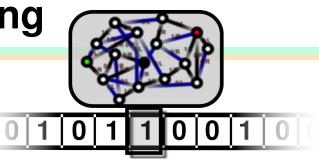
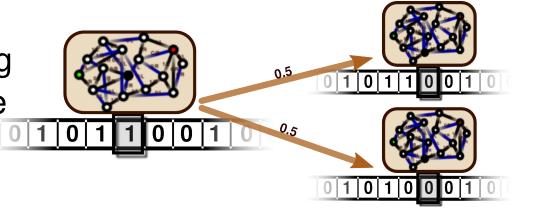

# **Building Quantum Computers**

Produced with pdflatex and inkscape


- Why quantum compute?
- How does it work?
- Why is it difficult?
- How much can we do today?
- What are the prospects?

E. "Manny" Knill: knill@boulder.nist.gov




## **Models of Computing**





Probabilistic computing

$$= \begin{cases} \text{classical computing} \\ + \text{mixture principle} \\ + \text{coin flip} \end{cases}$$



Quantum computing

$$= \begin{cases} \text{classical computing} \\ + \text{superposition principle} \\ + \text{an interference gate} \end{cases}$$



## Why Quantum Compute?

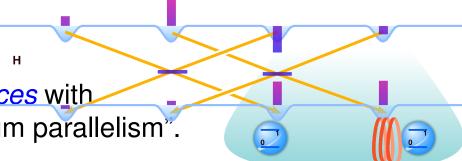
- Algorithmic speedups.
  - Efficient quantum factoring.

- N=pq Shor '94 [1]
- Quadratic speedups of combinatorial search and Monte Carlo algorithms.
- Efficient physics simulations.
- Quadratic improvements in measurement precision. Bollinger&al. '96 [4], ...
- Cryptographic protocols.
  - Remove distance limitations of quantum key exchange. Briegel&al. '98 [5]
  - Quantum digital signatures.

Gottesman&Chuang '01 [6]

Grover '95 [2], ...

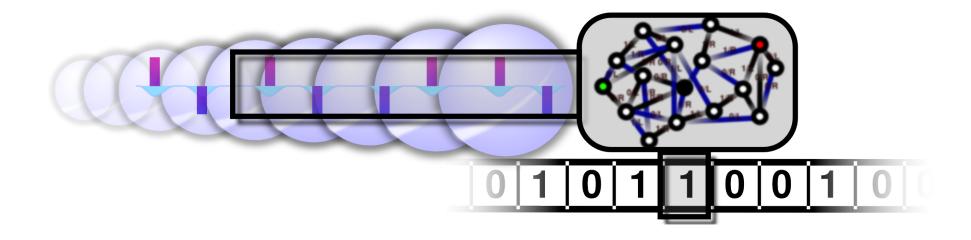
Feynman '82 [3], . . .


Extensions of classical crypto to quantum information.



- Tests of quantum mechanics.
  - Validity of the superposition principle.
  - Ability to preserve many-system "entanglement".

#### **Preview**

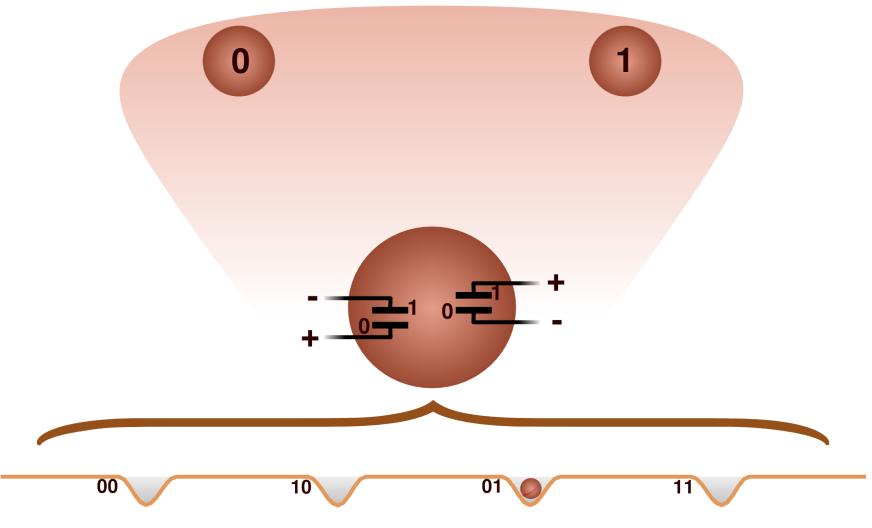

- QCs control
  - wavefunctions on
  - efficiently realized configuration spaces with
  - interference gates exploiting "quantum parallelism".



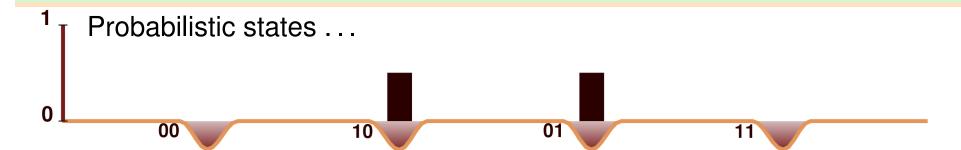


## **Quantum Computers**

- Classical computer + quantum state machine.
  - Advanced programming constructs provided classically.

