the local organizers.  Many factors 
should be considered for both ITW and ISIT: easy accessibility 
from main hubs, accommodation availability for different price 
levels (including student accommodation where possible).

The venue—The venue can be a hotel with conference facilities, a con-
ference center or a university campus. The venue should be checked 
to verify the quality of the rooms and AV equipment.  The plenary 
space should be sufficient to accommodate all the participants with 
a good margin. A desirable features for the venue is to have all the 
rooms in short range to facilitate switching sessions, and single space 
for coffee breaks where people can easily meet.  Additional, break-out 
spaces for participants to sit and discuss are also useful.

The budget—A simplified budget with the key items template can 
be used to get an idea of the registration fees. Please contact the 
conference committee for a copy of this template.

The financial co-sponsorship (FCS)—The Information Theory Society 
is the default financial co-sponsor with IEEE of ITW and ISIT’s 
taking responsibility for all gains and losses.

The technical co-sponsorship (TCS)—The Information Theory Soci-
ety is the default technical co-sponsor of ITW and ISIT’s.

The Conference Committee—The IT Society’s Conference committee 
is in charge of collecting the expressions of interest from the pro-
moters, give advise and feedback for the preparation of the final 
bid.

Resources—The most useful resource is the website of the pre-
vious editions of the conference. Previous organizers are an in-
valuable source of information and full manual for organizers 
is available from the Conference Committee. If you have further 
questions please contact any one of the members of the Confer-
ence Committee (http://www.itsoc.org/people/committees/
conferences):

Emanuele Viterbo, Monash University, Melbourne (Chair), 
emanuele.viterbo@monash.edu
Ruediger Urbanke, EPFL, Lausanne (Ex Officio), ruediger.
urbanke@epfl.ch
Elza Erkip, New York University, (Ex Officio), elza@nyu.edu
Daniela Tuninetti, University of Illinois at Chicago (Ex 
Officio ), danielat@uic.edu
Albert Guillen i Fabregas, Univ. Pompeu Fabra, Barcelona, 
guillen@ieee.org
Urbashi Mitra, University of Southern California, ubli@usc.edu
Brian Kurkoski, Japan Advanced Institute of Science and 
Technology, kurkoski@ieee.org
Alfonso Martinez, Univ. Pompeu Fabra, Barcelona, alfonso.
martinez@ieee.org
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GOLOMB’S PUZZLE COLUMN™ COLLECTION, Part 4
Beyond his extraordinary scholarly contributions, Sol Golomb was a 
long time newsletter contributor enlightening us all, young and old, 
with his beautiful puzzles. In honor of Sol’s immense contribution  

to the newsletter, a collection of his earlier puzzles dated back to 
2001 appears in 4 compiled parts over the previous and current  
issues. Part 4 is given below. He will be greatly missed.
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GOLOMB’S PUZZLE COLUMN™

Latin Squares and Transversals Solutions
1. Given a pair of orthogonal Latin Squares, L and L′, of
order n, each symbol in L′ occurs in the positions which
form a transversal in L. Thus, the n symbols in L′ specify
n disjoint transversals in L. Conversely, if L has n disjoint
transversals, each transversal of L can be used to corre-
spond to a different symbol in L′.
For example:

2. If L is the Cayley table of a group G of order n,
and it has a transversal, we can represent this as
follows. Let G = { g1, g2, . . . , gn } , a n d i n d e x t h e
r o w s o f L w i t h g1, g2, . . . , gn. For a transversal in L,
each row gi must be paired with a column hj to get an en-
try gi × hj = tk, where “×” is the group operation, and all
threeof { g1, g2, . . . , gn} , { h1, h2, . . . , hn } , and { t1, t2, . . . , tn } are
permutations of the n elements of G. If now we
right-multiply each equation gi × hj = tk by a fixed ele-
ment p ∈ G, we get a “new” transversal (truly new if p is
not the identity element in G), because

g h p t p g h t
g h p t p g h

1 1 1 1 1 1

2 2 2 2 2

× × = × × ′ = ′
× × = × × ′ = ′

( ) ( )
( ) ( ) t

g h p t p g h tn n n n n n

2
!

× × = × × ′ = ′( ) ( )

where { h′1 , h′2 , . . . , h′n} is a new permutation of the ele-
ments of G, and { t′1 , t′2 , . . . , t′n} is a new permutation of
the elements of G, disjoint respectively from { h1, h2, . . . ,
hn } and{ t1, t2, . . . , tn } . Thus, each group element p ∈G
generates a new transversal, disjoint from the others.
(We used the associative law for groups when we took
(gi × hj) × p =gi × (hj × p).) Thus, if L is a Cayley table, one
transversal gives a “complete set” of n disjoint trans-
versals, and hence an “orthogonal mate” L′.
The converse is trivial. If L has an “orthogonal mate” L′,
it has n disjoint transversals, so surely at least one
transversal.

3. Ifp=n+1isprime,n>1,andL is theCayleytableofZp
x , the

multiplicative group modulo p (which has order n), we will
assume that L has a transversal, and obtain a contradiction.
As in the previous problem, a transversal of L looks like:

g h t
g h t

g h tn n n

1 1 1

2 2 2

× =
× =

× =
!

where { g1, g2, . . . gn } , { h1, h2, . . . , hn } , and { t1, t2, . . . , tn } are
each permutations of { 1, 2, . . . , n } . By Wilson’s Theorem of
elementary number theory, n! = (p–1)! ≡ –1(mod p). Multi-
plying all n equations (*) together modulo p, we get

( )( ) ( ) (mod )
( )! (

g h g h g h t t t p
p p

n n n1 1 2 2 1 2
1 1

× × × ≡ × × ×
− ⋅ −
" "

)! ( )!(mod )
( ) ( ) (mod )

(mod )

≡ −
− ⋅ − ≡ −

+ ≡ −

p p
p
p

1
1 1 1

1 1

a contradiction.

4. “The number of mutually (pair-wise) orthogonal
Latin Squares (MOLS) of order n cannot exceed n – 1”.

Proof. It is no loss of generality to rename the ele-
ments in each of the Latin Squares so that each top row
consists of 1, 2, 3, · · ·, n. Next, we simultaneously per-
mute the remaining rows (which disturbs neither
Latin-ness nor orthogonality) so that the second row of
the first Latin Square begins with “2”. We now ask what
the possibilities are for the left-most elements of the sec-
ond rows of the remaining, mutually orthogonal Latin
Squares. From the corresponding elements in the top
rows, all the ordered pairs 11, 22, 33, . . . , nn have already
occurred, so these left-most positions in the second rows
must all be distinct from each other, and from the “2” in
the first Latin Square. Moreover, since each sits below a
“1” in the top row of its Latin Square, no entry in row 2,
column 1, can be “1”. This leaves the n–2 values 3, 4, . . . ,
n, and limits the number of mutually orthogonal Latin
Squares of order n to at most 1+(n – 2) = n – 1.

Note: A construction for n – 1 MOLS of order n is known
whenever there is a field of n elements (thus, n = p k , p
prime and k≥1). Whether this can happen for any other
values of n is unknown in general, has been shown to be
impossible for infinitely many n ≠ pk , and has never been
successfully constructed for any n ≠ pk .

5. “If a Latin Square L of order n has n–1 disjoint trans-
versals, then it has n disjoint transversals.”

Proof. Each transversal of L consumes one cell in each
row, one cell in each column, and one of each of the n
symbols. Hence, n – 1 disjoint transversals consume n – 1
cells in each row, n – 1 cells in each column, and n – 1 of
each of the n symbols. Thus, what remains in L is one cell
in each row, one cell in each column, and one each of the
n symbols, i.e. an nth disjoint transversal.

6. Here is a Latin Square of order 6 with four disjoint
transversals, whose elements are enclosed in the fig-
ures,circle, triangle, square, and diamond, respectively.

Note: Euler further conjectured that no pair of orthogo-
nal Latin Squares of order n exists when n = 2m, where m

(*)

Reprinted from Vol. 53, No. 3, September 2003 issue of Information Theory NewsletterReprinted from Vol. 53, No. 3, September 2003 issue of Information Theory Newsletter



18

IEEE Information Theory Society Newsletter June 2017

2

IEEE Information Theory Society Newsletter March 2017

September 2003 IEEE Information Theory Society Newsletter

9

is odd. This was shown to be false, in 1959, for all n > 6,
by R.C. Bose, S.S. Shrikhande, and E.T. Parker. In fact, it
has been shown that if M(n) is the maximum number of
MOLS of order n which actually occur, then
lim inf ( )

n
M n

→∞
= ∞.

sulted in many of the foregoing papers and others applying
these ideas as well as some on random processes, informa-
tion theory, et al. For a complete list of my publications, see
http://home1.GTE.net/blachman/ .
From 1951 to 1954 I’d worked at the Office of Naval Research
(ONR) in Washington, and for occasional relaxation from
my forty years at GTE I took leaves of absence to do scientific
liaison at ONR’s London Branch and to work at the Naval
Research Laboratory as well as to teach in Madrid under the
Fulbright program. I feel that I’ve been the beneficiary of
much good luck during the course of my career, including
my poor vision’s not utterly failing until 2000. Fortunately I
was able to acquire software by then that speaks aloud my
keystrokes and whatever’s on my computer screen. So I’ve
not been stopped in my research work although it’s slowed
down somewhat while Internet communication continues
unabated. At GTE in Mountain View there were few other
communication theorists with whom to interact, but I’m
grateful to the many friends in many places, such as Lorne
Campbell, with whom I corresponded in the good old days
via snailmail and during the past fifteen years via e-mail.
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Gerard J. Foschini Named Bell Labs Fellow
Alex Dumas

Bell Labs President Bill O'Shea and Lucent's R&D
leadership have chosen seven employees as 2002 Bell
Labs Fellows. The annual award, Bell Labs' highest
honor, recognizes sustained research and develop-
ment contributions to the company. The 2002 awards
mark the 20th year of the program. Since it began, 198
scientists and engineers have joined this elite group.
Each new Fellow will receive a sculpture, a personal
Fellows plaque and a cash award. A plaque of each
will be added to the “wall of honor” in the Murray
Hill, N.J., lobby. Aformal luncheon to honor the recip-
ients is scheduled for September.

The 2002 winners are:

*Alvin Barshefsky, Lucent Worldwide Services,
for his sustained performance in the area of software and services
development. 

*Young-Kai Chen, Bell Labs Research, for his pioneering working
in developing high-speed devices and circuits. 

*Gerard J. Foschini, Bell Labs Research, for his break-
through invention of the BLAST concept that has the
potential to revolutionize wireless technology. 

*Theodore M. Lach, Integrated Network
Solutions, for his innovation and technical leader-
ship in switching system component and product
reliability, silicon fabrication techniques and con-
tributions to industry standards. 

*Rajeev R. Rastogi, Bell Labs Research, for contri-
butions in the areas of network management and
database systems, and the successful application
of these innovations to Lucent products. 

*William D. Reents, Supply Chain Networks, for
pioneering work in analytical science and development of leading-
edge characterization tools and methodologies. 

*Joseph A. Tarallo, Mobility Solutions, for sustained contributions
to second- and third-generation wireless technology, and base sta-
tion architecture and design.

Gerard J. Foschini

continued on page 9

1. “A primitive polynomial f (x) of degree n ≥ 2 divides infi-
nitely many trinomials over GF(2)”.

Proof. Let α be a root of f (x). By “primitivity”, all the values
1,α,α2,α3, . . . ,α2n−2 are distinct, and are all the non-zero
elements of GF(2n). Therefore, for each j, 0 < j < 2n − 1,

1 + α j = αk with 0 < k < 2n − 1 and j ̸= k. Hence, f (x)divides
the trinomial 1 + xj + xk for these values of j and k. In 
addition, f (x) divides 1 + xJ + xK for every J with J ≡ j
(mod 2n − 1) and K ≡ k (mod 2n − 1), since 1 + α J + αK =
1 + α j + αk = 0, in view of α2n−1 = 1.

2. “If f (x) is irreducible with primitivity t and f (x) divides no
trinomials of degree < t, then f (x) divides no trinomials.”

Proof (by contradiction). Suppose f (x) divides the trinomial
xN + xA + 1 of degree N > t, and let α be a root of f (x). Since
f (x) has primitivity t, α t = 1. Since f (α) = 0, where α is a root
of f (x), any polynomial g(x) divisible by f (x) also has α as 
a root, since g(x) = f (x) · q(x) gives g(α) = f (α) · q(α) =
0 · q(α) = 0. Thus, αN + αA + 1 = 0, from which αn + αa+
1 = 0 where n ≡ N (mod t) and a ≡ A (mod t), where we
choose both n and a to be less than t, from which f (x) divides
the trinomial xn + xa + 1, of degree <t.

3. “If p ≥ 5 is a prime for which 2 is primitive modulo p, then
f (x) = (xp − 1)/(x − 1) = 1 + x + x2 + · · · + xp−1 is an irre-
ducible polynomial which divides no trinomials.”

Proof. For each prime p,"p(x) = (xp − 1)/(x − 1) is the “cyclo-
tomic polynomial” over the rational field Q, whose roots are
the φ(p) = p − 1 primitive pthroots of unity. While all cyclo-
tomic polynomials are irreducible over Q, "p(x) remains irre-
ducible over GF(2) if and only if 2 is primitive modulo p. In
this case, f (x) = "p(x) has primitivity t = p, and any root α of
this f (x) has αp = 1. Note that for p ≥ 5, the minimum poly-
nomial for such a root of unity has p > 3 non-zero terms. By
Result 2, above, if this f (x) divides any trinomial, it must
divide a trinomial of degree <t = p, say xn + xa + 1 with
n < p. But then the root α of f (x) is a root of this trinomial of
degree ≤p − 1, whereas the unique polynomial of degree
≤p − 1 with α as a root is the minimal polynomial of
α, f (x) = "p(x), of degree p − 1,which has more than three
terms.

Note. There are also many other irreducible polynomials
which divide no trinomials. These three problems are the
easy results.
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1. a. By statistical independence, the expected number of 
overlaps is M = ( a

N )( b
N )N = ab

N .

b. pr(k) = (a
k)(

N−a
b−k)

(N
b)

= (b
k)(

N−b
a−k)

(N
a)

= a!b!(N−a)!(N−b)!
k!(a−k)!(b−k)!N!(N−a−b+k)! .

c. pr(k+1)
pr(k) = (a−k)(b−k)

(k+1)(N−a−b+k+1)
.

2.  a. M = 9.

b. k pr(k+1)
pr(k)

0 11.2344
1 5.4855
2 3.5703
3 2.6136

k pr(k+1)
pr(k)

4 2.0403
5 1.6586
6 1.3865
7 1.1829

k pr(k+1)
pr(k)

8 1.0284
9 0.8999
10 0.7959
11 0.7105

c.  The mode is 9 (same as the mean, in this case), since pr(k)
is increasing up to k + 1 = 9, but decreasing thereafter.

3. a. pr(k) = (90
k )(

810
90−k)

(900
90 )

= (90!)2(810!)2

k!((90−k)!)2900!(720+k)!

At k = 9,

pr(9) ≈ (2π)2·90·810·( 90
e )180·( 810

e )1620

(2π)
5
2
√

9·812·900·729( 9
e )9( 81

e )162( 900
e )900( 729

e )729
.

b. Except for a factor of 
√

2π in the denominator, all the 
irrational numbers disappear. (The powers of e cancel 
completely between numerator and denominator. 
Fortuitously, 9, 81, 729, and 900 are all perfect squares; 
and everything surviving involves only powers of 3 and 
of 10.) When all the smoke clears, all that remains is  
pr(9) ≈ 10

27
√

2π
.

c. Numerically, pr(9) ≈ 10
27

√
2π

= 0.1477564.

4. a. Pr(9) = e−9 · 99

9! = 0.13175564.

b.  The largest source of error in 3.c. was using Stirling’s 
formula to approximate 9! in the denominator of 3.a., 
which gives 9! ≈ 359, 536.873. This is only about 99%
of the true value (9! = 362, 880). This “correction” 
would only reduce the estimate in 3.c. to pr(9) ≈ 0.146;
so 3.c. is almost certainly a better estimate than 4.a.

c. Since Pr(k+1)
Pr(k) = λ

k+1 for the Poisson distribution, if we
take λ = 9 and 7 ≤ k ≤ 11, we find

k 9
(k+1)

7 1.125
8 1.000
9 0.900
10 0.818
11 0.750

which  are fairly close to the values in 2.b. (The values
will not be as close for k farther from λ.)

