Building Quantum Computers

Why quantum compute?
How does it work?

Why is it difficult?

How much can we do today?

What are the prospects?
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Models of Computing

Classical (deterministic) computing.

Probabilistic computing
classical computing
— ¢ -+ mixture principle
—+ coin flip

Quantum computing -
classical computing ~ 1LL & = 114
— { - superposition principle

-+ an interference gate
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Why Quantum Compute?
Algorithmic speedups.

Efficient quantum factoring. N”’P‘] Shor 94 [1]
Quadratic speedups of combinatorial search and Monte Carlo algorithms.

: i s s s s Grover’9s[2], ...
Efficient physics simulations. X ’Feynman ’82 [3], ...

) Y

Quadratic improvements in measurement precision. Bollinger&al. '96 [4], ...

Cryptographic protocols.
Remove distance limitations of quantum key exchange.  Briegel&al. '98 [5]

Quantum digital signatures. Gottesman&Chuang '01 [6]
Extensions of classical crypto to quantum information.

Tests of quantum mechanics.
Validity of the superposition principle.
Ability to preserve many-system “entanglement”.
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Preview

QCs control ; :

!
wavefunctions on H > >
efficiently realized configuration spaces with - I
interference gates exploiting “quantum parallelism™. > (({ >
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Quantum Computers

Classical computer + quantum state machine.
Advanced programming constructs provided classically.

State machine specified by:
State space. Initial state.
State-transition operators. Readout.
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How Does It Work?

Classical states ...
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How Does It Work?

- Probabilistic states ...
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How Does It Work?

Quantum states ... Interference ...
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How Does It Work?

Quantum states ... Interference ... Q. Parallelism ...
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How Does It Work?

Quantum states ... Interference ... Q. Parallelism ...
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How Does It Work?

Quantum states ... Interference ... Q. Parallelism ...

Scalability . . .
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How Does It Work?

Quantum states ... Interference ... Q. Parallelism ...

Scalability . . .
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How Does It Work?

Quantum states ... Interference ... Q. Parallelism ...
Efficient Scalability . ..

1 11 1 11 11

12
TOC



Preview

e QCs: - . ) =
= wavefunctions H > >
= configuration spaces _ - d "

= interference @ ((( @

» QCs can be realized in the presence of noise because of
- the threshold theorem, whose implementation requires
= quantum error control, which is based on
- the subsystems principle, the most general way of “encoding” information.
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Building QCs: Challenges

DiVincenzo’s requirements: DiVincenzo '00 [7]

1. Independent Ql-carrying quantum systems.
(Demonstrated, many candidates.)
2. Initializability of these quantum systems.
(Demonstrated.)
3. States are subject to sufficiently low noise.
(Not demonstrated.)
4. Universal control.
(Demonstrated on a few qubits in a few systems.)
5. Read-out.
(Demonstrated in a few systems.)

e Challenges:
= Reducing the effects of quantum noise.
Low noise requires isolation
but read-out and gates require strong coupling.

= Satisfying all requirements in one device.
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Decoherence

Definition: Decoherence is the loss of phase relationships
between amplitudes.

e Decoherence often refers to any quantum noise leading to errors.

Some sources of decoherence:
Interactions with the environment.

Noise in quantum control fields.
Systematic, calibration errors.

Fault-Tolerance Threshold Theorem. Given: Noisy
qubits and gates. If the error rates are sufficiently low,

then it is possible to efficiently process quantum
information arbitrarily accurately.

Shor ’95 [8, 9], Kitaev 96 [10], Aharonov&Ben-Or ’96 [11],
Knill&Laflamme&Zurek '96 [12], Gottesman&Preskill '99, Steane '02 [13],
Knill ’04 [14, 15], Reichardt '04 [16], Aliferis&Gottesman&Preskill ‘05 [17]
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Classical Versus Quantum Error Control

Conceptual difficulties:

Error control must not “see” stored information.
“No cloning” theorem.
Nontrivial generalization of repetition codes.

There is a continuity of error models.
Error models have many parameters.
Repetition codes are insufficient.

A sample of coping strategies:

Quantum stabilizer codes generalize classical linear codes.
Calderbank&al. '96 [18], Gottesman 96 [19]

e Adopt the subsystems principle. Knill&Laflammea&Viola '99[21, 22]
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Overcoming Decoherence

e Goal: Realize accurate Ql in noisy physical systems.
= Noise must be local in space and time (independence assumptions).

Trivial QI realizations:
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Overcoming Decoherence

e Goal: Realize accurate Ql in noisy physical systems.
= Noise must be local in space and time (independence assumptions).

Trivial QI realizations: g

o Information should never be “decoded”.

e The subsystems principle applies to and
enhances classical information theory.
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A Path to Large-Scale QCs

o Well defined physical quantum systems.
» Protectable quantum subsystems.

e Error entropy sink.

» Concatenation may help.

19
TOC



A Path to Large-Scale QCs

o Well defined physical quantum systems.

» Protectable quantum subsystems.

e Error entropy sink.

» Concatenation may help.

o A small quantum register with. ..
external control (high |lism required)

» Replicate quantum register. ..
and control.

o Quantum communication network.
= quantum computer.