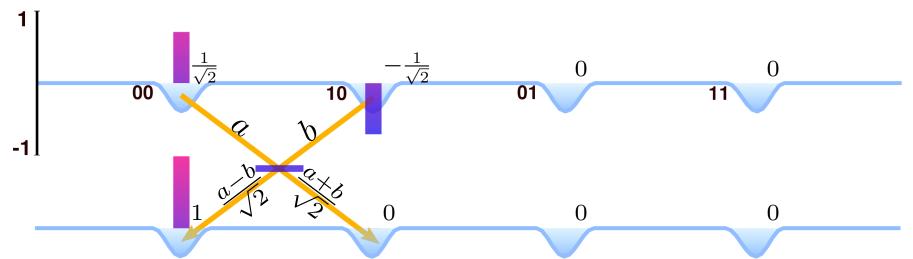



- State machine specified by:
  - State space.

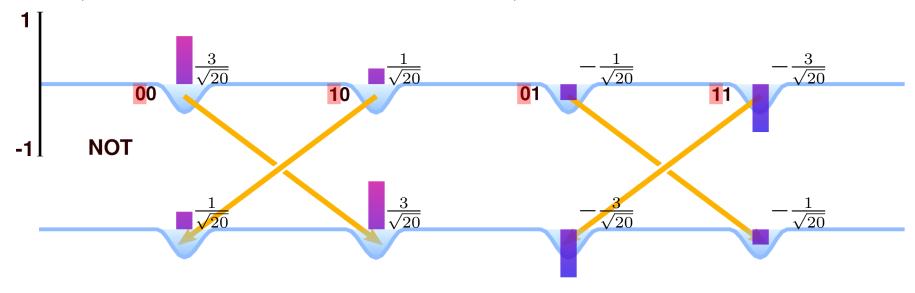

- Initial state.
- State-transition operators.
   Readout.

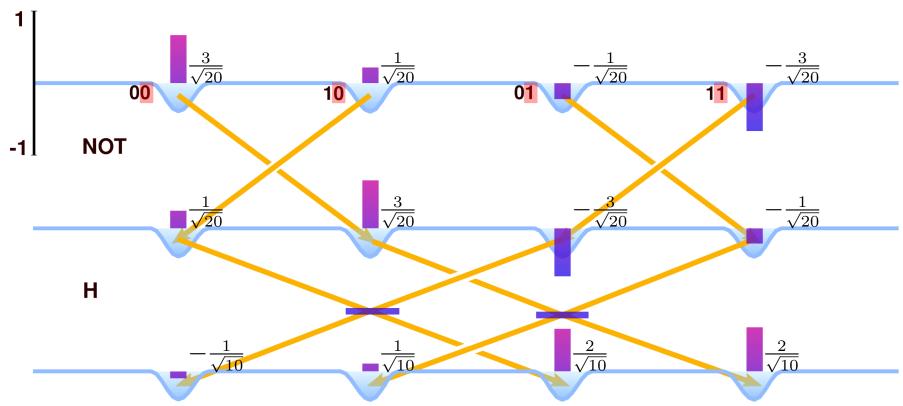


Classical states ...

