Distance-Divergence Inequalities

Katalin Marton

Alfréd Rényi Institute of Mathematics
of the Hungarian Academy of Sciences
Motivation

- To find a simple proof of the **Blowing-up Lemma**, proved by Ahlswede, Gács and Körner, with the aim to prove **Strong Convereses** in Shannon theory;

- Ornstein’s **Copying Lemma** in the proof of his **Isomorphism Theorem**;

- My experience with **Single-Letter Characterization techniques** in Shannon theory.
What does measure concentration mean?

Enlargements and distances of sets

Notation

\((X, d, q)\): a metric probability space. More precisely,

Assume:

- \(X\) is a Polish space, with the Borel \(\sigma\)-algebra;
- \(d\) is a Borel measurable distance on \(X\);
- \(q\) is a Borel probability measure on \(X\);
- Subsets of \(X\) are assumed to be measurable.
Notation

For $A \subset \mathcal{X}$ and $\kappa > 0$:

The κ-enlargement (or κ-neighborhood) of the set A is

$$[A]_\kappa = \left\{ x \in \mathcal{X} : \exists \ y \in A, \ d(x, y) \leq \kappa \right\}.$$

Informal definition of Measure Concentration:

The a metric probability space (\mathcal{X}, d, q) satisfies the measure concentration property if:

For every $\varepsilon > 0$ there exists a $\kappa = \kappa(\varepsilon)$ such that

$$q(A) \geq \varepsilon \implies q([A]_\kappa) \geq 1 - \varepsilon, \ \forall A \subset \mathcal{X},$$

and $\kappa(\varepsilon)$ can be overbounded in a non-trivial way.
\[d(A, [A]_\kappa^c) = \kappa \]

\[B = [A]_\kappa^c \]
By the equality

\[d(A, [A]^c_\kappa) = \kappa : \]

Equivalent definition

The a metric probability space \((\mathcal{X}, d, q)\) satisfies the measure concentration property if:

There is a function \(\kappa : \mathbb{R}_+ \rightarrow \mathbb{R}_+\) such that:

For every \(A, B \subset \mathcal{X}\)

\[d(A, B) \leq \kappa(q(A)) + \kappa(q(B)), \quad \forall A, B \subset\mathcal{X}, \]

and \(\kappa\) can be overbounded in a non-trivial way.
Sub-Gaussian measure concentration

\[\kappa(\varepsilon) = c(q) \cdot \sqrt{\log \frac{1}{\varepsilon}} \quad \iff \quad \varepsilon(\kappa) = \exp\left(-\left(\frac{\kappa}{c(q)}\right)^2\right) \]

I.e.:

\[d(A, B) \leq c(q) \cdot \left[\sqrt{\log \frac{1}{q(A)}} + \sqrt{\log \frac{1}{q(B)}} \right], \quad \forall A, B \subset X. \]
Example: Hamming distance, C. McDiarmid 1989, Marton 1996

- \mathcal{X}^n: n-th power of a Borel space \mathcal{X};
- $\delta_n(x^n, y^n) = \sum_{i=1}^{n} \delta(x_i, y_i)$: Hamming distance on \mathcal{X}^n;
- $x^n = (x_1, x_2, \ldots, x_n)$;
- $q^n = \prod_{i=1}^{n} q_i$: product measure on \mathcal{X}^n.

Then, taking neighborhood with respect to Hamming distance:

$$q^n([A]_\kappa) \geq 1 - e^{-2n\left(\frac{\kappa}{n} - \sqrt{\frac{1}{2n} \cdot \log \frac{1}{q^n(A)}}\right)^2}, \quad \forall \kappa, A \subset \mathcal{X}^n.$$
Cont’d

\[q^n([A]_\kappa) \geq 1 - \\
- \exp \left(-2n \left(\frac{\kappa}{n} - \sqrt{\frac{1}{2n} \cdot \log \frac{1}{q^n(A)}} \right)^2 \right), \quad \forall \kappa, A \subset \mathcal{X}^n. \]

Equivalently:

\[\delta_n(A, B) \leq \sqrt{\frac{1}{2n} \cdot \log \frac{1}{q^n(A)}} + \sqrt{\frac{1}{2n} \cdot \log \frac{1}{q^n(B)}}, \quad \forall A, B \subset \mathcal{X}^n \]