5. Pr(25) = 5.712 × 10−6 when λ = 9. (The true value of pr(25)

is about 2.2 × 10−7, and is actually much smaller than the
Poisson approximation.) The student’s intuition was correct.
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is odd. This was shown to be false, in 1959, for all n > 6,
by R.C. Bose, S.S. Shrikhande, and E.T. Parker. In fact, it
has been shown that if M(n) is the maximum number of
MOLS of order n which actually occur, then
lim inf ( )

n
M n

→∞
= ∞.

sulted in many of the foregoing papers and others applying
these ideas as well as some on random processes, informa-
tion theory, et al. For a complete list of my publications, see
http://home1.GTE.net/blachman/ .
From 1951 to 1954 I’d worked at the Office of Naval Research
(ONR) in Washington, and for occasional relaxation from
my forty years at GTE I took leaves of absence to do scientific
liaison at ONR’s London Branch and to work at the Naval
Research Laboratory as well as to teach in Madrid under the
Fulbright program. I feel that I’ve been the beneficiary of
much good luck during the course of my career, including
my poor vision’s not utterly failing until 2000. Fortunately I
was able to acquire software by then that speaks aloud my
keystrokes and whatever’s on my computer screen. So I’ve
not been stopped in my research work although it’s slowed
down somewhat while Internet communication continues
unabated. At GTE in Mountain View there were few other
communication theorists with whom to interact, but I’m
grateful to the many friends in many places, such as Lorne
Campbell, with whom I corresponded in the good old days
via snailmail and during the past fifteen years via e-mail.
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Bell Labs President Bill O'Shea and Lucent's R&D
leadership have chosen seven employees as 2002 Bell
Labs Fellows. The annual award, Bell Labs' highest
honor, recognizes sustained research and develop-
ment contributions to the company. The 2002 awards
mark the 20th year of the program. Since it began, 198
scientists and engineers have joined this elite group.
Each new Fellow will receive a sculpture, a personal
Fellows plaque and a cash award. A plaque of each
will be added to the “wall of honor” in the Murray
Hill, N.J., lobby. Aformal luncheon to honor the recip-
ients is scheduled for September.

The 2002 winners are:

*Alvin Barshefsky, Lucent Worldwide Services,
for his sustained performance in the area of software and services
development. 

*Young-Kai Chen, Bell Labs Research, for his pioneering working
in developing high-speed devices and circuits. 

*Gerard J. Foschini, Bell Labs Research, for his break-
through invention of the BLAST concept that has the
potential to revolutionize wireless technology. 

*Theodore M. Lach, Integrated Network
Solutions, for his innovation and technical leader-
ship in switching system component and product
reliability, silicon fabrication techniques and con-
tributions to industry standards. 

*Rajeev R. Rastogi, Bell Labs Research, for contri-
butions in the areas of network management and
database systems, and the successful application
of these innovations to Lucent products. 

*William D. Reents, Supply Chain Networks, for
pioneering work in analytical science and development of leading-
edge characterization tools and methodologies. 

*Joseph A. Tarallo, Mobility Solutions, for sustained contributions
to second- and third-generation wireless technology, and base sta-
tion architecture and design.

Gerard J. Foschini

continued on page 9

1. “A primitive polynomial f (x) of degree n ≥ 2 divides infi-
nitely many trinomials over GF(2)”.

Proof. Let α be a root of f (x). By “primitivity”, all the values
1,α,α2,α3, . . . ,α2n−2 are distinct, and are all the non-zero
elements of GF(2n). Therefore, for each j, 0 < j < 2n − 1,

1 + α j = αk with 0 < k < 2n − 1 and j ̸= k. Hence, f (x)divides
the trinomial 1 + xj + xk for these values of j and k. In 
addition, f (x) divides 1 + xJ + xK for every J with J ≡ j
(mod 2n − 1) and K ≡ k (mod 2n − 1), since 1 + α J + αK =
1 + α j + αk = 0, in view of α2n−1 = 1.

2. “If f (x) is irreducible with primitivity t and f (x) divides no
trinomials of degree < t, then f (x) divides no trinomials.”

Proof (by contradiction). Suppose f (x) divides the trinomial
xN + xA + 1 of degree N > t, and let α be a root of f (x). Since
f (x) has primitivity t, α t = 1. Since f (α) = 0, where α is a root
of f (x), any polynomial g(x) divisible by f (x) also has α as 
a root, since g(x) = f (x) · q(x) gives g(α) = f (α) · q(α) =
0 · q(α) = 0. Thus, αN + αA + 1 = 0, from which αn + αa+
1 = 0 where n ≡ N (mod t) and a ≡ A (mod t), where we
choose both n and a to be less than t, from which f (x) divides
the trinomial xn + xa + 1, of degree <t.

3. “If p ≥ 5 is a prime for which 2 is primitive modulo p, then
f (x) = (xp − 1)/(x − 1) = 1 + x + x2 + · · · + xp−1 is an irre-
ducible polynomial which divides no trinomials.”

Proof. For each prime p,"p(x) = (xp − 1)/(x − 1) is the “cyclo-
tomic polynomial” over the rational field Q, whose roots are
the φ(p) = p − 1 primitive pthroots of unity. While all cyclo-
tomic polynomials are irreducible over Q, "p(x) remains irre-
ducible over GF(2) if and only if 2 is primitive modulo p. In
this case, f (x) = "p(x) has primitivity t = p, and any root α of
this f (x) has αp = 1. Note that for p ≥ 5, the minimum poly-
nomial for such a root of unity has p > 3 non-zero terms. By
Result 2, above, if this f (x) divides any trinomial, it must
divide a trinomial of degree <t = p, say xn + xa + 1 with
n < p. But then the root α of f (x) is a root of this trinomial of
degree ≤p − 1, whereas the unique polynomial of degree
≤p − 1 with α as a root is the minimal polynomial of
α, f (x) = "p(x), of degree p − 1,which has more than three
terms.

Note. There are also many other irreducible polynomials
which divide no trinomials. These three problems are the
easy results.
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1. a. By statistical independence, the expected number of 
overlaps is M = ( a

N )( b
N )N = ab

N .

b. pr(k) = (a
k)(

N−a
b−k)

(N
b)

= (b
k)(

N−b
a−k)

(N
a)

= a!b!(N−a)!(N−b)!
k!(a−k)!(b−k)!N!(N−a−b+k)! .

c. pr(k+1)
pr(k) = (a−k)(b−k)

(k+1)(N−a−b+k+1)
.

2.  a. M = 9.

b. k pr(k+1)
pr(k)

0 11.2344
1 5.4855
2 3.5703
3 2.6136

k pr(k+1)
pr(k)

4 2.0403
5 1.6586
6 1.3865
7 1.1829

k pr(k+1)
pr(k)

8 1.0284
9 0.8999
10 0.7959
11 0.7105

c.  The mode is 9 (same as the mean, in this case), since pr(k)
is increasing up to k + 1 = 9, but decreasing thereafter.

3. a. pr(k) = (90
k )(

810
90−k)

(900
90 )

= (90!)2(810!)2

k!((90−k)!)2900!(720+k)!

At k = 9,

pr(9) ≈ (2π)2·90·810·( 90
e )180·( 810

e )1620

(2π)
5
2
√

9·812·900·729( 9
e )9( 81

e )162( 900
e )900( 729

e )729
.

b. Except for a factor of 
√

2π in the denominator, all the 
irrational numbers disappear. (The powers of e cancel 
completely between numerator and denominator. 
Fortuitously, 9, 81, 729, and 900 are all perfect squares; 
and everything surviving involves only powers of 3 and 
of 10.) When all the smoke clears, all that remains is  
pr(9) ≈ 10

27
√

2π
.

c. Numerically, pr(9) ≈ 10
27

√
2π

= 0.1477564.

4. a. Pr(9) = e−9 · 99

9! = 0.13175564.

b.  The largest source of error in 3.c. was using Stirling’s 
formula to approximate 9! in the denominator of 3.a., 
which gives 9! ≈ 359, 536.873. This is only about 99%
of the true value (9! = 362, 880). This “correction” 
would only reduce the estimate in 3.c. to pr(9) ≈ 0.146;
so 3.c. is almost certainly a better estimate than 4.a.

c. Since Pr(k+1)
Pr(k) = λ

k+1 for the Poisson distribution, if we
take λ = 9 and 7 ≤ k ≤ 11, we find

k 9
(k+1)

7 1.125
8 1.000
9 0.900
10 0.818
11 0.750

which  are fairly close to the values in 2.b. (The values
will not be as close for k farther from λ.)

5. Pr(25) = 5.712 × 10−6 when λ = 9. (The true value of pr(25)

is about 2.2 × 10−7, and is actually much smaller than the
Poisson approximation.) The student’s intuition was correct.
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is odd. This was shown to be false, in 1959, for all n > 6,
by R.C. Bose, S.S. Shrikhande, and E.T. Parker. In fact, it
has been shown that if M(n) is the maximum number of
MOLS of order n which actually occur, then
lim inf ( )

n
M n

→∞
= ∞.

sulted in many of the foregoing papers and others applying
these ideas as well as some on random processes, informa-
tion theory, et al. For a complete list of my publications, see
http://home1.GTE.net/blachman/ .
From 1951 to 1954 I’d worked at the Office of Naval Research
(ONR) in Washington, and for occasional relaxation from
my forty years at GTE I took leaves of absence to do scientific
liaison at ONR’s London Branch and to work at the Naval
Research Laboratory as well as to teach in Madrid under the
Fulbright program. I feel that I’ve been the beneficiary of
much good luck during the course of my career, including
my poor vision’s not utterly failing until 2000. Fortunately I
was able to acquire software by then that speaks aloud my
keystrokes and whatever’s on my computer screen. So I’ve
not been stopped in my research work although it’s slowed
down somewhat while Internet communication continues
unabated. At GTE in Mountain View there were few other
communication theorists with whom to interact, but I’m
grateful to the many friends in many places, such as Lorne
Campbell, with whom I corresponded in the good old days
via snailmail and during the past fifteen years via e-mail.
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Bell Labs President Bill O'Shea and Lucent's R&D
leadership have chosen seven employees as 2002 Bell
Labs Fellows. The annual award, Bell Labs' highest
honor, recognizes sustained research and develop-
ment contributions to the company. The 2002 awards
mark the 20th year of the program. Since it began, 198
scientists and engineers have joined this elite group.
Each new Fellow will receive a sculpture, a personal
Fellows plaque and a cash award. A plaque of each
will be added to the “wall of honor” in the Murray
Hill, N.J., lobby. Aformal luncheon to honor the recip-
ients is scheduled for September.

The 2002 winners are:

*Alvin Barshefsky, Lucent Worldwide Services,
for his sustained performance in the area of software and services
development. 

*Young-Kai Chen, Bell Labs Research, for his pioneering working
in developing high-speed devices and circuits. 

*Gerard J. Foschini, Bell Labs Research, for his break-
through invention of the BLAST concept that has the
potential to revolutionize wireless technology. 

*Theodore M. Lach, Integrated Network
Solutions, for his innovation and technical leader-
ship in switching system component and product
reliability, silicon fabrication techniques and con-
tributions to industry standards. 

*Rajeev R. Rastogi, Bell Labs Research, for contri-
butions in the areas of network management and
database systems, and the successful application
of these innovations to Lucent products. 

*William D. Reents, Supply Chain Networks, for
pioneering work in analytical science and development of leading-
edge characterization tools and methodologies. 

*Joseph A. Tarallo, Mobility Solutions, for sustained contributions
to second- and third-generation wireless technology, and base sta-
tion architecture and design.

Gerard J. Foschini

continued on page 9

1. “A primitive polynomial f (x) of degree n ≥ 2 divides infi-
nitely many trinomials over GF(2)”.

Proof. Let α be a root of f (x). By “primitivity”, all the values
1,α,α2,α3, . . . ,α2n−2 are distinct, and are all the non-zero
elements of GF(2n). Therefore, for each j, 0 < j < 2n − 1,

1 + α j = αk with 0 < k < 2n − 1 and j ̸= k. Hence, f (x)divides
the trinomial 1 + xj + xk for these values of j and k. In 
addition, f (x) divides 1 + xJ + xK for every J with J ≡ j
(mod 2n − 1) and K ≡ k (mod 2n − 1), since 1 + α J + αK =
1 + α j + αk = 0, in view of α2n−1 = 1.

2. “If f (x) is irreducible with primitivity t and f (x) divides no
trinomials of degree < t, then f (x) divides no trinomials.”

Proof (by contradiction). Suppose f (x) divides the trinomial
xN + xA + 1 of degree N > t, and let α be a root of f (x). Since
f (x) has primitivity t, α t = 1. Since f (α) = 0, where α is a root
of f (x), any polynomial g(x) divisible by f (x) also has α as 
a root, since g(x) = f (x) · q(x) gives g(α) = f (α) · q(α) =
0 · q(α) = 0. Thus, αN + αA + 1 = 0, from which αn + αa+
1 = 0 where n ≡ N (mod t) and a ≡ A (mod t), where we
choose both n and a to be less than t, from which f (x) divides
the trinomial xn + xa + 1, of degree <t.

3. “If p ≥ 5 is a prime for which 2 is primitive modulo p, then
f (x) = (xp − 1)/(x − 1) = 1 + x + x2 + · · · + xp−1 is an irre-
ducible polynomial which divides no trinomials.”

Proof. For each prime p,"p(x) = (xp − 1)/(x − 1) is the “cyclo-
tomic polynomial” over the rational field Q, whose roots are
the φ(p) = p − 1 primitive pthroots of unity. While all cyclo-
tomic polynomials are irreducible over Q, "p(x) remains irre-
ducible over GF(2) if and only if 2 is primitive modulo p. In
this case, f (x) = "p(x) has primitivity t = p, and any root α of
this f (x) has αp = 1. Note that for p ≥ 5, the minimum poly-
nomial for such a root of unity has p > 3 non-zero terms. By
Result 2, above, if this f (x) divides any trinomial, it must
divide a trinomial of degree <t = p, say xn + xa + 1 with
n < p. But then the root α of f (x) is a root of this trinomial of
degree ≤p − 1, whereas the unique polynomial of degree
≤p − 1 with α as a root is the minimal polynomial of
α, f (x) = "p(x), of degree p − 1,which has more than three
terms.

Note. There are also many other irreducible polynomials
which divide no trinomials. These three problems are the
easy results.
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1. a. By statistical independence, the expected number of 
overlaps is M = ( a

N )( b
N )N = ab

N .

b. pr(k) = (a
k)(

N−a
b−k)

(N
b)

= (b
k)(

N−b
a−k)

(N
a)

= a!b!(N−a)!(N−b)!
k!(a−k)!(b−k)!N!(N−a−b+k)! .

c. pr(k+1)
pr(k) = (a−k)(b−k)

(k+1)(N−a−b+k+1)
.

2.  a. M = 9.

b. k pr(k+1)
pr(k)

0 11.2344
1 5.4855
2 3.5703
3 2.6136

k pr(k+1)
pr(k)

4 2.0403
5 1.6586
6 1.3865
7 1.1829

k pr(k+1)
pr(k)

8 1.0284
9 0.8999
10 0.7959
11 0.7105

c.  The mode is 9 (same as the mean, in this case), since pr(k)
is increasing up to k + 1 = 9, but decreasing thereafter.

3. a. pr(k) = (90
k )(

810
90−k)

(900
90 )

= (90!)2(810!)2

k!((90−k)!)2900!(720+k)!

At k = 9,

pr(9) ≈ (2π)2·90·810·( 90
e )180·( 810

e )1620

(2π)
5
2
√

9·812·900·729( 9
e )9( 81

e )162( 900
e )900( 729

e )729
.

b. Except for a factor of 
√

2π in the denominator, all the 
irrational numbers disappear. (The powers of e cancel 
completely between numerator and denominator. 
Fortuitously, 9, 81, 729, and 900 are all perfect squares; 
and everything surviving involves only powers of 3 and 
of 10.) When all the smoke clears, all that remains is  
pr(9) ≈ 10

27
√

2π
.

c. Numerically, pr(9) ≈ 10
27

√
2π

= 0.1477564.