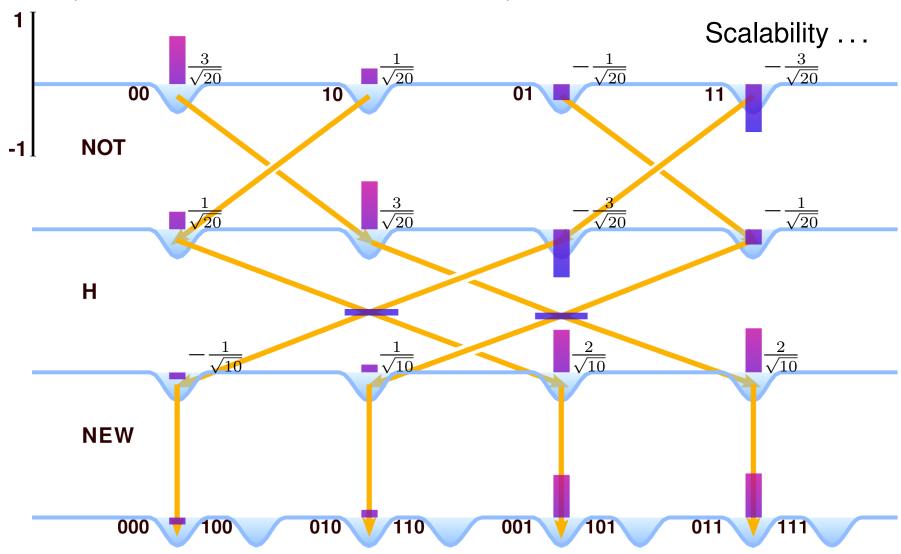




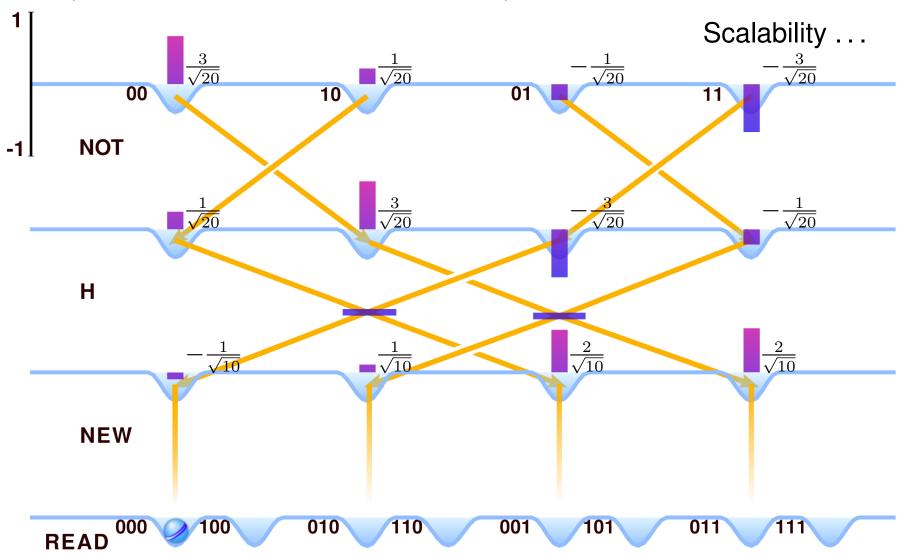




Quantum states ... Interference ...



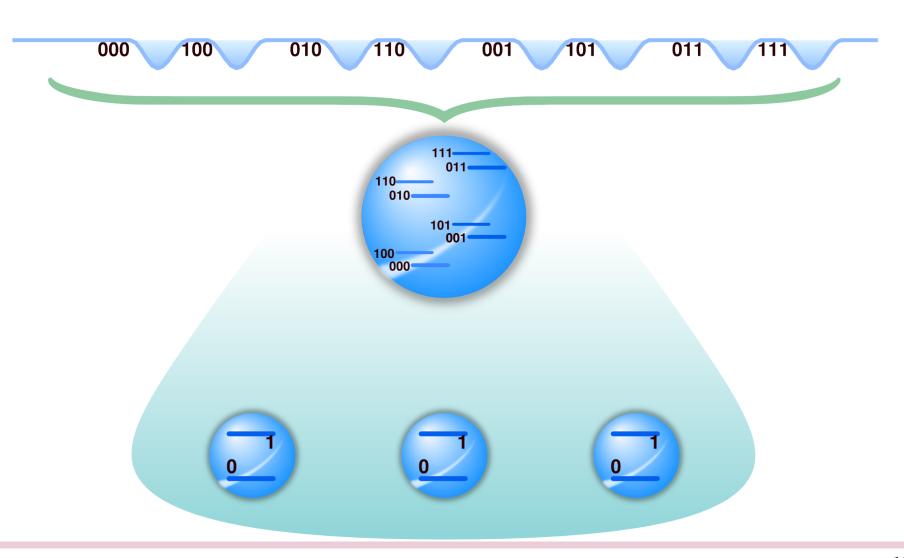




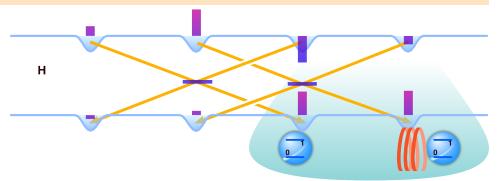




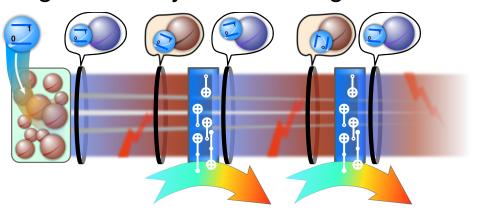









Quantum states ... Interference ... Q. Parallelism ...

Efficient Scalability . . .




#### **Preview**

- QCs:
  - wavefunctions
  - configuration spaces
  - interference



- QCs can be realized in the presence of noise because of
  - the *threshold theorem*, whose implementation requires
  - quantum error control, which is based on
  - the *subsystems principle*, the most general way of "encoding" information.





## **Building QCs: Challenges**

DiVincenzo's requirements:

DiVincenzo '00 [7]

1. Independent QI-carrying quantum systems.

(Demonstrated, many candidates.)

2. Initializability of these quantum systems.

(Demonstrated.)

3. States are subject to sufficiently low noise.

(Not demonstrated.)

4. Universal control.

(Demonstrated on a few qubits in a few systems.)

5. Read-out.

(Demonstrated in a few systems.)

#### Challenges:

Reducing the effects of quantum noise.

Low noise requires isolation

but read-out and gates require strong coupling.

Satisfying all requirements in one device.



#### **Decoherence**

**Definition:** *Decoherence* is the loss of phase relationships between amplitudes.

- Decoherence often refers to any quantum noise leading to errors.
- Some sources of decoherence:
  - Interactions with the environment.
  - Noise in quantum control fields.
  - Systematic, calibration errors.

Fault-Tolerance Threshold Theorem. Given: Noisy qubits and gates. If the error rates are sufficiently low, then it is possible to efficiently process quantum information arbitrarily accurately.