Thus, for Hamming distance \(\delta_n \)

\[\kappa(\varepsilon) = \sqrt{\frac{1}{2n} \cdot \log \frac{1}{\varepsilon}}. \]
Cont’d

\[q^n([A]_\kappa) \geq 1 - \exp\left(-2n\left(\frac{\kappa}{n} - \sqrt{\frac{1}{2n} \cdot \log \frac{1}{q^n(A)}}\right)^2\right), \quad \forall \kappa, A \subset \mathcal{X}^n. \]

Equivalently:

\[\delta_n(A, B) \leq \sqrt{\frac{1}{2n} \cdot \log \frac{1}{q^n(A)}} + \sqrt{\frac{1}{2n} \cdot \log \frac{1}{q^n(B)}}, \quad \forall A, B \subset \mathcal{X}^n \]

Thus, for Hamming distance \(\delta_n \)

\[\kappa(\varepsilon) = \sqrt{\frac{1}{2n} \cdot \log \frac{1}{\varepsilon}}. \]
Example: Euclidean distance, Talagrand 1996

- \mathbb{R}^n: n-dimensional Euclidean space;
- e_n: Euclidean distance;
- $q^n = \prod_{i=1}^{n} q_i = \prod_{i=1}^{n} \exp(-V_i)$: product density on \mathbb{R}^n.

Assume:
$V_i : \mathbb{R} \to \mathbb{R}$ is strictly uniformly convex:

$$V_i''(x) \geq \rho > 0, \quad \forall x.$$

Then:

$$e_n(A, B) \leq \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q^n(A)}} + \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q^n(B)}}, \quad \forall A, B \subset \mathcal{X}^n.$$
Example: Euclidean distance, Talagrand 1996

- \(\mathbb{R}^n \): \textit{n-dimensional Euclidean space};

- \(e_n \): \textit{Euclidean distance};

- \(q^n = \prod_{i=1}^{n} q_i = \prod_{i=1}^{n} \exp(-V_i) \): \textit{product density on} \(\mathbb{R}^n \).

Assume:
\(V_i : \mathbb{R} \rightarrow \mathbb{R} \) \textit{is strictly uniformly convex}:

\[
V_i''(x) \geq \rho > 0, \quad \forall x.
\]

Then:

\[
e_n(A, B) \leq \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q^n(A)}} + \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q^n(B)}}, \quad \forall A, B \subset X^n.
\]
Cont’d

Assume:

\(V_i : \mathbb{R} \to \mathbb{R} \) is strictly uniformly convex:

\[V_i''(x) \geq \rho > 0, \quad \forall x. \]

Then:

\[e_n(A, B) \leq \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q^n(A)}} + \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q^n(B)}}, \quad \forall A, B \subset \mathcal{X}^n. \]

Thus, for Euclidean distance, and for product density

\[q^n = \prod_{i=1}^{n} \exp(-V_i) \text{ satisfying } V_i'' \geq \rho > 0, \]

\[\kappa(\varepsilon) = \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{\varepsilon}}, \quad \text{independently of } n. \]
Assume:

\[V_i : \mathbb{R} \to \mathbb{R} \text{ is strictly uniformly convex:} \]

\[V_i''(x) \geq \rho > 0, \quad \forall x. \]

Then:

\[e_n(A, B) \leq \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q^n(A)}} + \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q^n(B)}}, \quad \forall A, B \subset \mathcal{X}^n. \]

Thus, for Euclidean distance, and for product density

\[q^n = \prod_{i=1}^{n} \exp(-V_i) \text{ satisfying } V_i'' \geq \rho > 0, \]

\[\kappa(\varepsilon) = \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{\varepsilon}}, \quad \text{independently of } n. \]
Distance-Divergence Inequalities: A way to prove measure concentration

Notation

\[\mathbb{P}(\mathcal{X}) : \text{the set of probability measures on } \mathcal{X}. \]

\[q \text{ is a distinguished element of } \mathbb{P}(\mathcal{X}). \]

Definition: set of Couplings \(\Pi(p, r) \)

For \(p, r \in \mathbb{P}(\mathcal{X}) \):

\[\Pi(p, r) \triangleq \]

set of all couplings of \(p \) and \(r \)

\[\triangleq \]

set of all joint probability distributions \(\pi = \mathcal{L}(Y, Z) \) on \(\mathcal{X} \times \mathcal{X} \), with marginals:

\[p = \mathcal{L}(Y) \quad \text{and} \quad r = \mathcal{L}(Z). \]
Definition: Wasserstein distance

Fix a β, $1 \leq \beta \leq 2$. For $p, r \in \mathcal{P}(\mathcal{X})$:

$$W_\beta(p, r) = W_\beta^{(d)}(p, r)$$

$$\triangleq \inf_{\pi \in \Pi(p, r)} \left\{ \left(\mathbb{E}_\pi d(Y, Z)^\beta \right)^{1/\beta} : \mathcal{L}(Y) = p, \quad \mathcal{L}(Z) = r \right\},$$

$W_\beta(p, r)$ is the Wasserstein distance, of order β, of p and r.