4. a. Pr(9) = e−9 · 99

9! = 0.13175564.

b.  The largest source of error in 3.c. was using Stirling’s 
formula to approximate 9! in the denominator of 3.a., 
which gives 9! ≈ 359, 536.873. This is only about 99%
of the true value (9! = 362, 880). This “correction” 
would only reduce the estimate in 3.c. to pr(9) ≈ 0.146;
so 3.c. is almost certainly a better estimate than 4.a.

c. Since Pr(k+1)
Pr(k) = λ

k+1 for the Poisson distribution, if we
take λ = 9 and 7 ≤ k ≤ 11, we find

k 9
(k+1)

7 1.125
8 1.000
9 0.900
10 0.818
11 0.750

which  are fairly close to the values in 2.b. (The values
will not be as close for k farther from λ.)

5. Pr(25) = 5.712 × 10−6 when λ = 9. (The true value of pr(25)

is about 2.2 × 10−7, and is actually much smaller than the
Poisson approximation.) The student’s intuition was correct.
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is odd. This was shown to be false, in 1959, for all n > 6,
by R.C. Bose, S.S. Shrikhande, and E.T. Parker. In fact, it
has been shown that if M(n) is the maximum number of
MOLS of order n which actually occur, then
lim inf ( )

n
M n

→∞
= ∞.

sulted in many of the foregoing papers and others applying
these ideas as well as some on random processes, informa-
tion theory, et al. For a complete list of my publications, see
http://home1.GTE.net/blachman/ .
From 1951 to 1954 I’d worked at the Office of Naval Research
(ONR) in Washington, and for occasional relaxation from
my forty years at GTE I took leaves of absence to do scientific
liaison at ONR’s London Branch and to work at the Naval
Research Laboratory as well as to teach in Madrid under the
Fulbright program. I feel that I’ve been the beneficiary of
much good luck during the course of my career, including
my poor vision’s not utterly failing until 2000. Fortunately I
was able to acquire software by then that speaks aloud my
keystrokes and whatever’s on my computer screen. So I’ve
not been stopped in my research work although it’s slowed
down somewhat while Internet communication continues
unabated. At GTE in Mountain View there were few other
communication theorists with whom to interact, but I’m
grateful to the many friends in many places, such as Lorne
Campbell, with whom I corresponded in the good old days
via snailmail and during the past fifteen years via e-mail.
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Bell Labs President Bill O'Shea and Lucent's R&D
leadership have chosen seven employees as 2002 Bell
Labs Fellows. The annual award, Bell Labs' highest
honor, recognizes sustained research and develop-
ment contributions to the company. The 2002 awards
mark the 20th year of the program. Since it began, 198
scientists and engineers have joined this elite group.
Each new Fellow will receive a sculpture, a personal
Fellows plaque and a cash award. A plaque of each
will be added to the “wall of honor” in the Murray
Hill, N.J., lobby. Aformal luncheon to honor the recip-
ients is scheduled for September.

The 2002 winners are:

*Alvin Barshefsky, Lucent Worldwide Services,
for his sustained performance in the area of software and services
development. 

*Young-Kai Chen, Bell Labs Research, for his pioneering working
in developing high-speed devices and circuits. 

*Gerard J. Foschini, Bell Labs Research, for his break-
through invention of the BLAST concept that has the
potential to revolutionize wireless technology. 

*Theodore M. Lach, Integrated Network
Solutions, for his innovation and technical leader-
ship in switching system component and product
reliability, silicon fabrication techniques and con-
tributions to industry standards. 

*Rajeev R. Rastogi, Bell Labs Research, for contri-
butions in the areas of network management and
database systems, and the successful application
of these innovations to Lucent products. 

*William D. Reents, Supply Chain Networks, for
pioneering work in analytical science and development of leading-
edge characterization tools and methodologies. 

*Joseph A. Tarallo, Mobility Solutions, for sustained contributions
to second- and third-generation wireless technology, and base sta-
tion architecture and design.

Gerard J. Foschini

continued on page 9

1. “A primitive polynomial f (x) of degree n ≥ 2 divides infi-
nitely many trinomials over GF(2)”.

Proof. Let α be a root of f (x). By “primitivity”, all the values
1,α,α2,α3, . . . ,α2n−2 are distinct, and are all the non-zero
elements of GF(2n). Therefore, for each j, 0 < j < 2n − 1,

1 + α j = αk with 0 < k < 2n − 1 and j ̸= k. Hence, f (x)divides
the trinomial 1 + xj + xk for these values of j and k. In 
addition, f (x) divides 1 + xJ + xK for every J with J ≡ j
(mod 2n − 1) and K ≡ k (mod 2n − 1), since 1 + α J + αK =
1 + α j + αk = 0, in view of α2n−1 = 1.

2. “If f (x) is irreducible with primitivity t and f (x) divides no
trinomials of degree < t, then f (x) divides no trinomials.”

Proof (by contradiction). Suppose f (x) divides the trinomial
xN + xA + 1 of degree N > t, and let α be a root of f (x). Since
f (x) has primitivity t, α t = 1. Since f (α) = 0, where α is a root
of f (x), any polynomial g(x) divisible by f (x) also has α as 
a root, since g(x) = f (x) · q(x) gives g(α) = f (α) · q(α) =
0 · q(α) = 0. Thus, αN + αA + 1 = 0, from which αn + αa+
1 = 0 where n ≡ N (mod t) and a ≡ A (mod t), where we
choose both n and a to be less than t, from which f (x) divides
the trinomial xn + xa + 1, of degree <t.

3. “If p ≥ 5 is a prime for which 2 is primitive modulo p, then
f (x) = (xp − 1)/(x − 1) = 1 + x + x2 + · · · + xp−1 is an irre-
ducible polynomial which divides no trinomials.”

Proof. For each prime p,"p(x) = (xp − 1)/(x − 1) is the “cyclo-
tomic polynomial” over the rational field Q, whose roots are
the φ(p) = p − 1 primitive pthroots of unity. While all cyclo-
tomic polynomials are irreducible over Q, "p(x) remains irre-
ducible over GF(2) if and only if 2 is primitive modulo p. In
this case, f (x) = "p(x) has primitivity t = p, and any root α of
this f (x) has αp = 1. Note that for p ≥ 5, the minimum poly-
nomial for such a root of unity has p > 3 non-zero terms. By
Result 2, above, if this f (x) divides any trinomial, it must
divide a trinomial of degree <t = p, say xn + xa + 1 with
n < p. But then the root α of f (x) is a root of this trinomial of
degree ≤p − 1, whereas the unique polynomial of degree
≤p − 1 with α as a root is the minimal polynomial of
α, f (x) = "p(x), of degree p − 1,which has more than three
terms.

Note. There are also many other irreducible polynomials
which divide no trinomials. These three problems are the
easy results.
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1. a. By statistical independence, the expected number of 
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(k+1)(N−a−b+k+1)
.

2.  a. M = 9.

b. k pr(k+1)
pr(k)

0 11.2344
1 5.4855
2 3.5703
3 2.6136

k pr(k+1)
pr(k)

4 2.0403
5 1.6586
6 1.3865
7 1.1829

k pr(k+1)
pr(k)

8 1.0284
9 0.8999
10 0.7959
11 0.7105

c.  The mode is 9 (same as the mean, in this case), since pr(k)
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b. Except for a factor of 
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2π in the denominator, all the 
irrational numbers disappear. (The powers of e cancel 
completely between numerator and denominator. 
Fortuitously, 9, 81, 729, and 900 are all perfect squares; 
and everything surviving involves only powers of 3 and 
of 10.) When all the smoke clears, all that remains is  
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√
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b.  The largest source of error in 3.c. was using Stirling’s 
formula to approximate 9! in the denominator of 3.a., 
which gives 9! ≈ 359, 536.873. This is only about 99%
of the true value (9! = 362, 880). This “correction” 
would only reduce the estimate in 3.c. to pr(9) ≈ 0.146;
so 3.c. is almost certainly a better estimate than 4.a.

c. Since Pr(k+1)
Pr(k) = λ

k+1 for the Poisson distribution, if we
take λ = 9 and 7 ≤ k ≤ 11, we find

k 9
(k+1)

7 1.125
8 1.000
9 0.900
10 0.818
11 0.750

which  are fairly close to the values in 2.b. (The values
will not be as close for k farther from λ.)

5. Pr(25) = 5.712 × 10−6 when λ = 9. (The true value of pr(25)

is about 2.2 × 10−7, and is actually much smaller than the
Poisson approximation.) The student’s intuition was correct.

GOLOMB’S PUZZLE COLUMN™

OVERLAPPING SUBSETS SOLUTIONS
Solomon W. Golomb

Reprinted from Vol. 53, No. 3, September 2003 issue of Information Theory Newsletter continued

Reprinted from Vol. 53, No. 4, December 2003 issue of Information Theory Newsletter



19

June 2017 IEEE Information Theory Society Newsletter

3

June 2017 IEEE Information Theory Society Newsletter

8

IEEE Information Theory Society Newsletter March 2004

1. a. By statistical independence, the expected number of 
overlaps is M = ( a

N )( b
N )N = ab

N .

b. pr(k) = (a
k)(

N−a
b−k)

(N
b)

= (b
k)(

N−b
a−k)

(N
a)

= a!b!(N−a)!(N−b)!
k!(a−k)!(b−k)!N!(N−a−b+k)! .

c. pr(k+1)
pr(k) = (a−k)(b−k)

(k+1)(N−a−b+k+1)
.

2.  a. M = 9.

b. k pr(k+1)
pr(k)

0 11.2344
1 5.4855
2 3.5703
3 2.6136

k pr(k+1)
pr(k)

4 2.0403
5 1.6586
6 1.3865
7 1.1829

k pr(k+1)
pr(k)

8 1.0284
9 0.8999
10 0.7959
11 0.7105

c.  The mode is 9 (same as the mean, in this case), since pr(k)
is increasing up to k + 1 = 9, but decreasing thereafter.

3. a. pr(k) = (90
k )(

810
90−k)

(900
90 )

= (90!)2(810!)2

k!((90−k)!)2900!(720+k)!

At k = 9,

pr(9) ≈ (2π)2·90·810·( 90
e )180·( 810

e )1620

(2π)
5
2
√

9·812·900·729( 9
e )9( 81

e )162( 900
e )900( 729

e )729
.

b. Except for a factor of 
√

2π in the denominator, all the 
irrational numbers disappear. (The powers of e cancel 
completely between numerator and denominator. 
Fortuitously, 9, 81, 729, and 900 are all perfect squares; 
and everything surviving involves only powers of 3 and 
of 10.) When all the smoke clears, all that remains is  
pr(9) ≈ 10

27
√

2π
.

c. Numerically, pr(9) ≈ 10
27

√
2π

= 0.1477564.

4. a. Pr(9) = e−9 · 99

9! = 0.13175564.

b.  The largest source of error in 3.c. was using Stirling’s 
formula to approximate 9! in the denominator of 3.a., 
which gives 9! ≈ 359, 536.873. This is only about 99%
of the true value (9! = 362, 880). This “correction” 
would only reduce the estimate in 3.c. to pr(9) ≈ 0.146;
so 3.c. is almost certainly a better estimate than 4.a.

c. Since Pr(k+1)
Pr(k) = λ

k+1 for the Poisson distribution, if we
take λ = 9 and 7 ≤ k ≤ 11, we find

k 9
(k+1)

7 1.125
8 1.000
9 0.900
10 0.818
11 0.750

which  are fairly close to the values in 2.b. (The values
will not be as close for k farther from λ.)

5. Pr(25) = 5.712 × 10−6 when λ = 9. (The true value of pr(25)

is about 2.2 × 10−7, and is actually much smaller than the
Poisson approximation.) The student’s intuition was correct.

GOLOMB’S PUZZLE COLUMN™

OVERLAPPING SUBSETS SOLUTIONS
Solomon W. Golomb

Reprinted from Vol. 54, No. 1, March 2004 issue of Information Theory Newsletter

OVERLAPPING SUBSETS SOLUTIONS

3

June 2017 IEEE Information Theory Society Newsletter

8

IEEE Information Theory Society Newsletter March 2004

1. a. By statistical independence, the expected number of 
overlaps is M = ( a

N )( b
N )N = ab

N .

b. pr(k) = (a
k)(

N−a
b−k)

(N
b)

= (b
k)(

N−b
a−k)

(N
a)

= a!b!(N−a)!(N−b)!
k!(a−k)!(b−k)!N!(N−a−b+k)! .

c. pr(k+1)
pr(k) = (a−k)(b−k)

(k+1)(N−a−b+k+1)
.

2.  a. M = 9.

b. k pr(k+1)
pr(k)

0 11.2344
1 5.4855
2 3.5703
3 2.6136

k pr(k+1)
pr(k)

4 2.0403
5 1.6586
6 1.3865
7 1.1829

k pr(k+1)
pr(k)

8 1.0284
9 0.8999
10 0.7959
11 0.7105

c.  The mode is 9 (same as the mean, in this case), since pr(k)
is increasing up to k + 1 = 9, but decreasing thereafter.

3. a. pr(k) = (90
k )(

810
90−k)

(900
90 )

= (90!)2(810!)2

k!((90−k)!)2900!(720+k)!

At k = 9,

pr(9) ≈ (2π)2·90·810·( 90
e )180·( 810

e )1620

(2π)
5
2
√

9·812·900·729( 9
e )9( 81

e )162( 900
e )900( 729

e )729
.

b. Except for a factor of 
√

2π in the denominator, all the 
irrational numbers disappear. (The powers of e cancel 
completely between numerator and denominator. 
Fortuitously, 9, 81, 729, and 900 are all perfect squares; 
and everything surviving involves only powers of 3 and 
of 10.) When all the smoke clears, all that remains is  
pr(9) ≈ 10

27
√

2π
.

c. Numerically, pr(9) ≈ 10
27

√
2π

= 0.1477564.

4. a. Pr(9) = e−9 · 99

9! = 0.13175564.

b.  The largest source of error in 3.c. was using Stirling’s 
formula to approximate 9! in the denominator of 3.a., 
which gives 9! ≈ 359, 536.873. This is only about 99%
of the true value (9! = 362, 880). This “correction” 
would only reduce the estimate in 3.c. to pr(9) ≈ 0.146;
so 3.c. is almost certainly a better estimate than 4.a.

c. Since Pr(k+1)
Pr(k) = λ

k+1 for the Poisson distribution, if we
take λ = 9 and 7 ≤ k ≤ 11, we find

k 9
(k+1)

7 1.125
8 1.000
9 0.900
10 0.818
11 0.750

which  are fairly close to the values in 2.b. (The values
will not be as close for k farther from λ.)

5. Pr(25) = 5.712 × 10−6 when λ = 9. (The true value of pr(25)

is about 2.2 × 10−7, and is actually much smaller than the
Poisson approximation.) The student’s intuition was correct.

GOLOMB’S PUZZLE COLUMN™

OVERLAPPING SUBSETS SOLUTIONS
Solomon W. Golomb

Reprinted from Vol. 54, No. 1, March 2004 issue of Information Theory Newsletter

3

June 2017 IEEE Information Theory Society Newsletter

8

IEEE Information Theory Society Newsletter March 2004

1. a. By statistical independence, the expected number of 
overlaps is M = ( a

N )( b
N )N = ab

N .

b. pr(k) = (a
k)(

N−a
b−k)

(N
b)

= (b
k)(

N−b
a−k)

(N
a)

= a!b!(N−a)!(N−b)!
k!(a−k)!(b−k)!N!(N−a−b+k)! .

c. pr(k+1)
pr(k) = (a−k)(b−k)

(k+1)(N−a−b+k+1)
.

2.  a. M = 9.

b. k pr(k+1)
pr(k)

0 11.2344
1 5.4855
2 3.5703
3 2.6136

k pr(k+1)
pr(k)

4 2.0403
5 1.6586
6 1.3865
7 1.1829

k pr(k+1)
pr(k)

8 1.0284
9 0.8999
10 0.7959
11 0.7105

c.  The mode is 9 (same as the mean, in this case), since pr(k)
is increasing up to k + 1 = 9, but decreasing thereafter.

3. a. pr(k) = (90
k )(

810
90−k)

(900
90 )

= (90!)2(810!)2

k!((90−k)!)2900!(720+k)!