Shor '95 [8, 9], Kitaev '96 [10], Aharonov&Ben-Or '96 [11], Knill&Laflamme&Zurek '96 [12], Gottesman&Preskill '99, Steane '02 [13], Knill '04 [14, 15], Reichardt '04 [16], Aliferis&Gottesman&Preskill '05 [17]



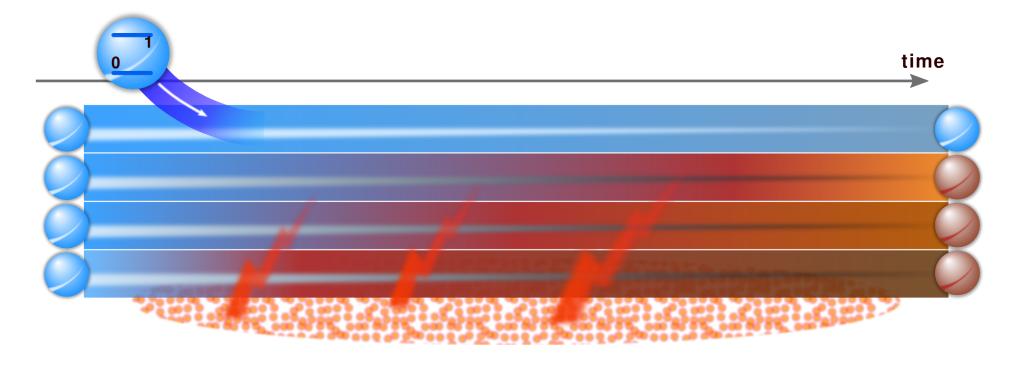
#### **Classical Versus Quantum Error Control**

#### Conceptual difficulties:

- Error control must not "see" stored information.
  - "No cloning" theorem.
  - Nontrivial generalization of repetition codes.
- There is a continuity of error models.
  - Error models have many parameters.
  - Repetition codes are insufficient.

#### A sample of coping strategies:

- Quantum stabilizer codes generalize classical linear codes.
  - Calderbank&al. '96 [18], Gottesman '96 [19]
- Adopt the subsystems principle.

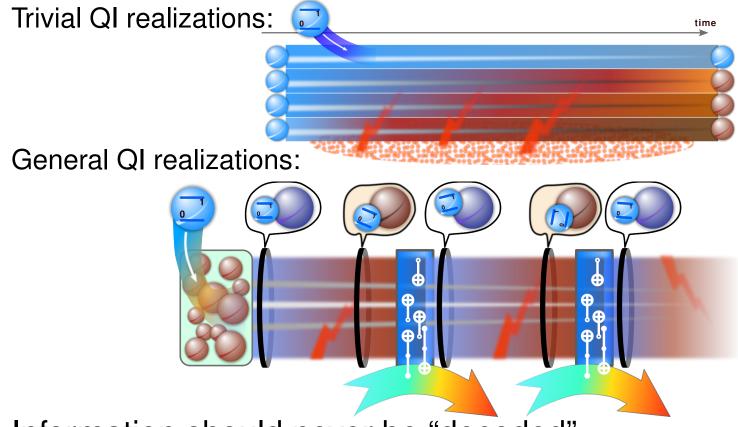

Knill&Laflamme&Viola '99[21, 22]



## **Overcoming Decoherence**

- Goal: Realize accurate QI in noisy physical systems.
  - Noise must be local in space and time (independence assumptions).

Trivial QI realizations:

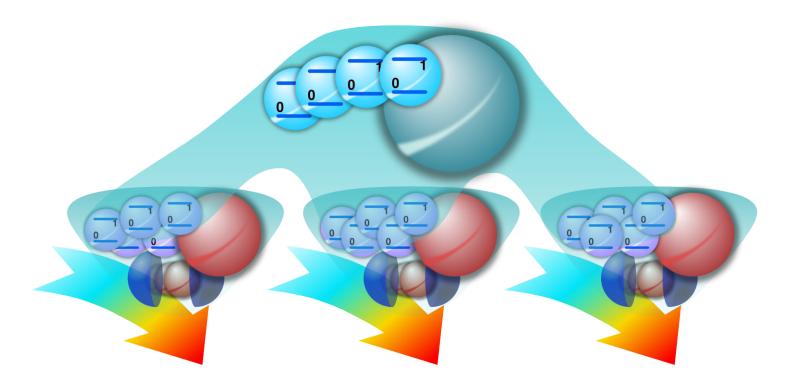





## **Overcoming Decoherence**

Goal: Realize accurate QI in noisy physical systems.

Noise must be local in space and time (independence assumptions).




- Information should never be "decoded".
- The subsystems principle applies to and enhances classical information theory.



## A Path to Large-Scale QCs

- Well defined physical quantum systems.
- Protectable quantum subsystems.
- Error entropy sink.
- Concatenation may help.



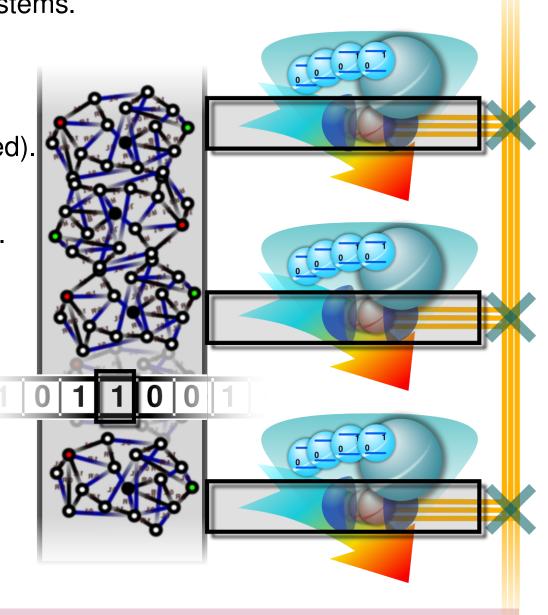


## A Path to Large-Scale QCs

Well defined physical quantum systems.

Protectable quantum subsystems.