Claim

W_β is a distance on $\mathcal{P}(\mathcal{X})$. (May take the value ∞.)
Definition: Wasserstein distance

Fix a β, $1 \leq \beta \leq 2$. For $p, r \in \mathbb{P}(\mathcal{X})$:

$$W_\beta(p, r) = W_\beta^{(d)}(p, r)$$

$$\triangleq \inf_{\pi \in \Pi(p, r)} \left\{ \left(\mathbb{E}_\pi d(Y, Z)^\beta \right)^{1/\beta} : \mathcal{L}(Y) = p, \quad \mathcal{L}(Z) = q \right\},$$

$W_\beta(p, r)$ is the Wasserstein distance, of order β, of p and r.

Example: Variational distance

δ: Kronecker’s distance: $\delta(x, y) = 1$ for $x \neq y, \delta(x, x) = 0$.

$$W_1^{(\delta)}(p, r) \triangleq |p - r|_{TV} = \min \mathbb{E}_\pi \delta(Y, Z)$$

$$= \min \Pr_\pi \{Y \neq Z\} = \max_{A \subset \mathcal{X}} (p(A) - r(A)),$$

where $\pi = \mathcal{L}(Y, Z) \in \Pi(p, r)$.
Definition: Wasserstein distance

Fix a β, $1 \leq \beta \leq 2$. For $p, r \in \mathbb{P}(X)$:

$$W_\beta(p, r) = W^{(d)}_\beta(p, r) \triangleq \inf_{\pi \in \Pi(p, r)} \left\{ \left(\mathbb{E}_\pi d(Y, Z)^\beta \right)^{1/\beta} : \mathcal{L}(Y) = p, \quad \mathcal{L}(Z) = q \right\}.$$

$W_\beta(p, r)$ is the Wasserstein distance, of order β, of p and r.

Example: Variational distance

δ: Kronecker’s distance: $\delta(x, y) = 1$ for $x \neq y$, $\delta(x, x) = 0$.

$$W_1^{(\delta)}(p, r) \triangleq |p - r|_{TV} = \min \mathbb{E}_\pi \delta(Y, Z) = \min Pr\pi\{Y \neq Z\} = \max_{A \subseteq \mathcal{X}} (p(A) - r(A)),$$

where $\pi = \mathcal{L}(Y, Z) \in \Pi(p, r)$.
Definition: (Informational) Divergence

For $p, q \in \mathbb{P}(\mathcal{X})$:

$$D(p||q) \triangleq \int_{\mathcal{X}} \log \left(\frac{dp}{dq} \right) dp \quad \text{if } p \ll q; \quad +\infty \quad \text{otherwise.}$$

Definition: Distance-Divergence Inequality

$q \in \mathbb{P}(\mathcal{X})$ satisfies a distance-divergence inequality of order β, with constant ρ, if:

$$W_{\beta}(p, q) \leq \sqrt{\frac{2}{\rho} \cdot D(p||q)} \quad \text{for all } p \in \mathbb{P}(\mathcal{X}).$$

Most important cases: $\beta = 1$ and $\beta = 2$.
Definition: Distance-Divergence Inequality

$q \in \mathbb{P}(\mathcal{X})$ satisfies a distance-divergence inequality of order β, with constant ρ, if:

$$W_\beta(p, q) \leq \sqrt{\frac{2}{\rho} \cdot D(p||q)} \quad \text{for all } p \in \mathbb{P}(\mathcal{X}).$$

Example: Pinsker-Csiszár-Kullback inequality

$$|p - q|_{TV} \leq \sqrt{\frac{1}{2} \cdot D(p||q)} \quad \forall p, q \in \mathbb{P}(\mathcal{X}).$$