At k = 9,

pr(9) ≈ (2π)2·90·810·( 90
e )180·( 810

e )1620

(2π)
5
2
√

9·812·900·729( 9
e )9( 81

e )162( 900
e )900( 729

e )729
.

b. Except for a factor of 
√

2π in the denominator, all the 
irrational numbers disappear. (The powers of e cancel 
completely between numerator and denominator. 
Fortuitously, 9, 81, 729, and 900 are all perfect squares; 
and everything surviving involves only powers of 3 and 
of 10.) When all the smoke clears, all that remains is  
pr(9) ≈ 10

27
√

2π
.

c. Numerically, pr(9) ≈ 10
27

√
2π

= 0.1477564.

4. a. Pr(9) = e−9 · 99

9! = 0.13175564.

b.  The largest source of error in 3.c. was using Stirling’s 
formula to approximate 9! in the denominator of 3.a., 
which gives 9! ≈ 359, 536.873. This is only about 99%
of the true value (9! = 362, 880). This “correction” 
would only reduce the estimate in 3.c. to pr(9) ≈ 0.146;
so 3.c. is almost certainly a better estimate than 4.a.

c. Since Pr(k+1)
Pr(k) = λ

k+1 for the Poisson distribution, if we
take λ = 9 and 7 ≤ k ≤ 11, we find

k 9
(k+1)

7 1.125
8 1.000
9 0.900
10 0.818
11 0.750

which  are fairly close to the values in 2.b. (The values
will not be as close for k farther from λ.)

5. Pr(25) = 5.712 × 10−6 when λ = 9. (The true value of pr(25)

is about 2.2 × 10−7, and is actually much smaller than the
Poisson approximation.) The student’s intuition was correct.

GOLOMB’S PUZZLE COLUMN™

OVERLAPPING SUBSETS SOLUTIONS
Solomon W. Golomb

Reprinted from Vol. 54, No. 1, March 2004 issue of Information Theory NewsletterReprinted from Vol. 54, No. 1, March 2004 issue of Information Theory Newsletter



20

IEEE Information Theory Society Newsletter June 2017

4

IEEE Information Theory Society Newsletter June 2017

Reprinted from Vol. 54, No. 2, June 2004 issue of Information Theory Newsletter
11

June 2004 IEEE Information Theory Society Newsletter

We are asked to reconstruct a set S of n distinct positive real numbers, given only the set T consisting of the 
(n
k
)

sums of
the k-element subsets of S. Let the elements of S be a1 < a2 < a3 < · · · < an . Each ai occurs in exactly 

(n−1
k−1

)
of the k-element

subsets of S. Hence, the sum, a1 + a2 + · · · + an , of all the elements of S can be obtained by summing all 
(n

k
)

elements of T
and then dividing by 

(n−1
k−1

)
.

If n > k, the smallest element of T is a1 + a2 + · · · + ak , and the next-smallest element of T is a1 + a2 + · · · + ak−1 + ak+1 .
Similarly, the largest element of T is an + an−1 + · · · + an−k+1 , and the next-largest element of T is an + an−1+
· · · + an−k+2 + an−k . The remaining elements of T are partially ordered by magnitude. This partial ordering can usefully
be shown by a graph, where the nodes are the elements of T (increasing in numerical magnitude from left to right), and
the edges are labeled with the difference of the magnitudes of the nodes they connect. The only distinct edge labels will
be α = a2 − a1,β = a3 − a2, γ = a4 − a3 , etc. These facts, and the corresponding graphs, will be used to solve problems 1
to 4 as follows.

1. n = 4, k = 2, T = {24, 28, 30, 32, 34, 38}.

We know a1 + a2 = 24, a1 + a3 = 28, a2 + a4 = 34, a3+ a4 = 38, and β = a3 − a2 = 4. There are two possibilities,
leading to two solutions. Either a2 + a3 = 30 and a1 + a4 = 32, or a2 + a3 = 32 and a1 + a4 = 30. In the former case
α = 2, γ = 4, while in the latter case α = 4, γ = 2. In the former case, a3 + a2 = 30, a3 − a2 = β = 4, and a3 = 17,
giving a2 = 13, a1 = 11, and a4 = 21. That is, a first solution is S = {11, 13, 17, 21}. In the latter case,
a3 + a2 = 32, a3 − a2 = β = 4, and a3 = 18, from which a2 = 14, a1 = 10, and a4 = 20. That is, the second solution is
S = {10, 14, 18, 20}.

2. n = 5, k = 2, T = {21, 26, 28, 29, 31, 34, 36, 37, 42, 44}. With S = {a1, a2, a3, a4, a5} with a1 < a2 < a3 < a4 < a5 , we have
a1 + a2 + a3 + a4 + a5 = 328/4 = 82, where 328 is the sum of the elements in T, and 4 =

(5−1
2−1

)
. We know

a1 + a2 = 21, a1 + a3 = 26, a5 + a4 = 44, and a5 + a3 = 42. Also, a3 = 82 − (a1 + a2) − (a4 + a5) = 82 − 21 −44 = 17.
Then a1 = 26 − 17 = 9 and a5 = 42 − 17 = 25. Finally, a2 = 21 − 9 = 12, and a4 = 44 − 25 = 19. Hence the unique
solution is S = {9, 12, 17, 19, 25}.

3. n = 6, k = 2, T = {32, 35, 37, 39, 41, 43, 44, 45, 48, 49, 51, 52, 54, 58, 62}. Here the graph is

We know a1 + a2 = 32, a1 + a3 = 35,β = 3, a5 + a6 = 62, a4 + a6 = 58, δ = 4. Also, a1 + a2 + a3 + a4 + a5
+a6 = 690/5 = 138, from which a3 + a4 = 138 − (a1 + a2) − (a5 + a6) = 138 − 32 − 62 = 44; a2 + a5 =
138 − (a1 + a3) − (a4 + a6) = 138 − 35 − 58 = 45, and a1 + a6 = 138 − (a2 + a5) − (a3 + a4)= 138 − 45 − 44 =49. Our
graph now becomes
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From nodes 35 to 41, α + γ = 6. From nodes 48 to 58, γ + ϵ = 10. From nodes 45 to 49, −α + ϵ = 4. (This is a dependent
set of 3 equations, so we do not yet have a unique solution.) The third-smallest element of T, 37, is either a1 + a4 or
a2 + a3, so either γ = 2 or α = 2. The third-largest element of T, 54, is either a3 + a6 or a4 + a5, so either γ = 4 or ϵ = 4.
From the last two statements, there are three possibilities: i) γ = 2, ϵ = 4; ii) α = 2, γ = 4; iii) α = 2, ϵ = 4. Since
γ + ϵ = 10 we rule out i). Since −α + ϵ = 4 we rule out iii). That leaves only ii), with α + γ = 2 + 4 = 6. We can now
uniquely fill in the entire graph. 

Knowing which two elements of S were summed to obtain each element of T, we have 15 consistent linear equations in
only 6 unknowns. One easy way to solve this system: a3 − a2 = β = 3, a3 + a2 = 37, hence a3 = 20, a2 = 17, and
a1 = 32 − 17 = 15. Also a5 − a4 = δ = 4, a5 + a4 = 52, a5 = 28, hence a4 = 24, and a6 = 62 − 28 = 34. Thus, the unique
solution is S = {15, 17, 20, 24, 28, 34}.

4. n = 6, k = 3, T = {49, 54, 56, 57, 58, 60, 61, 65, 66, 67, 68, 69, 70, 74, 75, 77, 78, 79, 81, 86}. We have a1 + a2 + a3 = 49,

a1 + a2 + a4 = 54, a6 + a5 + a4 = 86, a6 + a5 + a3 = 81. Thus a1 + a2 + a3 + a4 + a5 + a6 = 135, and a4 − a3 = γ = 5. The
graph, using only the subscripts of the summed ai’s to label the nodes, shows its central symmetry, and in fact it has the
V4 symmetry group of the rectangle. 

It is relatively easy to show that there are only two sets of six positive real numbers for which the sums of all 3-subsets
yield the twenty elements of T. One is S1 = {15, 16, 18, 23, 27, 36}, and the other is S2 = {9, 18, 22, 27, 29, 30}. These cor-
respond to two mirror-image assignments to the edges of the graph. S1 uses α = 1,β = 2, γ = 5, δ = 4, ϵ = 9, while S2
uses the reverse assignment α = 9,β = 4, γ = 5, δ = 2, ϵ = 1.

5. If k′ = n − k, the k′-subsets of S = {a1, a2, . . . , an} are precisely the complements (relative to S) of the k-subsets. Since we
showed how to obtain the sum τ of all elements in S

(
by dividing the sum of all elements of T by 

(n−1
k−1

))
, if we replace

the elements of T by τ minus each of these elements to obtain T′, we see the equivalence of the two problems.

6. For n = k = 2, we have S = {a1, a2} and T = {a1 + a2}. From the single positive element in T, there are infinitely many
ways (a continuum of ways) to represent it as a sum of two elements. For n = 3, k = 2, we have S = {a1, a2, a3} and
T = {a1 + a2, a1 + a3, a2 + a3}. If a1 < a2 < a3 then a1 + a2 < a1 + a3 < a2 + a3 , so if we are given T = {r, s, t} with r < s < t,
then we have a solvable system of three linear equations in three unknowns, with a unique solution. We saw in Problem
1 that the case n = 4, k = 2, has two solutions for S, while in Problems 2 and 3 we saw that n = 5, k = 2, and n = 6, k = 2,
have unique solutions. For k = 2 and n > 4 the reconstruction of S from T is unique.

7. If n = k > 1, then S contains at least two elements while T contains only one (the sum of all elements of S), and as in the
case n = k = 2, there are infinitely many solutions.

8. For k ≥ 2 and n = 2k there will be two solutions for S, given T. This is the case where k′ = k (in Problem 5), and the graph
has V4 symmetry, whereby each solution has a complementary solution. (In Problems 1 and 4, we saw the special cases
n = 4, k = 2, and n = 6, k = 3.)
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Here pn = nth prime number, and π(x) = number of primes
≤ x, for positive real x.

1. “Prove that the ratio n
π(n) , for n ≥ 2, takes every 

integer value > 1 at least once.”
Proof. It was given in the Puzzle Column that
lim

x→∞
π(x)

x = 0 and lim
n→∞

pn = ∞. Thus the ratio π(x)
x

ultimately becomes and remains less than any
assigned ϵ > 0, as x → ∞. It starts at π(2)

2 = 1
2 .

For any m ≥ 2, there is a unique largest prime
pk = pk(m) for which π(pk) = k ≥ pk

m . Thus,
mπ(pk) = mk ≥ pk . Either mk < pk+1 or mk ≥ pk+1.

If mk < pk+1, and since
pk ≤ mk,π(pk) ≤ π(mk) < π(pk+1), from which
π(mk) = k, and mk

π(mk) = m, so that n = mk is an 
integer for which n

π(n) = m.
If mk ≥ pk+1, then π(pk+1) = k + 1 > k = mk

m ≥ pk+1
m ,

which contradicts the choice of pk as the largest prime
for which π(p) ≥ p

m . .                 

2. “Every positive integer belongs to exactly one of the
two sequences {sn} = {n + π(n)} and
{tn} = {n + pn − 1}.”
Proof. In the land of Primordia, the sequence {pn} is
used as a “tax table”, in the sense that the sales tax
increases by one cent at every term of the sequence
{pn} (and at no other values). Thus the sales tax on
the price pk is exactly k. More generally, the sales tax
on the price m is π(m), the number of terms of {pn}
not exceeding m.
From this point of view, the “total price” (including
tax) on an item with a net price of n is n + π(n). The
sequence {n + π(n)} thus consists of all numbers
which can occur as “total prices”. What numbers
cannot occur as “total prices”? As the net price
increases through one of the terms of {pn}, say from
pn − 1 to pn, the total price increases from
(pn − 1) + (n − 1) to pn + n, thus skipping the value
pn + n − 1. If m is not of the form pn, then the total
price goes from (m − 1) + π(m − 1) to m + π(m),
increasing by only one cent, because in this case

π(m − 1) = π(m). Thus the integers skipped in the
sequence {n + π(n)} are precisely the terms of the
sequence {n + pn − 1}.                                              

Note that in problems 1 and 2, the fact that {pn} is the
sequence of the prime numbers (rather than some other
subsequence of the positive integers that becomes less
dense) plays almost no role.

3. “Given positive integers a and b, there exists a posi-
tive integer c such that infinitely many numbers of
the form an + b (n a positive integer) have all their
prime factors ≤ c.”
Proof. All numbers in the sequence
{b(a + 1)k, k = 1, 2, 3, . . . } are distinct and of the form
an + b. Thus c = max(b, a + 1) satisfies the condition
of the problem.                                                         

4. (a) “What is the largest integer N such that, if 
1 < k < N and k has no prime factor in common 
with N, then k is prime?”
Answer. N = 30. Since 
30 = 2 × 3 × 5 = p1 × p2 × p3 , the product of the 
first three primes, every k relatively prime to 30 
cannot be divisible by 2 or 3 or 5, and the smallest 
k > 1 divisible by none of these and not prime is 
p2

4 = 72 = 49, which is bigger than 30.

(b)“What is the largest odd integer N such that, if 
1 < k < N and k has no prime factor in common 
with 2N, then k is prime?”
Answer. N = 105. Since 
105 = 3 × 5 × 7 = p2 × p3 × p4 , the product of the 
first three odd primes, every odd k relatively prime 
to 105 (i.e. every k relatively prime to 
2 × 105 = 210) cannot be divisible by 2 or 3 or 5 or 
7, and the smallest k divisible by none of these 
and not prime is p2

5 = 112 = 121, which is bigger 
than 105.

(Known results on the distribution of the primes prevent
larger solutions than 30 and 105 to these problems.)

5. “For what positive integers n is it true that∑

p≤π(n)

p = n?”

GOLOMB’S PUZZLE COLUMN™

SOME PRIME NUMBER PROPERTIES—Solutions
Solomon W. Golomb

8

IEEE Information Theory Society Newsletter June 2017

Reprinted from Vol. 54, No. 4, December 2004 issue of Information Theory Newsletter 

10

IEEE Information Theory Society Newsletter December 2004

In all three problems, S = {Ai} is a collection of infinite sub-
sets (or, infinite subsequences) Ai of the positive integers.

1. If Ai ∩ Aj = ∅ whenever i ̸= j, then S is (at most)
countably infinite.

Proof. Let M be the collection of smallest elements of
all the sets Ai. Since the sets Ai are pairwise disjoint,
each one contributes a different positive integer to M;
so M is (at most) countably infinite; but the elements
of M are in one-to-one correspondence with the ele-
ments Ai of S.                                                             

2. If Ai ∩ Aj is finite (or empty) whenever i ̸= j, it is pos-
sible for S to be uncountably infinite. Here is one such
construction. For each real number α on the interval
( 1

2 , 1), write the binary expansion of α in the form
α = 0.1a2a3a4 . . . , and associate with α the subse-
quence Aα of the positive integers consisting of
{1, 1a2, 1a2a3, 1a2a3a4, . . . } where these are the binary
representations of integers. (For example,
α = 2

3 = 0.1010101 . . . is associated with the
sequences {1, 10, 101, 1010, 10101, . . . } of integers in
binary representation, or {1, 2, 5, 10, 21, . . . } in deci-
mal notation.) For those real numbers with two repre-
sentations, one “terminating” and one “repeating”, we
can use either representation; for specificity, let us use
the repeating representation. (For example, α = 3

4 can
be written as either 0.1100000... or 0.101111111....  For
the former representation the sequence becomes
{1, 3, 6, 12, 24, 48, . . . }; for the latter representation, it

becomes {1, 2, 5, 11, 23, 47, . . . }. For the present con-
struction, we can use either of these; and in fact the
argument is strengthened if we use both.) Suppose
β ̸= α where β = 0.1b2b3b4b5 . . . is the binary expan-
sion of β. The sequence Aβ has only finitely many terms
in common with the sequence Aα ; because, since
α ̸= β , there is a smallest t for which at ̸= bt. Then not
only 1a2a3 · · · at ̸= 1b2b3 · · · bt, but all subsequent inte-
gers in Aα and Aβ are different. Thus, Aα ∩ Aβ is a
finite set for every α ̸= β , and there is such a set Aα for
every α in the uncountably infinite set of real numbers
in the interval ( 1

2 , 1).                                                    

3. If Ai ∩ Aj has at most m elements whenever i ̸= j, then
S is (at most) countably infinite. 

Proof. Replace each set Ai by the finite set Fi consisting
of the m + 1 smallest elements of Ai. Then if Ai ̸= Aj
we must have Fi ̸= Fj, because Ai and Aj can have at
most m common elements, by hypothesis. Hence there
is a one-to-one correspondence between the sets Ai
and the sets Fi. But the collection of all finite subsets of
the positive integers is a countably infinite collection,
and a fortiori the collection of subsets of m + 1 ele-
ments from the set of positive integers is a countably
infinite collection; so S = {Ai} is (at most) a countably
infinite collection.                                                        

Note the similarity of the solutions given here for Problem 1
and Problem 3.