Error entropy sink.


Concatenation may help.

 A small quantum register with... external control (high ||ism required)

 Replicate quantum register... and control.

Quantum communication network.

 $\Rightarrow$  quantum computer.





## A Path to Large-Scale QCs

Well defined physical quantum systems.

Protectable quantum subsystems.

Error entropy sink.

Concatenation may help.

A small quantum register with...
 external control (high ||ism required).

Replicate quantum register...
 and control.

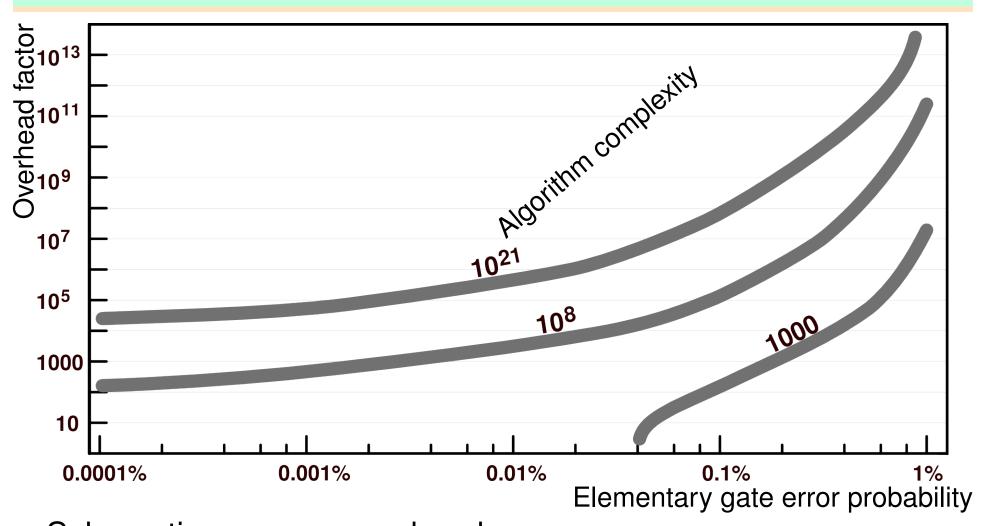
Quantum communication network.

⇒ quantum computer

1 0 1 1 0 0 antum systems

High density quantum systems.

 Integrated classical memory, ... gates, control, "cooling".


 Quantum communication, state prep. factories.

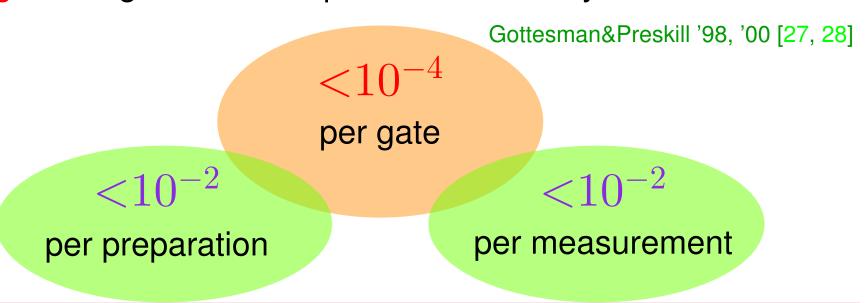
Interface to classical control.

Goal: Physical computation is quantum, minimal overhead for FTQC over FTCC.



## **Resource Requirements**



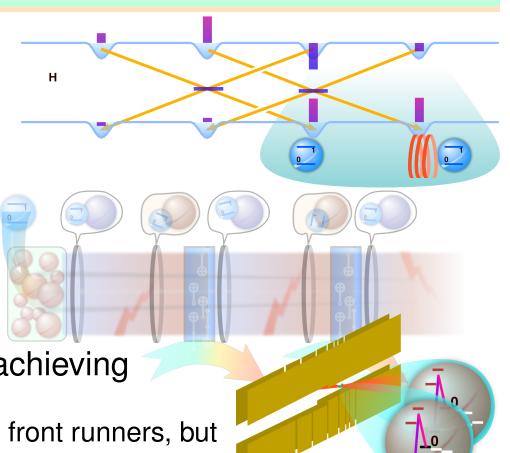

 Schematic resource overheads, depending on algorithm complexity and gate error.

Loosely based on Knill '05 [15]



#### **Error Guidelines?**

- How low error rates should be depends on:
  - Error parameters/error model.
  - Error tradeoffs for different gates/operations.
  - Architectural constraints.
  - How much resource overhead is acceptable.
  - The specific computation to be implemented.
  - . . .
- Rough error guidelines for practical scalability:



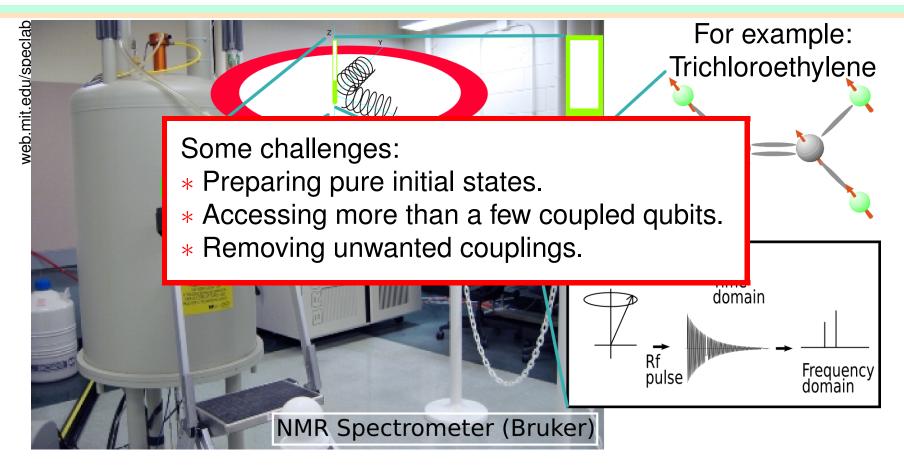

#### **Preview**

- QCs:
  - wavefunctions
  - configuration spaces
  - interference
- QCs can be realized:
  - threshold theorem
  - quantum error control
  - subsystems principle



- two-qubit registers, with
- ion trap devices being the current front runners, but
- many other systems catching up rapidly.
- Decoherence and technology integration are among the challenges.



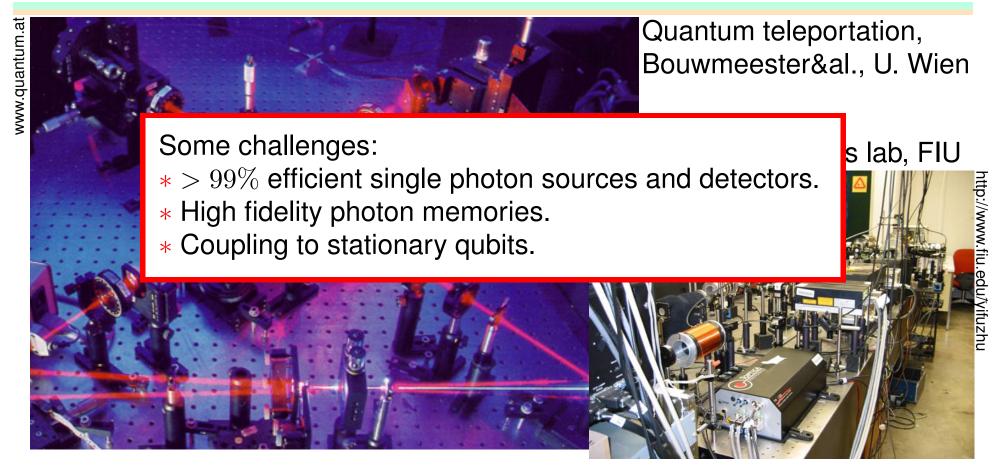



## **Available and Required QC Resources**

- Available resources:
  - Approaching 2 computationally useful qubits.
  - For exploring quantum control: Up to  $\sim 8$  qubits and  $\sim 16$  control steps.
- Required resources:

| Application                               | Order of minimum useful |           |
|-------------------------------------------|-------------------------|-----------|
|                                           | qubits                  | gates     |
| Secret key exchange, short distance       | $10^{0}$                | $10^{0}$  |
| Secret key exchange, long distance        | $10^{1}$                | $10^{1}$  |
| Factoring, other number theory algorithms | $10^{3}$                | $10^{10}$ |
| Unstructured search, optimization         | $10^{2}$                | $10^{8}$  |
| Physics simulation                        | ?                       | ?         |

#### **NMR QC**

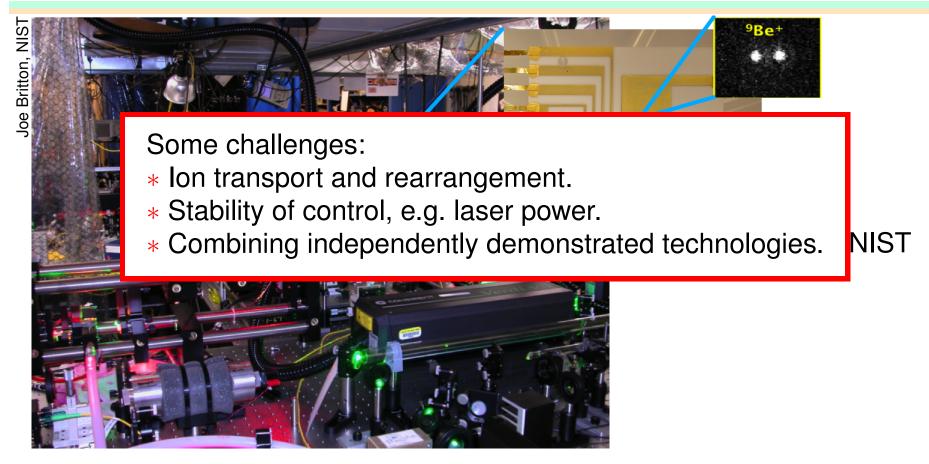



- $\bullet \approx 10$  qubits,  $\approx 20$  two-qubit gates are realizable.
- Errors per two-qubit gate are  $\gtrsim 1\%$ .
- Not realistically scalable due to lack of "purity". ... scalable in theory.