This distance-divergence inequality holds with the same constant $\rho = 4$ for every q.
Definition: Distance-Divergence Inequality

\(q \in \mathbb{P}(\mathcal{X}) \) satisfies a distance-divergence inequality of order \(\beta \), with constant \(\rho \), if:

\[
W_\beta(p, q) \leq \sqrt{\frac{2}{\rho} \cdot D(p\|q)} \quad \text{for all} \quad p \in \mathbb{P}(\mathcal{X}).
\]

Example: Pinsker-Csiszár-Kullback inequality

\[
|p - q|_{TV} \leq \sqrt{\frac{1}{2} \cdot D(p\|q)} \quad \forall p, q \in \mathbb{P}(\mathcal{X}).
\]

This distance-divergence inequality holds with the same constant \(\rho = 4 \) for every \(q \).
Notation

\(W_2 \):

Wasserstein distance on \(\mathbb{P}(\mathbb{R}) \) from the Euclidean distance, i.e.:

For densities \(p \) and \(r \) on \(\mathbb{R} \)

\[
W_2(p, r) = W_2^{(e)}(p, r) = \inf_{\pi \in \Pi(p, r)} \left\{ \left(\mathbb{E}_{\pi} |Y - Z|^2 \right)^{1/2} : \mathcal{L}(Y) = p, \; \mathcal{L}(Z) = q \right\}.
\]
M. Talagrand’s Theorem on \mathbb{R}, 1996

Assume:

$q(x) = \exp(-V(x))$ strictly uniformly log-concave density on \mathbb{R}, i.e.,

$$V''(x) \geq \rho > 0, \quad \forall x.$$

E.g., for q normal, $\rho = 1/\text{Variance}$. Then:

$$W_2(p, r) \leq \sqrt{\frac{2}{\rho}} \cdot D(p\|q), \quad \forall p \in \mathbb{P}(\mathbb{R}).$$
The proof of Talagrand’s Theorem is based on the unique monotone map T that takes the measure p on \mathbb{R} to the measure q (provided both measures are absolutely continuous):

$$\int_{-\infty}^{x} q(t)dt = \int_{-\infty}^{T(x)} p(t)dt.$$

A monotone map taking a given density p to the density q exists also on \mathbb{R}^n. (Proved, e.g., by Y. Brenier 1991 or R. McCann 1994.)
Talagrand’s Theorem on \mathbb{R}^n

Assume:

$q(x) = \exp(-V(x))$: strictly uniformly log-concave density on \mathbb{R}^n:

$$\text{Hess}V(x) \geq \rho \cdot \text{Id} \quad \forall x, \quad \rho > 0.$$

Then:

$$W_2(p, q) \leq \sqrt{\frac{2}{\rho} \cdot D(p||q)} \quad \forall p \in \mathcal{P}^0(\mathbb{R}).$$

W_2 denotes the Wasserstein distance on $\mathcal{P}(\mathbb{R}^n)$ derived from the Euclidean distance.

Proved e.g. by S. Bobkov - M. Ledoux 2000, F. Otto - C. Villani 2000, D. Cordero-Erausquin 2002...
Lemma: Distance-Divergence Inequality implies Measure Concentration, Marton 1986, 1996

\((\mathcal{X}, d, q)\): metric probability space,

\(W^{(d)}_\beta\) Wasserstein distance of order \(\beta\) associated with \(d\).

Then:

\[
W^{(d)}_\beta(p, q) \leq \sqrt{\frac{2}{\rho}} \cdot D(p||q), \quad \forall p \in \mathbb{P}(\mathcal{X})
\]

\[
d(A, B) \leq \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q(A)}} + \sqrt{\frac{2}{\rho} \cdot \log \frac{1}{q(B)}}, \quad \forall A, B \subset \mathcal{X}.
\]
Proof

Define

\[p = q_{|A} : \quad p(C) = \frac{q(A \cap C)}{q(A)}, \]
\[r = q_{|B} : \quad r(C) = \frac{q(B \cap C)}{q(B)}. \]

Triangle inequality \quad + \quad Distance-Divergence inequality:

\[d(A, B) \leq W_\beta(p, r) \leq W_\beta(p, q) + W_\beta(q, r) \]
\[\leq \sqrt{\frac{2}{\rho} \cdot D(p||q)} + \sqrt{\frac{2}{\rho} \cdot D(r||q)} \quad \forall \beta \in [1, 2]. \]
d(A, B) ≤ \sqrt{\frac{2}{\rho} \cdot D(p||q)} + \sqrt{\frac{2}{\rho} \cdot D(r||q)}.