GOLOMB’S PUZZLE COLUMN™

Countable or Uncountable Solutions
Solomon W. Golomb

Participants in the 4th Asia-Europe Workshop in Lucca, Italy.
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Answer. n = {5, 17, 41, 77, 100}. For ”large” n,
∑

p≤π(n)

p > n,

and n = 100 is the last value for which equality holds.     

(For a more detailed solution, see the Solution to Problem
E3385 (American Math. Monthly) listed as Reference 5 at
the end of these Solutions.)

6. Let a1 < a2 < a3 < · · · be an increasing, infinite
sequence of positive integers.”

(a) “Construct such a sequence {ak} having the 
property that, for every integer n (positive, 
negative, or zero) the sequence {ak + n} contains 
only finitely many prime numbers.”
Construction. Let {ak} =

{
((2k)!)3} for 

k = 1, 2, 3, . . . . For An = {ak + n}, if |n| ≥ 2 then all 
terms of An with k ≥ n are divisible by n, and 
hence not prime. For n = 0, An = {ak} is clearly 
composite for all k ≥ 1. Finally, using 
x3 + 1 = (x + 1)(x2 − x + 1)and 
x3 − 1 = (x − 1)(x2 + x + 1), the values of An for 
n = ±1 are composite for all k ≥ 2.
(Many other constructions are possible.)

(b)“Is there such a sequence {ak} and a constant B > 0
such that, for every integer n (positive, negative, 
or zero) the sequence An = {ak + n} contains no 
more than B prime numbers?”
The answer to this is unknown. A “yes” answer 
would contradict the “prime k-tuples” conjecture, 
which the late Paul Erdös was convinced had to 
be true. However, at least two other plausible 
conjectures in prime number theory also 
contradict the “prime k-tuples” conjecture.
On the model of the construction given in 6.(a) 
above, let {ak} = {((2k)!)3F(k)}, where F(k) can be 
an integer-valued  function that grows 
uncomputably fast. Then each translate sequence 
An = {ak + n} will be “expected” (by the thinning 

density of the sequence of prime numbers) to 
contain only a small finite number of prime 
numbers, whereas our uniform bound B can be 
chosen arbitrarily large (e.g. B = 101010100

). Anyone 
who can exhibit a specific sequence {ak} such that 
all its translates provably contain no more than B
primes each  (for a specific B, however large) will 
earn a permanent place in the history of prime 
number theory.

All the problems in this set are based on articles or prob-
lems which I published (over several decades) in either the
American Mathematical Monthly (AMM) or in
Mathematics Magazine (Math. Mag.).

1. “On the ratio of N to π(N)”, AMM, vol. 69, no. 1, Jan.
1962, 36-37.

2. “The ‘Sales Tax’ Theorem”, Math. Mag., vol. 49, no. 4,
Sep.-Oct. 1976, 187-189.

3. Problem E2725, AMM, vol. 85, no. 7, Aug.-Sep., 1978,
p. 593. Solution, vol. 86, no. 9, November, 1979, p.
790.

4. Problem E3137, AMM, vol. 93, no. 3, March, 1986, p.
215. Solution, vol. 94, no. 9, November, 1987, p. 883.

5. Problem E3385, AMM, vol. 97, no. 5, May, 1990, p.
427. Solution, vol. 98, no. 9, November, 1991, pp. 858-
859.

6. Problem 10208, AMM, vol. 99, no. 3, March, 1992, p.
266. Solution, vol. 102, no. 4, April, 1995, pp. 361-362.

For further information about Problem 6.(b) and its
relation to the “prime k-tuples conjecture”, see Paolo
Ribenboim, The Little Book of Bigger Primes, Second
Edition, Springer, New York, 2004, pp. 201-204,
where the existence of a solution to 6.(b) is called
“Golomb’s Conjecture”.
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In all three problems, S = {Ai} is a collection of infinite sub-
sets (or, infinite subsequences) Ai of the positive integers.

1. If Ai ∩ Aj = ∅ whenever i ̸= j, then S is (at most)
countably infinite.

Proof. Let M be the collection of smallest elements of
all the sets Ai. Since the sets Ai are pairwise disjoint,
each one contributes a different positive integer to M;
so M is (at most) countably infinite; but the elements
of M are in one-to-one correspondence with the ele-
ments Ai of S.                                                             

2. If Ai ∩ Aj is finite (or empty) whenever i ̸= j, it is pos-
sible for S to be uncountably infinite. Here is one such
construction. For each real number α on the interval
( 1

2 , 1), write the binary expansion of α in the form
α = 0.1a2a3a4 . . . , and associate with α the subse-
quence Aα of the positive integers consisting of
{1, 1a2, 1a2a3, 1a2a3a4, . . . } where these are the binary
representations of integers. (For example,
α = 2

3 = 0.1010101 . . . is associated with the
sequences {1, 10, 101, 1010, 10101, . . . } of integers in
binary representation, or {1, 2, 5, 10, 21, . . . } in deci-
mal notation.) For those real numbers with two repre-
sentations, one “terminating” and one “repeating”, we
can use either representation; for specificity, let us use
the repeating representation. (For example, α = 3

4 can
be written as either 0.1100000... or 0.101111111....  For
the former representation the sequence becomes
{1, 3, 6, 12, 24, 48, . . . }; for the latter representation, it

becomes {1, 2, 5, 11, 23, 47, . . . }. For the present con-
struction, we can use either of these; and in fact the
argument is strengthened if we use both.) Suppose
β ̸= α where β = 0.1b2b3b4b5 . . . is the binary expan-
sion of β. The sequence Aβ has only finitely many terms
in common with the sequence Aα ; because, since
α ̸= β , there is a smallest t for which at ̸= bt. Then not
only 1a2a3 · · · at ̸= 1b2b3 · · · bt, but all subsequent inte-
gers in Aα and Aβ are different. Thus, Aα ∩ Aβ is a
finite set for every α ̸= β , and there is such a set Aα for
every α in the uncountably infinite set of real numbers
in the interval ( 1

2 , 1).                                                    

3. If Ai ∩ Aj has at most m elements whenever i ̸= j, then
S is (at most) countably infinite. 

Proof. Replace each set Ai by the finite set Fi consisting
of the m + 1 smallest elements of Ai. Then if Ai ̸= Aj
we must have Fi ̸= Fj, because Ai and Aj can have at
most m common elements, by hypothesis. Hence there
is a one-to-one correspondence between the sets Ai
and the sets Fi. But the collection of all finite subsets of
the positive integers is a countably infinite collection,
and a fortiori the collection of subsets of m + 1 ele-
ments from the set of positive integers is a countably
infinite collection; so S = {Ai} is (at most) a countably
infinite collection.                                                        

Note the similarity of the solutions given here for Problem 1
and Problem 3.

GOLOMB’S PUZZLE COLUMN™

Countable or Uncountable Solutions
Solomon W. Golomb

Participants in the 4th Asia-Europe Workshop in Lucca, Italy.

Countable or Uncountable Solutions
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The problems concern the sequence S = {sn} = {2n2 + 2n + 1}. Note that sn = 2n2 + 2n + 1 = n2 + (n + 1)2 = ((2n + 1)2 + 1)/2. In
particular, each sn is a sum of two consecutive squares. The following facts are well-known from elementary number theory:

a. The primes which are sums of two squares are those of the form 4m + 1, and 2.

b. If u and v are relatively prime, all prime factors of u2 + v2 are primes which are sums of two squares. If further 
u2 + v2 is odd, its prime factors must all be of the form 4m + 1.

c. For primes p of the form 4m + 1, the number −1 is a quadratic residue modulo p. That is, there is a 
number a such that a2 ≡ −1(mod p); and then also b = p − a satisfies b2 ≡ −1(mod p).

Now for the solutions.

1. Since n and n + 1 are relatively prime, and sn = n2+(n + 1)2 is odd, all prime factors of sn are primes of the form 4m + 1,
for every sn.

2. and 3. Given any p = 4m + 1, a prime, we will find values of n such that p divides sn = ((2n + 1)2 + 1)/2, i.e., such that
((2n + 1)2 + 1)/2 ≡ 0(mod p).Multiplying both sides by 2, this says (2n + 1)2 ≡ −1(mod p), and by fact c., there are num-
bers a0 and d0 = p − a0 with a2

0 ≡ d2
0 ≡ −1(mod p). Since a0 + d0 = p, which is odd, one of a0 and d0 must be odd, say a0.

Then take a0 = 2n + 1, so that n = (a0 − 1)/2.For this value of n,and all other n congruent to it modulo p,sn is a multiple of p, i.e.,
2a2 + 2a + 1 is a multiple of p for all a ≡ a0(mod p); i.e., all a = a0 + kp for all integers k. Now take b0 = p − a0 − 1. For
n = b0, sn = 2b2

0 + 2b0 + 1 = 2(p − a0 − 1)2 + 2(p − a0 − 1) + 1 ≡ 2a2
0 + 4a0 + 2 − 2a0 − 2 + 1 ≡ 2a2

0 + 2a0 + 1≡ 0(mod p).
Thus p divides sn for n = b0 and for all n ≡ b0(mod p). Note also that a0 ̸= b0, for otherwise a0 = b0 = p−1

2 , leading to
a2

0 ≡ b2
0 ≡ (

p−1
2 )2 ≡ −1(mod p) , from which (p − 1)2 ≡ −4(mod p); but (p − 1)2 ≡ (−1)2 ≡ 1 ≡ −4(mod p) , and

5 ≡ 0(mod p), which happens only for p = 5. However, looking at the actual sequence S, sn is not divisible by 5 when
n = 2 = 5−1

2 , but when n = a = 1, and when n = b = 5 - 1 - 1 = 3.

4. For sn = n2 + (n + 1)2 = c2 , we have a “Pythagorean triple” of the special form (n, n + 1, c), such as (3, 4, 5) and (20, 21,
29). We find the general solution as follows: Suppose sn = ((2n + 1)2 + 1)/2 = y2 for some y. Set x = 2n + 1, so that
x2 + 1 = 2y2, x2 − 2y2 = −1.This is a case of “Pell’s equation”, which we now solve. The smallest solution has x0 = y0 = 1,
so that 12 − 2 · 12 = −1. We factor the Pell equation to get (x +

√
2y)(x −

√
2y) = −1, and then

(x +
√

2y)n(x −
√

2y)n = (−1)n. At n = 2, we have (x1 +
√

2y1)
2 = (1 +

√
2)2 = 3 + 2

√
2, for x2 = 3, y2 = 2, as in

32 − 2 · 22 = (−1)2 = +1. At n = 3, (1 +
√

2)3 = 7 + 5
√

2,corresponding to 72 − 2 · 52 = (−1)3 = −1. It is only for odd val-
ues of n that we get x2

n − 2y2
n = −1. Remember that x = 2n + 1, so that n = (x − 1)/2. From x1 = 1, n1 = 0, and

s0 = 02 + 12 = 12. From x3 = 7, n3 = 3, and s3 = 32 + 42 = 52 . At n = 4, we have (1 +
√

2)4 = 17 + 12
√

2, as in
172 − 2 · 122 = (−1)4 = +1. At n = 5, we have (1 +

√
2)5 = 41 + 29

√
2. From x = 41, n = 20, and

s20 = 202 + 212 = 841 = 292 . Next, (1 +
√

2)6 = 99 + 7
√

2, where 992 − 2 · 702 = +1; but (1 +
√

2)7 = 239 + 169
√

2, where
2392 − 2 · 1692 = −1. With x = 239, n5 = 119, and s119 = 1192 + 1202 = 28, 561 = 1692.

5. Thus, the sub-sequence C = {c1, c2, c3, c4,...} of square roots of the squares in sequence S begins C = {1, 5, 29, 169,...}, 

and can easily be generated recursively by: c0 = 1, cn+1 = 6cn − cn−1 for n ≥ 1. (This can be proved inductively from

the Pell equation approach. It yields a much simpler way of obtaining the values of the cn’s.) Thus c = {1, 5, 29, 169, 985,

5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149, 259717522849, . . . }. The

recursion cn+1 = 6cn − cn−1 corresponds to the polynomial equation x2 − 6x + 1 = 0, with roots 3 ± 2
√

2. Let

ρ = 3 + 2
√

2 = 5.8284271247 . . . . Then c n+1 = ⌊ρ c n⌋ for  all n ≥ 0,and lim
n→∞

(cn+1/cn) = ρ . To get the sn corresponding to

cn (not the same values of n) we have 
(⌊

cn√
2

⌋)2
+

(⌈
cn√

2

⌉)2
= c2

n , where
⌊

cn√
2

⌋
+ 1 =

⌈
cn√

2

⌉
. It is remarkable how close the

(irrational!) values of ρn are to integers. (Actually, ρn + ρ−n is an integer for every n ≥ 1, and the powers of ρ−1 = 3 − 2
√

2

go to 0 very rapidly with n.)

GOLOMB’S PUZZLE COLUMN™

A Quadratic Sequence Solutions
Solomon W. Golomb
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H. Vincent Poor has been named recipient of the
1995 IEEE James H. Mulligan Education Medal
with the citation:

“For leadership in electrical engineering edu-
cation through inspired teaching, a classic
textbook, innovative curricular development,
research, and mentoring.”

The IEEE James H. Mulligan Education Medal (for-
merly IEEE Education Medal) was established in 1956
by the American Institute of Electrical Engineers, and
continued by the Board of Directors of the IEEE.

It is through this Medal that the Institute recognizes
the importance of the educator's contributions to
the vitality, imagination, and leadership of the
members of the engineering profession.

The Medal is presented annually for a career of
outstanding contributions to education in the
fields of interest of IEEE. It is presented only to an
individual.

In the evaluation process, the following crite-
ria are considered: Excellence in teaching and
ability to inspire students, Leadership in elec-
trical engineering education through publica-
tion of course materials and writings on engi-
neering education, Leadership in the develop-
ment of programs in curricula or teaching
methodology, Contributions to the engineer-
ing profession through research, engineering
achievements, and technical papers, and
Participating in the education activities of pro-
fessional societies.

IEEE Information Theory Society Newsletter March 2005

6. If any sn is a perfect even power it must be in the sequence C. Among the first 250 terms of {sn}, the only power high-
er than the second power is s119 = 28, 561 = 134. I don’t know of any odd (perfect) powers in S, or other perfect even
powers, but they may well exist.

7. It is “very likely” that the sequence S = {sn} contains infinitely many primes. However, this has not yet been proved
for any quadratic expression in n. The “twin primes” result from removing, from the set of all odd integers > 0, two
residue classes modulo every prime p > 2, and no one has yet been able to prove that there are infinitely many twin
primes. In the quadratic sequence S, of a sparse subset of the odd integers > 0, we remove two residue classes modu-
lo those primes of the form 4m + 1 to see what (prime) values remain; so proving that S contains infinitely many prime
values seems at least as hard as (or harder than) the “twin prime” problem.

H. Vincent Poor

Vince Poor Wins IEEE Education Medal

IT Members Win Several IEEE Awards

Several IT Society Members have been awarded 2005 IEEE Medals.

Eugene Wong won the 2005 IEEE Founders Medal with the citation:

“For leadership in national and international engineering research
and technology policy, for pioneering contributions in relational
databases.”

Jim K. Omura won the 2005 IEEE Alexander Graham Bell Medal
with the citation:

“For contributions to the theory of communication systems and
the commercial applications of spread spectrum radios and pub-

lic key cryptography.”

Neil Sloane's won the 2005 Hamming Medal with the citation:

“For contributions to coding theory and its applications to com-
munications, computer science, mathematics and statistics.”

H. Vincent Poor has been named recipient of the 2005 IEEE James
H. Mulligan Education Medal with the citation:

For leadership in electrical engineering education through inspired
teaching, a classic textbook, innovative curricular development,
research, and mentoring.
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1. The matrices A =
(

1 1
0 0

)
and B =

(
0 1
0 1

)
are similar, since P−1AP = B with P =

(
1 0

−1 1

)
and P−1 =

(
1 0
1 1

)
.