Reviews: Cory&al. '00 [29], Laflamme&al. '02 [30]



#### Photonic QC, Postselected

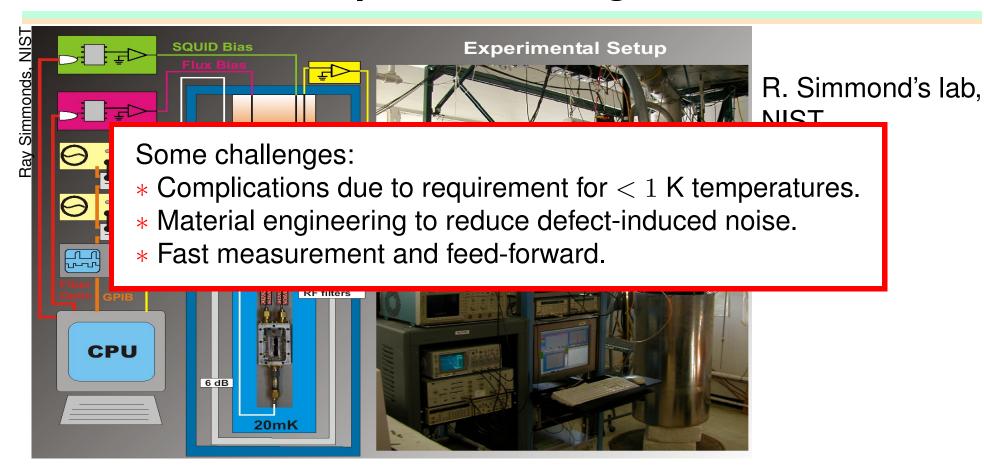



- $\bullet \approx 5$  qubits,  $\approx 3$  two-qubit gates are realizable.
- Error per two-qubit gate  $\gtrsim 3\%$  plus > 50% loss.
- Not realistically scalable due to lack of determinism.

Review: Kok&al. '07 [31] ... optical QC is scalable in principle.



## Ion Trap QC




- Up to 8 qubits (2 routinely),  $\geq 5$  gates are realizable.
- $\leq 1\%$  achieved for two-qubit gate error.
- Currently closest to realistic scalability.

Reviews: Wineland&al. '98 [32], Kielpinski '08 [33]



## **Superconducting QC**



- Approaching 2 qubits,  $\geq 2$  gates.
- $\bullet \approx 15\%$  achieved for two-qubit gate error.
- Should be scalable with sufficient engineering.

Review: Devoret&al. '04 [34]



# **Experimental QC: Summary**

| System            | Physical qubits                                | Numble Number | per of gates   | Error<br>per<br>gate   | Scal-<br>able? |
|-------------------|------------------------------------------------|---------------|----------------|------------------------|----------------|
| NMR               | Nuclear spins in a molecule                    | $\lesssim 10$ | $\lesssim 20$  | $\gtrsim 1\%$          | No             |
| Photonic          | Polarization of photons                        | $\lesssim 5$  | $\lesssim 4$   | $\gtrsim 3\%$<br>> 50% | No             |
| Ion trap          | Energy levels of trapped ions                  | $\lesssim 8$  | $\lesssim 4$   | $\sim 1\%$ $\sim 10\%$ | Yes            |
| Superconducting   | Collective states of superconducting circuits  | < 2           | $\lesssim 2$   | >15%?                  | Yes?           |
| Cold atom         | Energy levels of trapped atoms                 | < 2           | $\lesssim 2$   | ?                      | ?              |
| Atomic impurities | Localized states of impurities                 | < 3           | $\lesssim 4$ ? | ?                      | ?              |
| Quantum dot       | Localized states at dots                       | $\approx 1$   | ?              | ?                      | ?              |
| Topological       | Delocalized states associated with excitations | 0             | 0              | ??                     | ??             |

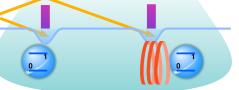
... as of 2008.



## **Evaluating and Comparing Quantum Devices**

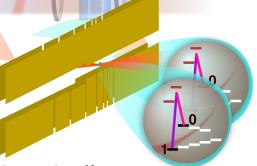
- How much quantum computing has been demonstrated?
  - How to measure "number of qubits used"?
  - How to measure "number of gates realized"?

Log Quantum Speedup (LQS):


L<sub>2</sub>QS of 1.58 (implicitly) demonstrated with ion qubits on "unique quantum search with random target".

Schaetz&al. '04 [37], Brickman&al. '05 [38]




## **Summary and Prospects**

- QCs control
  - wavefunctions on
  - efficiently realized configuration spaces with
  - interference gates exploiting "quantum parallelism".



- QCs can be realized in the presence of noise because of
  - the *threshold theorem*, whose implementation requires
  - quantum error control, which is based on
  - the subsystems principle, the most general way of "encoding" information.
- Experimental QC is close to achieving
  - two-qubit registers, with
  - ion trap devices being the current front runners, but
  - many other systems catching up rapidly.
  - Decoherence and technology integration are among the challenges.

Quantum computing or new physics!