Further:
\[
\frac{p(x)}{q(x)} = \frac{1}{q(A)} \quad p - almost everywhere
\]

⇒

\[
D(p||q) = \log \frac{1}{q(A)},
\]

and similarly

\[
D(r||q) = \log \frac{1}{q(B)}.
\]
Product spaces

Definition: Distances in Product Spaces

Given the metric \(d \) on \(X \), define distances on \(X^n \):

\[
d_{\beta,n}(x^n, y^n) = \left(\sum_{i=1}^{n} d(x_i, y_i)^\beta \right)^{1/\beta}, \quad 1 \leq \beta \leq 2.
\]

Hamming distance: from Kronecker’s distance, with \(\beta = 1 \),

Euclidean distance: from one-dimensional Euclidean distance, with \(\beta = 2 \).
The distance $d_{\beta,n}$ on \mathcal{X}^n gives rise to the Wasserstein distance $W_{\beta,n} = W^{(d)}_{\beta,n}$ on $\mathcal{P}(\mathcal{X}^n)$:

$$W_{\beta,n}(p^n, r^n) = W^{(d)}_{\beta,n}(p^n, r^n)$$

$$= \inf_{\pi \in \Pi(p^n, r^n)} \left\{ \left(\mathbb{E}_\pi \sum_{i=1}^n d(Y_i, Z_i)^\beta \right)^{1/\beta} : \right\}$$

$L(Y^n) = p^n, \ L(Z^n) = r^n$.

\[q^n = \prod_{i=1}^{n} q_i : \text{product measure on } \mathcal{X}^n. \text{ Then:} \]

\[W_\beta(p, q_i) \leq \sqrt{\frac{2}{\rho}} \cdot D(p||q_i), \quad \forall i, p \in \mathbb{P}(\mathcal{X}) \]

\[\implies \]

\[W_{\beta,n}(p^n, q^n) \leq \sqrt{\frac{2n^{2/\beta-1}}{\rho}} \cdot D(p^n||q^n), \quad \forall p^n \in \mathbb{P}(\mathcal{X}^n). \]

Thus:

For Hamming distance: \(n \)-fold product measures satisfy a distance-divergence inequality with the same constant \(4/n \).

For Euclidean distance: \(n \)-fold product measures satisfy distance-divergence inequalities with the smallest of the constants valid for the factors, independently of \(n \).

\[q^n = \prod_{i=1}^{n} q_i : \text{product measure on } \mathcal{X}^n. \text{ Then:} \]

\[W_\beta(p, q_i) \leq \sqrt{\frac{2}{\rho} \cdot D(p\| q_i)}, \quad \forall i, p \in \mathbb{P}(\mathcal{X}) \]

\[\Rightarrow \]

\[W_{\beta, n}(p^n, q^n) \leq \sqrt{\frac{2n^{2/\beta - 1}}{\rho} \cdot D(p^n\| q^n)}, \quad \forall p^n \in \mathbb{P}(\mathcal{X}^n). \]

Thus:

For Hamming distance: \(n \)-fold product measures satisfy a distance-divergence inequality with the same constant \(4/n \).

For Euclidean distance: \(n \)-fold product measures satisfy distance-divergence inequalities with the smallest of the constants valid for the factors, independently of \(n \).
Proof

From couplings between q_i and the conditional distributions $p_i(\cdot | y^{i-1}) \triangleq \mathcal{L}(Y_i | Y_1 = y_1, \ldots, Y_{i-1} = y_{i-1})$

can construct

good couplings between measures p^n and q^n on \mathcal{X}^n:

Successively define

$$\mathcal{L}(Y_i, X_i | Y_i^{i-1} = y_i^{i-1}, X_i^{i-1} = x_i^{i-1})$$

\triangleq best coupling of $p_i(\cdot | y_i^{i-1})$ and q_i.
We have defined a joint distribution \(\pi = \mathcal{L}(Y^n, X^n) \) with marginals \(p^n = \mathcal{L}(Y^n), q^n = \mathcal{L}(X^n) \).