However, AB =
(

0 2
0 0

)
and BA =

(
0 0
0 0

)
are not similar, since clearly 

(
0 0
0 0

)
is similar only to itself.

2. Theorem. If, for a given complex matrix M, there exists a unitary matrix U such that U−1MU = !, where ! is a diagonal matrix,
then M is normal.

Proof. From U−1MU = !, we have !∗ = !H = (U−1MU)H = UHMH(U−1)H = U−1MHU . Now !!∗ = !∗!, because if !
is the diagonal matrix with λ1, λ2, . . . , λn as its diagonal elements, then !∗ is the diagonal matrix with λ∗

1, λ
∗
2, . . . , λ∗

n as its
diagonal elements, and both !!∗ and !∗! are diagonal matrices with |λ1|2, |λ2|2, . . . , |λn|2 as their diagonal elements.
Now !!∗ = (U−1MU)(U−1MHU) = U−1(MMH)U,!∗! = (U−1MHU)(U−1MU) = U−1(MHM)U , and since these are
equal, MMH = MHM, so M is normal.  

3. “If N1 and N2 are normal n × n matrices then N1N2 is normal” is false. For a counter-example, we can use the fact that every

(real) symmetric matrix S is normal, since SH = ST = S, from which SSH = S2 = SHS. Then with N1 =
(

1 2
2 3

)
and

N2 =
(

2 1
1 4

)
, we have P = N1N2 =

(
4 9
7 14

)
and PH = PT = NT

2 NT
1 = N2N1 =

(
4 7
9 14

)
. Now PPH =

(
4 9
7 14

)

(
4 7
9 14

)
=

(
97 154
154 245

)
but PHP =

(
4 7
9 14

)(
4 9
7 14

)
=

(
65 134
134 277

)
, so that P = N1N2 is not normal.

4. Let R =
{(

0 0
0 0

)
,

(
0 1
0 0

)
,

(
1 0
0 0

)
,

(
1 1
0 0

)}
= {O, Z, I, J} over GF(2). R forms a commutative group with respect to

matrix addition modulo 2, and R is closed under matrix multiplication modulo 2. In this ring, both I and J are “left identities”,

since 
(

1 0
0 0

)(
a b
0 0

)
=

(
a b
0 0

)
and 

(
1 1
0 0

)(
a b
0 0

)
=

(
a b
0 0

)
, but neither one is a “right identity”, since

ZI =
(

0 1
0 0

)(
1 0
0 0

)
=

(
0 0
0 0

)
= 0, and ZJ =

(
0 1
0 0

)(
1 1
0 0

)
=

(
0 0
0 0

)
= O.

5. “If the n2 elements of an n × n matrix A are integers chosen independently and at random, what is the probability that |A|, the
determinant of A, is odd?”

For all n ≥ 2, the answer is not one-half. Rather than worry about what sample space integers can be chosen from ”inde-

pendently and at random”, we need only agree that each entry in A is equally likely to be even or odd, and independ-

ently of the other entries. Then our question is equivalent to: “What fraction of the n × n matrices over GF(2) are non-sin-

gular?” (The even determinants all reduce to 0, and the odd determinants all reduce to 1, modulo 2.) To form a non-sin-

gular n × n matrix over GF(2), we can pick the top row in 2n − 1 ways (only the all-zeroes case is excluded), the second

row in 2n − 2 ways, and the jth row in 2n − 2 j−1 ways, for all j, 1 ≤ j ≤ n. This gives 
n∏

j=1
(2n − 2 j−1) non-singular matrices, out

of 2(n2) matrices altogether. Then the probability is the ratio, which simplifies to 
n∏

j=1
(1 − 2− j) = 1

2 · 3
4 · 7

8 · · · 2n−1
2n . This

sequence of probabilities, 1
2 , 3

8 , 21
64 , 315

1024 , · · · , converges rather rapidly to a positive limiting value,
∞∏

j=1

(
1 − 1

2 j

)
= 0.2887878 . . . . Thus, the probability that a “large” n × n matrix of “random” integers would have an odd

determinant is a bit less than 29%. (At n = 8, this probability is already down to 0.289919 . . . .)
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1. It is sufficient to remove only one edge from K6 so that
the fourteen remaining edges can be colored using two
colors without forming a solid-color triangle:

Only the edge connecting the points 1 and 6 is missing
from K6. The clever way to view this example is to con-
sider that we started with a triangle-free 2-coloring of
K5, on the points 1, 2, 3, 4, and 5, and then adjoined 6 as
a “clone” of point 1. That is, 6 is connected to each of 2,
3, 4, and 5 with the same colors of edges as those ema-
nating from 1; so if a solid-color triangle involving 6 is
formed, there would already have been a solid-color tri-
angle involving 1.

2. In a similar way, we can adjoin clones for each of the five
original points 1, 2, 3, 4, 5. Call these new points 1’, 2’, 3’,
4’, 5’. Then the only lines missing from K10 are the five
lines connecting each original point to its clone. That is,

40 of the 45 edges of K10 can be 2-colored without form-
ing a solid-color triangle. (To convince yourself that no
forbidden triangles are formed, adjoin the new “clone
points” one at a time.)

3. The question told you that all the edges of K16 can be 3-
colored without forming a solid-color triangle, but that
this is not true for K17. Hence, we can adjoin a clone P′

for one of the points P of K16, and connect P′ to every
original point Q of K16 except P, with the same color
edge as the edge connecting P to Q, without forming a
solid-color triangle. That is, we need remove only one
edge from K17 so that the remaining 135 edges can be 3-
colored without forming a solid-color triangle.

4. The same reasoning shows that if r = r(c) is the smallest
positive integer such that, if the 

(r
2
)

edges of Kr are colored
using c colors a solid-color triangle must be created, then
it suffices to remove a single edge from Kr so that the
remaining edges can be c-colored without forming a
solid-color triangle. Specifically, we start with a c-coloring
of Kr−1 that has no solid-color triangle, and adjoin a new
point P′ as a clone of P, one of the original r − 1 points of
Kr−1, and proceed as in Solutions 1 and 3 above.

Note. A key idea for this column was supplied by Herbert Taylor.
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1. After the first four cards dealt are all seen to be hearts,
the deck still contains 9 hearts among 48 cards, so the
probability that the fifth card will also be a heart is
9
48 = 3

16 = 0.1875.

2. The number of ways to select 5 cards, all hearts, is(13
5
)

= 1287. The number of 5-card hands with at least
four hearts is the number of hands with 5 hearts plus the
number of hands with 4 hearts and one non-heart,
which equals 

(13
5
)
+

(13
4
)(39

1
)

= 1287 + 27, 885 = 29, 172.
Thus the probability that a 5-card hand with at least
four hearts actually contains five hearts is

1287
29,172 = 3

68 = 0.044117647 . . . .

3. (a) For at least one of six dice to show a 5, the probability
is 1 −

(
5
6

)6
= 31,031

46,656 = 0.6651020233 . . . , or nearly two-
thirds.

(b)For exactly one of six dice to show a 5, there is a choice 
of which of the six dice shows the 5, and the other dice 
must avoid showing a 5; so the probability is: 
6×55

66 = 55

65 = 3125
7776 = 0.40187757 . . . .

4. (a) The probability that all six dice turn up the same is 
6
66 = 1

7776 = 0.000128601 . . . .
(b)The probability that all six dice turn up different 

(i.e. that every number from 1 to 6 appears) is 
6!
66 = 5

324 = 0.015432099 . . . .

5. Originally, your chance of guessing right is one in four,
or 25%. After two wrong alternatives are removed, your
original choice is still only 25% right, so by switching
you increase your winning probability to 75%. (The two
remaining doors are not equally likely!)

6. Among the four honest coins plus one two-headed coin,

there are six head faces, two of which belong to the
crooked coin; so the probability that the unseen side is
also heads is 2

6 = 0.333333 . . . .

7. Expected number of tosses of a pair of dice to see a total
of k, 2 ≤ k ≤ 12, on the two dice, is E(k), where

E(k) is the solution to 
(

36−k+1
36

)E(k)
= 1

2 , and is given by

E(k) = log 2/(log 36 − log(36 − k + 1)) for 2 ≤ k ≤ 7, and

E(7 + a) = E(7 − a) for 1 ≤ a ≤ 5.

8. Although the grass always looks greener on the other
side of the fence, it can't be true mathematically that no
matter which of the two envelopes you picked, the other
one is 25% better (at least in expectation)! So where is
the fallacy? The problem stated that x, a positive real
number, was picked “at random”, but it didn't specify
the  distribution from which x was selected. The rea-
soning tacitly assumed it was from the “uniform dis-
tribution”, but there is no uniform distribution on the
positive real numbers. Your best strategy is to assume
(best guess) what the mean of the unrevealed distribu-
tion is, accept y if it exceeds this mean, but switch if it
is below. Another defensible strategy is to accept y if
you would be satisfied with that amount of money, but
reject y otherwise (the “minimum regret” approach).

GOLOMB’S PUZZLE COLUMN™

Simple Probabilities Solution
Solomon W. Golomb

k E(k) k E(k) k E(k)
2 24.6051 5 5.8849 9 5.8849
3 12.1268 6 4.6355 10 7.9662
4 7.9662 7 3.8018 11 12.1268

8 4.6355 12 24.6051
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In all three problems, S = {Ai} is a collection of infinite sub-
sets (or, infinite subsequences) Ai of the positive integers.

1. If Ai ∩ Aj = ∅ whenever i ̸= j, then S is (at most)
countably infinite.

Proof. Let M be the collection of smallest elements of
all the sets Ai. Since the sets Ai are pairwise disjoint,
each one contributes a different positive integer to M;
so M is (at most) countably infinite; but the elements
of M are in one-to-one correspondence with the ele-
ments Ai of S.                                                             

2. If Ai ∩ Aj is finite (or empty) whenever i ̸= j, it is pos-
sible for S to be uncountably infinite. Here is one such
construction. For each real number α on the interval
( 1

2 , 1), write the binary expansion of α in the form
α = 0.1a2a3a4 . . . , and associate with α the subse-
quence Aα of the positive integers consisting of
{1, 1a2, 1a2a3, 1a2a3a4, . . . } where these are the binary
representations of integers. (For example,
α = 2

3 = 0.1010101 . . . is associated with the
sequences {1, 10, 101, 1010, 10101, . . . } of integers in
binary representation, or {1, 2, 5, 10, 21, . . . } in deci-
mal notation.) For those real numbers with two repre-
sentations, one “terminating” and one “repeating”, we
can use either representation; for specificity, let us use
the repeating representation. (For example, α = 3

4 can
be written as either 0.1100000... or 0.101111111....  For
the former representation the sequence becomes
{1, 3, 6, 12, 24, 48, . . . }; for the latter representation, it

becomes {1, 2, 5, 11, 23, 47, . . . }. For the present con-
struction, we can use either of these; and in fact the
argument is strengthened if we use both.) Suppose
β ̸= α where β = 0.1b2b3b4b5 . . . is the binary expan-
sion of β. The sequence Aβ has only finitely many terms
in common with the sequence Aα ; because, since
α ̸= β , there is a smallest t for which at ̸= bt. Then not
only 1a2a3 · · · at ̸= 1b2b3 · · · bt, but all subsequent inte-
gers in Aα and Aβ are different. Thus, Aα ∩ Aβ is a
finite set for every α ̸= β , and there is such a set Aα for
every α in the uncountably infinite set of real numbers
in the interval ( 1

2 , 1).                                                    

3. If Ai ∩ Aj has at most m elements whenever i ̸= j, then
S is (at most) countably infinite. 

Proof. Replace each set Ai by the finite set Fi consisting
of the m + 1 smallest elements of Ai. Then if Ai ̸= Aj
we must have Fi ̸= Fj, because Ai and Aj can have at
most m common elements, by hypothesis. Hence there
is a one-to-one correspondence between the sets Ai
and the sets Fi. But the collection of all finite subsets of
the positive integers is a countably infinite collection,
and a fortiori the collection of subsets of m + 1 ele-
ments from the set of positive integers is a countably
infinite collection; so S = {Ai} is (at most) a countably
infinite collection.                                                        

Note the similarity of the solutions given here for Problem 1
and Problem 3.

GOLOMB’S PUZZLE COLUMN™
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1. There are 288 = 12 × 4! distinct Mini-Sudoku solutions. The factor 4! = 24 corresponds to all per-

mutations of the four symbols. Here are the 12 cases that differ by more than permutation of the

symbols.

2. Here is a Mini-Sudoku solution in which the four elements on each of the two diagonals are also distinct: (It is the sev-

enth of the twelve cases shown above. The fourth case also has this property.)

3. At least four cells must be filled in to guarantee a unique Mini-Sudoku solution. Three distinct symbols must appear, since

otherwise two unused symbols could be interchanged in the filled-in solution, destroying uniqueness. I tried all inequiv-

alent ways of placing one each of 1, 2, and 3 in the 4 × 4 grid, and none of these led to a unique Mini-Sudoku solution.

There are many ways to place four symbols that will guarantee a unique solution. Here is one of them:

, which forces                                .
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In all three problems, S = {Ai} is a collection of infinite sub-
sets (or, infinite subsequences) Ai of the positive integers.

1. If Ai ∩ Aj = ∅ whenever i ̸= j, then S is (at most)
countably infinite.

Proof. Let M be the collection of smallest elements of
all the sets Ai. Since the sets Ai are pairwise disjoint,
each one contributes a different positive integer to M;
so M is (at most) countably infinite; but the elements
of M are in one-to-one correspondence with the ele-
ments Ai of S.                                                             

2. If Ai ∩ Aj is finite (or empty) whenever i ̸= j, it is pos-
sible for S to be uncountably infinite. Here is one such
construction. For each real number α on the interval
( 1

2 , 1), write the binary expansion of α in the form
α = 0.1a2a3a4 . . . , and associate with α the subse-
quence Aα of the positive integers consisting of
{1, 1a2, 1a2a3, 1a2a3a4, . . . } where these are the binary
representations of integers. (For example,
α = 2

3 = 0.1010101 . . . is associated with the
sequences {1, 10, 101, 1010, 10101, . . . } of integers in
binary representation, or {1, 2, 5, 10, 21, . . . } in deci-
mal notation.) For those real numbers with two repre-
sentations, one “terminating” and one “repeating”, we
can use either representation; for specificity, let us use
the repeating representation. (For example, α = 3

4 can
be written as either 0.1100000... or 0.101111111....  For
the former representation the sequence becomes
{1, 3, 6, 12, 24, 48, . . . }; for the latter representation, it

becomes {1, 2, 5, 11, 23, 47, . . . }. For the present con-
struction, we can use either of these; and in fact the
argument is strengthened if we use both.) Suppose
β ̸= α where β = 0.1b2b3b4b5 . . . is the binary expan-
sion of β. The sequence Aβ has only finitely many terms
in common with the sequence Aα ; because, since
α ̸= β , there is a smallest t for which at ̸= bt. Then not
only 1a2a3 · · · at ̸= 1b2b3 · · · bt, but all subsequent inte-
gers in Aα and Aβ are different. Thus, Aα ∩ Aβ is a
finite set for every α ̸= β , and there is such a set Aα for
every α in the uncountably infinite set of real numbers
in the interval ( 1

2 , 1).                                                    

3. If Ai ∩ Aj has at most m elements whenever i ̸= j, then
S is (at most) countably infinite. 

Proof. Replace each set Ai by the finite set Fi consisting
of the m + 1 smallest elements of Ai. Then if Ai ̸= Aj
we must have Fi ̸= Fj, because Ai and Aj can have at
most m common elements, by hypothesis. Hence there
is a one-to-one correspondence between the sets Ai
and the sets Fi. But the collection of all finite subsets of
the positive integers is a countably infinite collection,
and a fortiori the collection of subsets of m + 1 ele-
ments from the set of positive integers is a countably
infinite collection; so S = {Ai} is (at most) a countably
infinite collection.                                                        

Note the similarity of the solutions given here for Problem 1
and Problem 3.

GOLOMB’S PUZZLE COLUMN™

Countable or Uncountable Solutions
Solomon W. Golomb

Participants in the 4th Asia-Europe Workshop in Lucca, Italy.Reprinted from Vol. 56, No. 3, September 2006 issue of Information Theory Newsletter



35

June 2017 IEEE Information Theory Society Newsletter

19

June 2017 IEEE Information Theory Society Newsletter

Reprinted from Vol. 56, No. 4, December 2006 issue of Information Theory Newsletter
8

IEEE Information Theory Society Newsletter June 2017

Reprinted from Vol. 54, No. 4, December 2004 issue of Information Theory Newsletter 

10

IEEE Information Theory Society Newsletter December 2004

In all three problems, S = {Ai} is a collection of infinite sub-
sets (or, infinite subsequences) Ai of the positive integers.