## **Contents**

| Title: Building Quantum Computers0       | Overcoming Decoherence                   | 18             |
|------------------------------------------|------------------------------------------|----------------|
| Models of Computing1                     | A Path to Large-Scale QCs                |                |
| Why Quantum Compute?2                    | A Path to Large-Scale QCs                |                |
| Preview 3                                | A Path to Large-Scale QCs                |                |
| Quantum Computers4                       | Resource Requirements                    |                |
| How Does It Work?5                       | Error Guidelines?                        |                |
| How Does It Work?6                       | Preview                                  |                |
| How Does It Work?7                       | Available and Required QC Resources      | 2              |
| How Does It Work?8                       | NMR QC                                   | 20             |
| How Does It Work?9                       | Photonic QC, Postselected                | 2 <sup>-</sup> |
| How Does It Work?                        | Ion Trap QC                              | 28             |
| How Does It Work?                        | Superconducting QC                       | 29             |
| How Does It Work?                        | Experimental QC: Summary                 |                |
| Preview                                  | Evaluating and Comparing Quantum Devices |                |
| Building QCs: Challenges                 | Summary and Prospects                    |                |
| Decoherence                              | References                               | 34             |
| Classical Versus Quantum Error Control16 |                                          |                |
| Overcoming Decoherence17                 |                                          |                |



#### References

- [1] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26:1484–1509, 1997.
- [2] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, pages 212–219, New York, New York, 1996. ACM press.
- [3] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467–488, 1982.
- [4] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen. Optimal frequency measurements with maximally correlated states. Phys. Rev. A, 54:R4649-R4652, 1996.
- [5] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. Quantum repeaters for communication. quant-ph/9803056, 1998.
- [6] D. Gottesman and I. Chuang. Quantum digital signatures. arXiv:quant-ph/0105032, 2001.
- [7] D.P. DiVincenzo. The physical implementation of quantum computation. Fort. Phys., 48:771–783, 2000.
- [8] P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52:2493–2496, 1995.
- [9] P. W. Shor. Fault-tolerant quantum computation. In Proceedings of the 37th Symposium on the Foundations of Computer Science (FOCS), pages 56–65, Los Alamitos, California, 1996. IEEE press.
- [10] A. Yu. Kitaev. Quantum computations: Algorithms and error correction. Russian Math. Surveys, 52:1191–1249, 1997.
- [11] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In *Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (STOC)*, pages 176–188, New York, New York, 1996. ACM Press.
- [12] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation. Science, 279:342–345, 1998.
- [13] A. M. Steane. Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A, 68:042322/1–19, 2003.
- [14] E. Knill. Fault-tolerant postselected quantum computation: Threshold analysis. quant-ph/0404104, 2004.
- [15] E. Knill. Quantum computing with realistically noisy devices. Nature, 434:39-44, 2005.
- [16] B. W. Reichardt. Improved ancilla preparation scheme increases fault tolerant threshold. quant-ph/0406025, 2004.
- [17] P. Aliferis and D. W. Leung. Fault-tolerant quantum computation with graph states. quant-ph/0503130, 2005.
- [18] A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane. Quantum error correction and orthogonal geometry. Phys. Rev. Lett., 78:405–408, 1997.
- [19] D. Gottesman. A class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A, 54:1862–1868, 1996.
- [20] G. K. Brennen, D. Song, and C. J. Williams. Quantum computer architecture using nonlocal interactions. *Phys. Rev. A*, 67:050302/1–4, 2003. guant-ph/0301012.
- [21] E. Knill, R. Laflamme, and L. Viola. Theory of quantum error correction for general noise. Phys. Rev. Lett., 84:2525-2528, 2000.
- [22] E. Knill. Protected realizations of quantum information. Phys. Rev. A, 74:042301/1-11, 2006.
- [23] D. Gottesman. Fault-tolerant quantum computation with local gates. J. Mod. Optics, 47:333–345, 2000.
- [24] K. M. Svore, D. P. DiVincenzo, and B. M. Terhal. Noise threshold for a fault-tolerant two-dimensional lattice architecture. Quantum Inf. and Comp., 7:297–318, 2007.
- [25] P. Gács. Reliable cellular automata with self-organization. J. Stat. Phys., 103:45–267, 2001.
- [26] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. guant-ph/9906129, 1999.
- [27] J. Preskill. Reliable quantum computers. Proc. R. Soc. Lond. A, 454:385–410, 1998.
- [28] D. Gottesman and J. Preskill. Unpublished analysis of the accuracy threshold., 1999.
- [29] D.G. Cory, R. Laflamme, E. Knill, L. Viola, T.F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y.S. Weinstein, and W.H. Zurek. NMR based quantum information processing: Achievements and prospects. Fort. Phys., 48:875–907, 2000.
- [30] R. Laflamme, E. Knill, D. Cory, E. M. Fortunato, T. Havel, C. Miquel, R. Martinez, C. Negrevergne, G. Ortiz, M. A. Pravia, S. Sinha, R. Somma, and L. Viola. Introduction to NMR quantum information processing. *LA Science*, 27(LAUR-02-6132):226–259, 2002. quant-ph/0207172.
- [31] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79:135–174, 2007.
- [32] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. *J. Res. Nat. Inst. St. Tech.*, 103:259–328, 1998.
- [33] D. Kielpinski. Ion-trap quantum information processing: Experimental status. arXiv:0805.2450, 2008.
- [34] M. H. Devoret, A. Wallraff, and J. M. Martinis. Superconducting gubits: A short review. quant-ph/0411174, 2004.
- [35] J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J. Baugh, D. G. Cory, and R. Laflamme. Symmetrised characterisation of noisy guantum processes. Science, 317:1893–1896, 2007.
- [36] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum gates. arXiv:0707.1032, 2007.
- [37] T. Schaetz, M. D. Barrett, D. Leibfried, J. Chiaverini, J. Britton, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland. Quantum dense coding with atomic gubits. Phys. Rev. Lett., 93:040505/1-4, 2004.
- [38] K.-A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslaurier, and C. Monroe. Implementation of Grover's quantum search algorithm in a scalable system. Phys. Rev. A, 72:050306/1–4, 2005.