\[
\mathbb{E}_\pi \delta_n(Y^n, X^n) = \sum_{i=1}^{n} \Pr_{\pi} \{ Y_i \neq X_i \} \\
= \sum_{i=1}^{n} \mathbb{E} \{ Y_i \neq X_i | Y^{i-1} \} \leq \sum_{i=1}^{n} \sqrt{\frac{1}{2} \cdot D(Y_i | Y^{i-1} \|| q_i(\cdot | Y^{i-1}))} \\
= \sum_{i=1}^{n} \sqrt{\frac{1}{2} \cdot D(Y_i | Y^{i-1} \|| q_i)} \\
\leq \sqrt{\frac{n}{2} \cdot \sum_{i=1}^{n} D(Y_i | Y^{i-1} \|| q_i)} \\
= \sqrt{\frac{n}{2} \cdot D(p^n || q^n)}.
\]
S. Bobkov and Götze’s theorem, 1999

\((\mathcal{X}, d, q): \text{metric probability space.}\)

The following two statements are equivalent:

\[(i) \quad W_1^{(d)}(p, q) \leq \sqrt{\frac{2}{\rho} \cdot D(p||q)} \quad \text{for all} \quad p \in \mathbb{P}(\mathcal{X}),\]

\[(ii) \quad \int_{\mathcal{X}} e^{tf(x)} dq(x) \leq \exp\left(\frac{t^2}{2\rho} + t \cdot \mathbb{E}_q f\right)\]

for all Lipschitz functions \(f: \mathcal{X} \to \mathbb{R}\) with Lipschitz coefficient 1, and all \(t > 0\).
Remark

Bobkov and Götze actually proved that:

For any fixed function \(f : \mathcal{X} \to \mathbb{R} \):

\[
\int_{\mathcal{X}} e^{tf(x)} dq(x) \leq \exp\left(\frac{t^2}{2\rho} + t \cdot \mathbb{E}_q f \right)
\]

\[
\Rightarrow
\]

\[
|\mathbb{E}_p f - \mathbb{E}_q f| \leq \sqrt{\frac{2}{\rho}} \cdot D(p \| q) \quad \text{for all} \quad p \in \mathbb{P}(\mathcal{X}).
\]
(\(\mathcal{X}, d, q\)) : \text{metric probability space}, \quad q^n : \text{n-th power of } q.

The following two statements are equivalent:

- \((i)\) \(W_2^{(d)}(p, q) \leq \sqrt{\frac{2}{\rho}} \cdot D(p||q)\) for all \(p \in \mathbb{P}(\mathcal{X})\),

- \((ii)\) \(q^n \left\{ x^n : f(x^n) \geq \mathbb{E}f + r \right\} \leq \exp\left(\frac{-\rho r^2}{2}\right)\)

for all \(n\), all Lipschitz functions \(f : \mathcal{X}^n \mapsto \mathbb{R}\) with Lipschitz coefficient 1 (with respect to distance \(d_{2,n}\)), and all \(r > 0\).
Measure Concentration for Non-product Measures: Contracting Markov Chains, Marton 1996

Assume:

q_1: probability measure on the Borel space \mathcal{X};

$q_i(\cdot|x)$: Markov kernels, $\mathcal{X} \to \mathcal{X}$,

Contracting:

$$|q_i(\cdot|x) - q_i(\cdot|y)|_{TV} \leq (1 - \beta), \quad \beta > 0, \quad \forall x, y;$$

q^n on \mathcal{X}^n:

$$q^n(x^n) \triangleq q_1(x_1) \cdot \prod_{i=2}^{n} q_i(x_i|x_{i-1}), \quad x^n \in \mathcal{X}^n.$$

Then:

$$W_{1,n}^{(\delta)}(p^n, q^n) \leq \frac{1}{\beta} \cdot \sqrt{\frac{1}{2n} \cdot D(p^n||q^n)}, \quad \forall p^n \in \mathcal{P}(\mathcal{X}).$$
Measure Concentration for Non-product Measures

\(\mathcal{X}^n \): \(n \)-th power of a Borel space \(\mathcal{X} \);
\(q^n \): Borel probability measure on \(\mathcal{X}^n \);
\(X^n \): random sequence with \(\mathcal{L}(X^n) = q^n \);
\(p^n \): another probability measure on \(\mathcal{X}^n \);
\(Y^n \): random sequence in \(\mathcal{X}^n \), \(\mathcal{L}(Y^n) = p^n \).