1. If Ai ∩ Aj = ∅ whenever i ̸= j, then S is (at most)
countably infinite.

Proof. Let M be the collection of smallest elements of
all the sets Ai. Since the sets Ai are pairwise disjoint,
each one contributes a different positive integer to M;
so M is (at most) countably infinite; but the elements
of M are in one-to-one correspondence with the ele-
ments Ai of S.                                                             

2. If Ai ∩ Aj is finite (or empty) whenever i ̸= j, it is pos-
sible for S to be uncountably infinite. Here is one such
construction. For each real number α on the interval
( 1

2 , 1), write the binary expansion of α in the form
α = 0.1a2a3a4 . . . , and associate with α the subse-
quence Aα of the positive integers consisting of
{1, 1a2, 1a2a3, 1a2a3a4, . . . } where these are the binary
representations of integers. (For example,
α = 2

3 = 0.1010101 . . . is associated with the
sequences {1, 10, 101, 1010, 10101, . . . } of integers in
binary representation, or {1, 2, 5, 10, 21, . . . } in deci-
mal notation.) For those real numbers with two repre-
sentations, one “terminating” and one “repeating”, we
can use either representation; for specificity, let us use
the repeating representation. (For example, α = 3

4 can
be written as either 0.1100000... or 0.101111111....  For
the former representation the sequence becomes
{1, 3, 6, 12, 24, 48, . . . }; for the latter representation, it

becomes {1, 2, 5, 11, 23, 47, . . . }. For the present con-
struction, we can use either of these; and in fact the
argument is strengthened if we use both.) Suppose
β ̸= α where β = 0.1b2b3b4b5 . . . is the binary expan-
sion of β. The sequence Aβ has only finitely many terms
in common with the sequence Aα ; because, since
α ̸= β , there is a smallest t for which at ̸= bt. Then not
only 1a2a3 · · · at ̸= 1b2b3 · · · bt, but all subsequent inte-
gers in Aα and Aβ are different. Thus, Aα ∩ Aβ is a
finite set for every α ̸= β , and there is such a set Aα for
every α in the uncountably infinite set of real numbers
in the interval ( 1

2 , 1).                                                    

3. If Ai ∩ Aj has at most m elements whenever i ̸= j, then
S is (at most) countably infinite. 

Proof. Replace each set Ai by the finite set Fi consisting
of the m + 1 smallest elements of Ai. Then if Ai ̸= Aj
we must have Fi ̸= Fj, because Ai and Aj can have at
most m common elements, by hypothesis. Hence there
is a one-to-one correspondence between the sets Ai
and the sets Fi. But the collection of all finite subsets of
the positive integers is a countably infinite collection,
and a fortiori the collection of subsets of m + 1 ele-
ments from the set of positive integers is a countably
infinite collection; so S = {Ai} is (at most) a countably
infinite collection.                                                        

Note the similarity of the solutions given here for Problem 1
and Problem 3.

GOLOMB’S PUZZLE COLUMN™

Countable or Uncountable Solutions
Solomon W. Golomb

Participants in the 4th Asia-Europe Workshop in Lucca, Italy.
Reprinted from Vol. 56, No. 4, December 2006 issue of Information Theory Newsletter



36

IEEE Information Theory Society Newsletter June 2017

20

IEEE Information Theory Society Newsletter June 2017

Reprinted from Vol. 56, No. 4, December 2006 issue of Information Theory Newsletter continuedReprinted from Vol. 56, No. 4, December 2006 issue of Information Theory Newsletter continued



37

June 2017 IEEE Information Theory Society Newsletter

8

IEEE Information Theory Society Newsletter June 2017

Reprinted from Vol. 54, No. 4, December 2004 issue of Information Theory Newsletter 

10

IEEE Information Theory Society Newsletter December 2004

In all three problems, S = {Ai} is a collection of infinite sub-
sets (or, infinite subsequences) Ai of the positive integers.

1. If Ai ∩ Aj = ∅ whenever i ̸= j, then S is (at most)
countably infinite.

Proof. Let M be the collection of smallest elements of
all the sets Ai. Since the sets Ai are pairwise disjoint,
each one contributes a different positive integer to M;
so M is (at most) countably infinite; but the elements
of M are in one-to-one correspondence with the ele-
ments Ai of S.                                                             

2. If Ai ∩ Aj is finite (or empty) whenever i ̸= j, it is pos-
sible for S to be uncountably infinite. Here is one such
construction. For each real number α on the interval
( 1

2 , 1), write the binary expansion of α in the form
α = 0.1a2a3a4 . . . , and associate with α the subse-
quence Aα of the positive integers consisting of
{1, 1a2, 1a2a3, 1a2a3a4, . . . } where these are the binary
representations of integers. (For example,
α = 2

3 = 0.1010101 . . . is associated with the
sequences {1, 10, 101, 1010, 10101, . . . } of integers in
binary representation, or {1, 2, 5, 10, 21, . . . } in deci-
mal notation.) For those real numbers with two repre-
sentations, one “terminating” and one “repeating”, we
can use either representation; for specificity, let us use
the repeating representation. (For example, α = 3

4 can
be written as either 0.1100000... or 0.101111111....  For
the former representation the sequence becomes
{1, 3, 6, 12, 24, 48, . . . }; for the latter representation, it

becomes {1, 2, 5, 11, 23, 47, . . . }. For the present con-
struction, we can use either of these; and in fact the
argument is strengthened if we use both.) Suppose
β ̸= α where β = 0.1b2b3b4b5 . . . is the binary expan-
sion of β. The sequence Aβ has only finitely many terms
in common with the sequence Aα ; because, since
α ̸= β , there is a smallest t for which at ̸= bt. Then not
only 1a2a3 · · · at ̸= 1b2b3 · · · bt, but all subsequent inte-
gers in Aα and Aβ are different. Thus, Aα ∩ Aβ is a
finite set for every α ̸= β , and there is such a set Aα for
every α in the uncountably infinite set of real numbers
in the interval ( 1

2 , 1).                                                    

3. If Ai ∩ Aj has at most m elements whenever i ̸= j, then
S is (at most) countably infinite. 

Proof. Replace each set Ai by the finite set Fi consisting
of the m + 1 smallest elements of Ai. Then if Ai ̸= Aj
we must have Fi ̸= Fj, because Ai and Aj can have at
most m common elements, by hypothesis. Hence there
is a one-to-one correspondence between the sets Ai
and the sets Fi. But the collection of all finite subsets of
the positive integers is a countably infinite collection,
and a fortiori the collection of subsets of m + 1 ele-
ments from the set of positive integers is a countably
infinite collection; so S = {Ai} is (at most) a countably
infinite collection.                                                        

Note the similarity of the solutions given here for Problem 1
and Problem 3.

GOLOMB’S PUZZLE COLUMN™

Countable or Uncountable Solutions
Solomon W. Golomb

Participants in the 4th Asia-Europe Workshop in Lucca, Italy.
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1. The four 6-segment circuits on the 4 × 4 array of dots are:

2. Here are three inequivalent 8-segment circuits on the 5 × 5 array of dots.

3. Here are two 10-segment circuits on the 6 × 6 array of dots.

The solution on the right stays within the convex hull of the 6 × 6 array of dots.

4. This 14-move queen's tour of the chessboard was first published by Sam Loyd. It is included in Sam Loyd and His Chess
Problems, compiled by Alain C. White, published 1913 by Whitehead and Miller; Dover reprint, 1962. The queen's circuit
is: a1-h1-a8-a2-h2-b8-b4-f8-c8-g4-g8-b3-h3-h8-a1.

5. Here is the unique 5-segment circuit on the 3 × 4 array of dots.

Reference. The definitive article on this subject is by S.W. Golomb and J.L. Selfridge, “Unicursal Polygonal Paths and Other
Graphs on Point Lattices,” Pi Mu Epsilon Journal, Fall, 1970.

GOLOMB’S PUZZLE COLUMN™

CONNECT THE DOTS
Solomon W. Golomb
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EASY PROBABILITIES SOLUTIONS
Solomon W. Golomb

56

19. Marc Fossorier presented the Awards Committee report. The
Awards Committee recommends that the Best Paper Award be
given to the following paper: H. Weingarten, Yossef Steinberg,
S. S. Shamai: The Capacity Region of the Gaussian Multiple-
Input Multiple-Output Broadcast Channel. IEEE Transactions
on Information Theory, vol. 52, No. 9, pp. 3936-3964,
September 2006.

The Board unanimously accepts the recommendation of the
Awards Committee. Marc Fossorier raised the concern that the
number of nominations for the Joint Com-Soc/IT Paper Award
is low. The Board discussed possible measures to increase the
number of nominations, including seeking stronger involve-
ment by the Associated Editors of the Transactions.

20. Andrea Goldsmith explained the procedure to select the can-
didates for the Chapter of the Year Award. The winner this
year is the Seoul Chapter.

21. Steve McLaughlin reported on the process of forming the list

of BoG candidates.

The Board unanimously accepts the recommendation of the
Nominations Committee.

The decision to extend the list is left at the discretion of the
Nominations Committee.

22. David Neuhoff opened the discussion for nominations of new
officers.

The Board unanimously approved the nominations of Frank
Kschischang and Robert Calderbank for 2nd Vice-President.

23. There was no new business.

24. The next Board meeting will be held at Allerton in September.

25. The meeting was adjourned at 18:58.

IEEE Information Theory Society Newsletter December 2007

1. There are  ( 10
5 ) = 252 ways to select 5 of the 10 decimal dig-

its. When these are arranged in ascending order as a < b < c
< d < e, the only way a + b + c > d + e can occur is when the
five selected numbers are {5, 6, 7, 8, 9}, so that 5+6+7 > 8+9.
Thus, the probability of this occurring “at random” is only

1
252 = 0.00396825 . . ..

2. To maximize the probability that a green marble will be
selected, place a single green marble in one jar, with the
remaining n - 1 green marbles and all n red marbles in the
second jar. If the contestant chooses the first jar (with proba-
bility 1

2 ), the selected marble will be green. If the second jar
is chosen, the probability of a green marble being drawn is
(n−1)
(2n−1) . Thus the probability of a green marble being selected,
for this arrangement, is 1

2 (1 + n−1
2n−1 ) , which is 2

3 if n has the
minimum value n = 2, but tends to the limiting value of 3

4 as
n increases.

3. If North-South have all the hearts then East-West have none.
Thus the probability that you and your partner (together)
have all the hearts is the same as the probability that the two
of you have none.

4. If A is a stronger player than B, your probability of winning
two consecutive matches is better in the sequence ABA than
in the sequence BAB. You can calculate this exactly if P1 is the
probability that A will beat you and P2 is the probability that
B will beat you, with P1 > P2. Intuitively, the result follows
from: to win two matches (of the three) in a row, you must

win the middle match, and B is
weaker than A. Also, the sequence
BAB gives you only one chance to
defeat strong player A, while ABA
gives you two chances.

5. (a) If at least one of the two children is a girl, there are three
equally likely cases (in “birth order”): BG, GB, GG, and the
probability that both are girls is 1

3 .

(b) If the older child is a girl, the younger child is equally like-
ly to be a boy or a girl; so in this case the probability that both
are girls is 1

2 .

6. The marble originally in the jar is either black (B1) or white
(W1). A new white marble (W2) is inserted. The jar now con-
tains either B1W2 or W1W2 (equally likely). When a marble is
removed and observed to be white, there are now three
equally likely cases: i) W2 out, B1 still in, ii) W2 out, W1 still
in ; or iii) W1 out, W2 still in. (Observing the withdrawn mar-
ble to be white eliminated the case iv) B1 out, W2 still in.)
Thus the probability that the unseen marble is white is 2

3 .

Reference. Problem 1 is my own, and previously unpublished.
Some version of each of the remaining problems (all oldies)
can be found in Martin Gardner’s Colossal Book of Short
Puzzles and Problems, W. Norton & Co. 2006, which identifies
Problem 6 as coming from Lewis Carroll’s book Pillow
Problems.
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Nominations Sought for 2018 and 2019 Leaders
Volunteers needed to serve as corporate officers and committee chairs and members

By Howard E. Michel, Chair

2017 IEEE Nominations and Appointments Committee

IEEE is governed by volunteer members and depends on them for many things, including editing IEEE publications, organizing 
conferences, coordinating regional and local activities, authoring and authorizing publication of standards, leading educational 
activities, and identifying individuals for IEEE recognitions and awards.

The Nominations and Appointments (N&A) Committee is responsible for developing recommendations to be sent to the Board of 
Directors and the IEEE Assembly on staffing many volunteer positions including candidates for president-elect and corporate of-
ficers. Accordingly, the N&A Committee is seeking nominees for the leadership positions.

How to Nominate

For information about the positions, including qualifications and estimates of the time required by each position during the term of 
office, check the Guidelines for Nominating Candidates at www.ieee.org. To nominate a person for a position, complete the online 
IEEE Nominations & Appointments Committee Nomination Form.

In Memoriam: Mary Elizabeth (Betty) Moore Shannon
Reprinted from the Boston Globe (with permission of the Shannon family). 

Mary Elizabeth (Betty) Moore Shannon, 95, for-
merly of Winchester, Massachusetts, died May 
1, 2017 at her home at Brookhaven in Lexington, 
Massachusetts. She was born in New York City 
to Vilma Ujlaky Moore and James E. Moore.  

Betty excelled academically in high school, 
winning a full scholarship to New Jersey Col-
lege for Women (now Rutgers’ Douglass Col-
lege) where she graduated Phi Beta Kappa with 
a degree in mathematics. Upon graduation, she 
began working the next day at Bell Laboratories 
in Manhattan as a “computer,” one of a group 
of women whose job was to do the mathemati-
cal calculations required by the engineers. She 
likened it to a secretarial pool for math majors. 
She was promoted to Technical Assistant at 
Bell, and worked with John Pierce, inventor of 
the communications satellite, collaborating on 
several projects including a Bell Labs Technical 
Memorandum entitled “Composing Music by 
a Stochastic Process.”

At Bell Labs, Betty met Dr. Claude Shannon, the creator of Informa-
tion Theory. They married in 1949 and were devoted to each other 
until Claude’s death in 2001. She and Claude shared a playful sense 
of humor, and Betty assisted Claude in building some of his most 
famous inventions. She did much of the wiring of Theseus, the 

Maze-Solving Mouse, a pioneering experiment 
in artificial intelligence, and during a memo-
rable trip to Las Vegas, helped test a device de-
signed to beat the house at roulette, considered 
by many to be the first wearable computer.

Betty left Bell in 1951 to raise a family. She be-
came an avid weaver, an interest she pursued 
for 40 years. She joined the Boston Weaver’s 
Guild, served as Dean of the Guild from 1976-
1978, and received the Guild’s Distinguished 
Achievement Award. She worked closely with 
the Handweavers Guild of America for many 
years and received an honorary Life Member-
ship in 1996. She was a member of the Cross 
Country Weavers and the Wednesday Weav-
ers. In the ‘70s, Betty was one of the first explor-
ers of computerized hand weaving, though she 
found, in the end, that she preferred the less 
technological approach. 

In her later years she developed an interest in genealogy and nev-
er lost her love for all things mathematical.

Betty is survived by her son Andrew, her daughter Peggy, Peggy’s 
partner Nina, and their daughters Nadja and Eva. Services will 
be private. Donations in her memory can be made to Associate 
Alumnae of Douglass College.

http://www.ieee.org/about/corporate/nominations/nominations_guidelines.html
http://www.ieee.org/about/corporate/nominations/nomination_form.html
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5th International Castle Meeting  
on Coding Theory and Applications 

PRELIMINARY CALL FOR PAPERS 

 

This is the first announcement of the Fifth International Castle Meeting on Coding Theory and Applications 
(5ICMCTA), which will take place in Vihula Manor, Estonia, from Monday, August 28th, to Thursday, August 31st, 
2017. Information about the 5ICMCTA can be found at http://www.castle-meeting-2017.ut.ee/  . 