20
TOC



A Path to Large-Scale QCs
o Well defined physical quantum systems.
» Protectable quantum subsystems. ‘
e Error entropy sink.
» Concatenation may help.
o A small quantum register with. ..
external control (high |lism required).
» Replicate quantum register. ..
and control.
o Quantum communication network.
= quantum computes

‘ LN S " ‘ o AV

e High density quantum systems VO

e Integrated classical memory, . .. >
gates, control, “cooling”. - 0 e - -

e Quantum communication,
state prep. factories. Goal: Physical computation is quantum,

e Interface to classical control. minimal overhead for FTQC over FTCC.
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Resource Requirements

-k -k
o o
=9 =9
- W

Overhead factor

1000

10

0.0001% 0.001% 0.01% 0.1% b
Elementary gate error probability

o Schematic resource overheads,
depending on algorithm complexity and gate error.

1%

Loosely based on Knill ‘05 [15]
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Error Guidelines?

How low error rates should be depends on:
Error parameters/error model.
Error tradeoffs for different gates/operations.

Architectural constraints.
How much resource overhead is acceptable.

The specific computation to be implemented.

Rough error guidelines for practical scalability:
Gottesman&Preskill ‘98, '00 [27, 28]

<10~
per gate

<1072 <1072

per preparation per measurement
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Preview

e QCs: 5 : .
= wavefunctions H >
= configuration spaces -

§
| 1
= interference - N @ . ((( Q

e QCs can be realized:

o Experimental QC is close to ach|evmg
= two-qubit registers, with
= jon trap devices being the current front runners, but
= many other systems catching up rapidly.
= Decoherence and technology integration are among the challenges.
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Available and Required QC Resources

» Available resources:
- Approaching 2 computationally useful qubits.
- For exploring quantum control:
Up to ~8 qubits and ~16 control steps.

» Required resources:

L Order of
Application minimum useful
qubits | gates
Secret key exchange, short distance 109 100
Secret key exchange, long distance 101 101
Factoring, other number theory algorithms 103 | 100
Unstructured search, optimization 102 108
Physics simulation ? ?
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For example:
;I'richloroetherQe

web.mit.edu/speclab

Some challenges:
« Preparing pure initial states.

« Accessing more than a few coupled qubits.
+ Removing unwanted couplings.

7 domain

Rf
Frequenc
pulse domain

e =~ 10 qubits, ~ 20 two-qubit gates are realizable.
» Errors per two-qubit gate are = 1%.
e Not realistically scalable due to lack of “purity”. ...scalable in theory.

Reviews: Cory&al. 00 [29], Laflamme&al. '02 [30]

26
TOC



Photonic QC, Postselected

/ Quantum teleportation,
Bouwmeester&al., U. Wien

.
.

www.quantum.at

Some challenges:
x> 99% efficient single photon sources and detectors.
« High fidelity photon memories.

+ Coupling to stationary qubits.

s lab, FIU

" nyznyAmpa iy mmmy:dny

L .. o 1 l"- |
™ . S—— = .{-!r__..;* _i ’

'd:-.-—

! U I.tu'- / ! - % ‘\ F :
e = 5 qubits, =~ 3 two-qubit gates are realizable.
o Error per two-qubit gate = 3% plus > 50% loss.
e Not realistically scalable due to lack of determinism.
Review: Kok&al. ‘07 [31] ...optical QC is scalable in principle.
27
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lon Trap QC

e [
&Vg :“’;‘gx' -
o ol

Joe Britton, NIST

Some challenges:

+ lon transport and rearrangement.

+ Stability of control, e.g. laser power.

+ Gombining independently demonstrated technologies. INIST

el

o Up to 8 qubits (2 routinely), = 5 gates are realizable.
» < 1% achieved for two-qubit gate error.

e Currently closest to realistic scalability.
Reviews: Wineland&al. '98 [32], Kielpinski '08 [33]
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Superconducting QC

Experimental Setup

Wi

i R. Simmond’s lab,

Some challenges:

+ Gomplications due to requirement for < 1 K temperatures.
« Material engineering to reduce defect-induced noise.

+ Fast measurement and feed-forward.

» Approaching 2 qubits, = 2 gates.
» ~ 15% achieved for two-qubit gate error.
» Should be scalable with sufficient engineering.

Review: Devoret&al. '04 [34]
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Experimental QC: Summary

System Physical qubits Number of Epr;cr)r Scal-

qubits|gates| gate [2Pl€?

NMR Nuclear spins in a molecule <10(<2021%| No
Photonic Polarization of photons ShH | S4 5>3578% No
lon trap Energy levels of trappedions | <8 | <4 ’\;11%% Yes
Cold atom Energy levels of trapped atoms| <2 | <2 ? ?
Atomic impurities | Localized states of impurities | <3 | S4?| ? ?
Quantum dot Localized states at dots ~ ? ?
Topological gseslggfallltzeeddvai?]tiicitations 0 0 ?7? ?7?

...as of 2008.

30
TOC




Evaluating and Comparing Quantum Devices

How much quantum computing has been demonstrated?

= How to measure “number of qubits used”?

= How to measure “number of gates realized”?

e Log Quantum Speedup (LQS):

L,QS of 1.58 (implicitly) demonstrated with ion qubits on
“unigue quantum search with random target”.
Schaetz&al. 04 [37], Brickman&al. 05 [38]
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Summary and Prospects

» QCs control ; :
= wavefunctions on H >
- efficiently realized configuration spaces with -
= [nterference gates exploiting “quantum parallelism”.

({

» QCs can be realized in the presence of noise because of
- the threshold theorem, whose implementation requires |
= quantum error control, which is based on |
= the subsystems principle, the most general

y of -“encon‘ng” information.

y

» Experimental QC is close to achieving
= two-qubit registers, with
= jon trap devices being the current front runners, but
= many other systems catching up rapidly.
- Decoherence and technology integration are among the challenges.

Quantum computing or new physics!
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