We solicit submissions of previously unpublished contributions related to coding theory, including but not limited to 
the following areas: Codes and combinatorial structures, Algebraic-geometric codes, Network coding, Codes for 
storage, Quantum codes, Convolutional codes, Codes on graphs, Iterative decoding, Coding applications to 
cryptography and security, Other applications of coding theory. 

Organization: 

General chair: Vitaly Skachek  

Scientific Committee co-chairs: Ángela Barbero and Øyvind Ytrehus  

Publicity: Yauhen Yakimenka 

Scientific Committee  

Alexander Barg • Irina Bocharova • Eimear Byrne • Joan-Josep Climent • Gerard Cohen • Olav Geil • Marcus 
Greferath • Tor Helleseth • Tom Høholdt • Camilla Hollanti • Kees S. Immink • Frank Kschischang • Boris 
Kudryashov • San Ling • Daniel Lucani • Gary McGuire • Sihem Mesnager • Muriel Médard • Diego Napp • 
Frederique Oggier • Patric Östergard • Raquel Pinto • Paula Rocha • Joachim Rosenthal  • Eirik Rosnes • Moshe 
Schwartz • Vladimir Sidorenko • Patrick Sole • Leo Storme • Rüdiger Urbanke • Pascal Vontobel • Dejan 
Vukobratovic • Jos Weber • Gilles Zémor 

 

Important dates: 

Paper submission:   May 1, 2017 
Notification of decision:   June 12, 2017 
Final version paper submission:  July 3, 2017 
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The 10th International Workshop on Coding and Cryptography
WCC 2017

Saint-Petersburg, Russia, September 18–22, 2017
http://wcc2017.suai.ru/

ANNOUNCEMENT AND CALL FOR PAPERS

Organizing committee:
• Pierre Loidreau (co-chair, DGA, U. Rennes 1,

France)
• Evgeny Krouk (co-chair, SUAI, Russia)
• Veronika Prokhorova (SUAI, Russia)
• Evgeny Bakin (SUAI, Russia)
Local organization:
• Oksana Novikova
• Maria Shelest

Invited Speakers:
• Alexander Barg (U. Maryland, USA)
• Claude Carlet (U. Paris 8 and Paris 13, France)
• Camilla Hollanti (Aalto U., Finland)
• Grigory Kabatiansky (Skoltech and IITP RAS,

Moscow, Russia)
• Patric Östergård (Aalto U., Finland)

This is the tenth in the series of biannual workshops
Coding and Cryptography. It is organized by IN-
RIA, SUAI and Skoltech and will be held in the main
building of SUAI (http://suai.ru/), Saint-Petersburg,
Russia.
Conference Themes. Our aim is to bring together
researchers in all aspects of coding theory, cryptog-
raphy and related areas, theoretical or applied.
Topics include, but are not limited to:
• coding theory: error-correcting codes, decoding al-

gorithms, related combinatorial problems;
• algorithmic aspects of cryptology: symmetric cryp-

tology, public-key cryptography, cryptanalysis;
• discrete mathematics and algorithmic tools related

to these two areas, such as: Boolean functions, se-
quences, finite fields, related algebraic systems.

Submissions. Those wishing to contribute a talk
are invited to submit a 6-10 page extended ab-
stract, before April 6, 2017 (23:59 Greenwich).
The submission server is now open, informa-
tion on the submission process is available at
http://wcc2017.suai.ru/submission.html.
Full papers. After the conference, authors of ac-
cepted abstracts will be invited to submit a full pa-
per for the proceedings to appear as a special issue
of the journal "Designs Codes and Cryptography".
Contributions will be thoroughly refereed.

Important dates (for extended abstracts):
• Submission by April 6, 2017
• Notification by May 24, 2017
• Final version by June 26, 2017

Program committee:
• Daniel Augot (co-chair, INRIA, France)
• Delphine Boucher (U. Rennes 1, France)
• Lilya Budaghyan (U. Bergen, Norway)
• Eimear Byrne (UC Dublin, Ireland)
• Pascale Charpin (INRIA, France)
• Alain Couvreur (INRIA, France)
• Ilia Dumer (UC Riverside, USA)
• Tuvi Etzion (CSD Technion, Israel)
• Markus Grassl (MPL Erlangen, Germany)
• Tor Helleseth (U. Bergen, Norway)
• Thomas Honold (U. Zhejiang, China)
• Thomas Johansson (Lund U., Sweden)
• Gohar Khyureghan (U. Magdeburg, Germany)
• Ivan Landjev (NBU Sofia, Bulgaria)
• Subhamoy Maitra (ISI Kolkata, India)
• Ryutaroh Matsumoto (Tokyo Tech., Japan)
• Gary McGuire (UC Dublin, Ireland)
• Sihem Mesnager (U. Paris 8 and Paris 13, France)
• Marine Minier (INSA-Lyon, France)
• Kaisa Nyberg (AU Helsinki, Finland)
• Ayoub Otmani (U. Rouen-Normandie, France)
• Ferruh Ozbudak (METU Ankara, Turkey)
• Kevin Phelps (AU Auburn, USA)
• Alexander Pott (U. Magdeburg, Germany)
• Josep Rifa (UA Barcelona, Spain)
• Palash Sarkar (ISI Kolkata, India)
• Natalia Shekhunova (SUAI St.Petersburg, Russia)
• Vladimir Sidorenko (TU Munich, Germany)
• Faina I. Solov’eva (co-chair, IM Sobolev, Russia)
• Jean-Pierre Tillich (INRIA, France)
• Alev Topuzoğlu (Sabanci U. Istanbul, Turkey)
• Peter Trifonov (PU St.Petersburg, Russia)
• Michail Tsfasman (CNRS and IITP RAS, Mar-

seille, France)
• Serge Vladuts (Aix-Marseille U. and IITP RAS,

France)
• Arne Winterhof (Austrian Acad. of Sc., Linz)
• Gilles Zémor (U. Bordeaux, France )
• Victor Zinoviev (IITP RAS, Moscow, Russia)
• Victor Zyablov (IITP RAS, Moscow, Russia)
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Call for Papers: Due July 10, 2017
Manuscripts can be submitted during June 16-July 10, 2017 with the submission deadline  

of July 10th being firm. Please follow the instructions at allerton.csl.illinois.edu. 

JULY 10 — Submission Deadline

AUGUST 7 — Acceptance Date  Authors will be notified of acceptance via e-mail 
by August 7, 2017, at which time they will also be sent detailed instructions for the 
preparation of their papers for the Conference Proceedings.

AFTER AUGUST 7 — Registration Opens

OCTOBER 3-6 — Conference Dates

OCTOBER 3 — Opening Tutorial Lectures
Coordinated Science Lab, University of Illinois at Urbana-Champaign
OCTOBER 4-6 — Conference Sessions (Plenary Lecture October 6)
University of Illinois Allerton Park & Retreat Center: The Allerton House 
is located twenty-six miles southwest of the Urbana-Champaign campus of the 
University of Illinois in a wooded area on the Sangamon River. It is part of the 
fifteen-hundred acre Robert Allerton Park, a complex of natural and man-made 
beauty designated as a National natural landmark. Allerton Park has twenty miles 
of well-maintained trails and a living gallery of formal gardens, studded with 
sculptures collected from around the world.

OCTOBER 8 — Final Paper Deadline  Final versions of papers that are presented 
at the conference must be submitted electronically in order to appear in the Confer-
ence Proceedings and IEEE Xplore.

All speaker information will be added when confirmed.

WEBSITE | allerton.csl.illinois.edu
EMAIL | amellis@illinois.edu UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

IMPORTANT DATES - 2017

INFORMATION FOR AUTHORS: Regular papers suitable for presentation in 
twenty minutes are solicited. Regular papers will be published in full (subject  
to a maximum length of eight 8.5” x 11” pages, in two column format) in the  
Conference Proceedings. Only papers that are actually presented at the conference 
and uploaded as final manuscripts can be included in the proceedings, which will 
be available after the conference on IEEE Xplore. For reviewing purposes of papers, 
a title and a five to ten page extended abstract, including references and sufficient 
detail to permit careful reviewing, are required.

• Biological information systems
• Coding techniques & applications
• Coding theory
• Data storage
• Information theory
• Multiuser detection & estimation
• Network information theory
• Sensor networks in communications
• Wireless communication systems
• Intrusion/anomaly detection  
  & diagnosis
• Network coding
• Network games & algorithms
• Performance analysis
• Pricing & congestion control
• Reliability, security & trust
• Decentralized control systems
• Robust & nonlinear control
• Adaptive control & automation
• Robotics
• Distributed & large-scale systems
• Complex networked systems
• Optimization
• Dynamic games
• Machine learning & learning theory
• Signal models & representations
• Signal acquisition, coding, & retrieval
• Detection & estimation
• Learning & inference
• Statistical signal processing
• Sensor networks
• Data analytics

PAPERS PRESENTING  
ORIGINAL RESEARCH ARE  
SOLICITED IN THE AREAS OF:

CONFERENCE CO-CHAIRS: Naira Hovakimyan & Negar Kiyavash

55th Allerton Conference
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Call for Papers
Interested authors are encouraged to submit previously unpublished contributions in all areas of information 
theory with special emphasis on the following :  

Paper Submission
Paper submission guidelines will be posted on the workshop’s website : http://www.itw2017.org

Poster
The technical program will feature a poster session. Details about poster submissions will be announced on the 
workshop’s website by late July, 2017.

Important Dates
Paper submission deadline : May 7, 2017
Acceptance notification : July 21, 2017 

The 2017 IEEE Information Theory Workshop will take place in Kaohsiung, Taiwan, from November 6 to 10, 2017. 
Based at the southern tip of the island and facing the Taiwan Strait, Kaohsiung is the second largest city in 
Taiwan and is one of the major seaports in Asia. Love-River cruises, night markets, delicious seafood, and day 
tours out into nature or to historic Tainan are some of the many attractions awaiting you in Southern Taiwan. 
Situated directly by the waterfront, the Kaohsiung Exhibition Center (KEC) serves as workshop venue. It is a 
brand-new and multi-functional facility, designed by an international, pro-environment team of architects and 
built in the shape reminding of a billowing sail. The workshop participants will have an unforgettable experience 
visiting and enjoying some of the most dazzling attractions in Kaohsiung.

2017 IEEE Information Theory Workshop

http://www.itw2017.org
Kaohsiung Exhibition Center, Kaohsiung, Taiwan  /  November 6   10, 2017 

Call For Papers 

2017
KAOHSIUNGKAOHSIUNG

 •  Information Theory for Content Distribution
− Distributed data storage
− Peer-to-peer network coded broadcasting
− Coded caching for wireless and wireline transmissions 
− Delay-constrained communications

 •  Information Theory and Quantum Communications
− Quantum information
− Quantum computation
− Quantum cryptography

 •  Information Theory and Biology
− Information theory and intercellular communications
− Information theory and neuroscience
− Information-theoretical analysis of biologically-inspired 
   communication systems

General Co-Chairs
Po-Ning Chen (NCTU, Taiwan) 
Gerhard Kramer (TUM, Germany) 
Chih-Peng Li (NSYSU, Taiwan)
 
Technical Program Co-Chairs
Hsiao-feng (Francis) Lu (NCTU, Taiwan) 
Stefan M. Moser (ETHZ, Switzerland) 
Chih-Chun Wang (Purdue Univ., USA)

Finances
Chung-Hsuan Wang (NCTU, Taiwan)
Jwo-Yuh Wu (NCTU, Taiwan)

Publicity
Osvaldo Simeone (NJIT, USA) 
Hsaun-Jung Su (NTU, Taiwan)

Publications
Stefano Rini (NCTU, Taiwan) 
I-Hsiang Wang (NTU, Taiwan)

Local Arrangement
Celeste Lee (NSYSU, Taiwan) 
Fan-Shuo Tseng (NSYSU, Taiwan) 
Chao-Kai Wen (NSYSU, Taiwan)

Webmaster
Yao-Win (Peter) Hong (NTHU, Taiwan)

International Advisory Committee
Toru Fujiwara (Osaka Univ., Japan) 
Shuo-Yen (Robert) Li (CUHK, China) 
Alon Orlitsky (UCSD, USA)
A. J. Han Vinck (UDE, Germany) 
Muriel Medard (MIT, USA)
Andrea Goldsmith (Stanford, USA) 
Raymond W. Yeung (CUHK, China)

Sponsors
IEEE Information Theory Society

Co-Sponsors
National Chiao-Tung University 
National Sun Yat-sen University

 •  Information Theory and Coding for Memories
− New coding techniques for non-volatile memory channels
− Coding and signal processing for dense memory
− Multi-dimensional coding for storage channels
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Call for Papers
2018 International Zurich Seminar n

n r a n and Communication

February 21 – 23, 2018

 http://www.izs.ethz.ch/

We look forward to seeing you at IZS.

Amos Lapidoth and Stefan M. Moser, Co-Chairs.

The 2018 International Zurich Seminar on Information and Communication will be held at the Hotel Zürichberg in 

Zurich, Switzerland, from Wednesday, February 21, through Friday, February 23, 2018. High-quality original contri

butions of both applied and theoretical nature are solicited in the areas of:

Wireless Communication 

Information Theory

Coding Theory and its Applications 

Detection and Estimation

ata tora e

Optical Communication

Fundamental Hardware Issues 

Network Algorithms and Protocols 

Network Information Theory and Coding

Cryptography and Data Security

Invited speakers will account for roughly half the talks. In order to afford the opportunity to learn from and communi-
cate with leading experts in areas beyond one’s own specialty, no parallel sessions are anticipated. All papers should 
be presented with a wide audience in mind.

a er  i  be re ie ed on t e ba i  of a manu ri t  not e eedin   a e  of uffi ient detai  to ermit rea
onable evaluation. Authors of accepted papers will be asked to produce a manuscript not exceeding  pages 

in A4 double column format that will be published in the Proceedings. Authors will be allowed twenty minutes for 
presentation.

The deadline for submission is September 17, 2017.

Additional information will be posted at
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DATE CONFERENCE LOCATION WEB PAGE DUE DATE

June 6–9, 2017 2017 North-American School of Atlanta, Georgia, USA http://www.itsoc.org/ Passed 
 Information Theory  conferences/schools/ 
   2017-north-american- 
   school-of-information-theory

June 11–14, 2017 15th Canadian Workshop Quebec City, Quebec,  http://cwit.ca/2017/ Passed 
 on Information Theory Canada

June 25–30, 2017 IEEE International Symposium Aachen, Germany http://www.isit2017.org Passed 
 on Information Theory (ISIT)

July 3, 2017 Munich Workshop on Munich, Germany http://www.lnt.ei.tum.de/ Passed 
 Coding and Applications  en/events/munich-workshop- 
   on-coding-and-applications-
   2017-mwca2017

July 3–6, 2017 The 18th IEEE International Sapporo, Japan http://www.spawc2017 Passed 
 Workshop on Signal Processing  .org/public.asp?page 
 Advances in Wireless Communications  =home.html

July 10–14, 2017 Croucher Summer Course Chinese University http://cscit.ie.cuhk.edu.hk/ Passed 
 in Information Theory of Hong Kong

August 28–31, 2017 Fifth International Castle Meeting on Vihula Manor, Estonia  http://www.castle-meeting- Passed 
 Coding Theory and Applications  2017.ut.ee/  
 (5ICMCTA)

September 11–22, 2017 Quasi-Cyclic and Related Ankara, Turkey http://www.isit June 11 
 Algebraic Codes  2017.org 

September 18–22, 2017 The Tenth International Workshop Saint-Petersburg, Russia http://wcc2017.suai.ru/ Passed 
 on Coding and Cryptography 2017

October 3–6, 2017 55th Annual Allerton Conference University of Illinois at http://allerton.csl.illinois.edu/ July 10, 2017 
 on Communication, Control, Urbana-Champaign 
 and Computing

October 15–17, 2017 58th Annual IEEE Symposium Berkeley, California,  http://focs17.simons.ber/ Passed 
 on Foundations of Computer USA. keley.edu 
 Science (FOCS 2017)

November 6–10, 2017 IEEE Information Theory Workshop Kaohsiung, Taiwan http://www.itw2017.org/ Passed 
  

December 4–8, 2017 IEEE GLOBECOM Singapore http://globecom2017.ieee- Passed 
   globecom.org/

February 21–23, 2018 2018 International Zurich Seminar Zurich, Switzerland http://www.izs.ethz.ch/ September 
 on Information and Communication   17, 2017

Major COMSOC conferences: http://www.comsoc.org/confs/index.html

Conference Calendar