Notation

For \(y^n \in \mathcal{X}^n \) and \(1 \leq i \leq n \):

- \(y^i \triangleq (y_1, y_2, \ldots, y_i) \) and \(y_i^n \triangleq (y_{i+1}, y_{i+2}, \ldots, y_n) \);
- \(p_i(\cdot | y^{i-1}) \triangleq \mathcal{L}(Y_i | Y^{i-1} = y^{i-1}) \);
- \(p_i^n(\cdot | y^i) \triangleq \mathcal{L}(Y_i^n | Y^i = y^i) \);
Definition: Measures admitting coupling with bounded distance

q^n admits coupling with distance bounded by constant C if:

For every $i \leq n - 1$ and every pair of sequences $y^i, z^i \in \mathcal{X}^i$ such that

$$y^{i-1} = z^{i-1}, \quad y_i \neq z_i,$$

there exists a coupling of $q^n_i (\cdot | y^i)$ and $q^n_i (\cdot | z^i)$:

$$\pi^n_i (\cdot | y^i, z^i) = \mathcal{L}(Y^n_i, Z^n_i | Y^i = y^i, Z^i = z^i)$$

satisfying

$$\mathbb{E}_{\pi^n_i} \left\{ \sum_{j=i+1}^{n} \delta(Y_j, Z_j) \mid y^i, z^i \right\} \leq C.$$
Theorem: Measure Concentration for random processes, Marton 1998

Assume:

q^n admits coupling with distance bounded by the constant C.

Then

$$W_{1,n}^{(\delta)}(p^n, q^n) \leq (C + 1) \cdot \sqrt{\frac{n}{2} \cdot D(p^n || q^n)}.$$

Thus:

For measures admitting couplings with bounded distance, the distance-divergence inequality is worse by a constant factor (only) than the inequality for product measures.

The Theorem applies for segments of sufficiently mixing stationary random processes.
Measure Concentration for Gibbs Measures

Notation

- q^n: Borel probability measure on \mathcal{X}^n;
- X^n: random sequence, $\mathcal{L}(X^n) = q^n$;
- For $y^n \in \mathcal{X}^n$: $\bar{y}_i \triangleq (y_1, y_2, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n)$;
- $Q_i(\cdot | \bar{y}_i) \triangleq \mathcal{L}(X_i|\bar{X}_i = \bar{y}_i)$.

The conditional distributions $Q_i(\cdot | \bar{y}_i)$ are called the local specifications of q^n.
(Non-standard) Definition: Gibbs Measures

q^n, when defined by the local specifications $Q_i(\cdot | \bar{y}_i)$, is called a Gibbs measure.
Definition: Dobrushin’s Uniqueness Condition

q^n satisfies Dobrushin’s uniqueness condition if:
there exist numbers $a_{i,k} \geq 0$, $(i, k \in [1, n], i \neq k)$, such that:

(i) For any $i, k, i \neq k$, and any $\bar{y}_k, \bar{z}_k \in \mathcal{X}^{n-1}$, differing only in the i-th coordinate:

$$|Q_k(\cdot|\bar{y}_k) - Q_k(\cdot|\bar{z}_k)|_{TV} \leq a_{i,k};$$

(ii) For the matrix $A \triangleq (a_{i,k})_{i,k=1}^n$, where $a_{i,i} = 0$, we have

$$\|A\|_\infty = \max_k \sum_{i=1}^n a_{i,k} < 1.$$

The numbers $a_{i,k}$ are called Dobrushin’s interdependence coefficients.
Definition: Gibbs Sampler

Gibbs sampler associated with the local specifications $Q_i(\cdot | \bar{y}_i)$: Markov chain with state space \mathcal{X}^n and transition law $\Gamma(z^n | y^n)$ defined as follows:

Given $y^n \in \mathcal{X}^n$,

(i) select a random index $i \in [1, n]$ independently of y^n and uniformly distributed;

(ii) Set

$$\Gamma(z^n | y^n) = \delta_{\bar{y}_i, \bar{z}_i} \cdot Q_i(z_i | \bar{y}_i).$$

Dobrushin’s uniqueness condition implies that the Gibbs sampler Γ is a contraction with respect to the distance $W_{1,n}^{(\delta)}$:

$$W_{1,n}^{(\delta)}(p^n \Gamma, r^n \Gamma) \leq \left(1 - \frac{1 - \|A\|_{\infty}}{n} \right) \cdot W_{1,n}^{(\delta)}(p^n, r^n).$$
Definition: Gibbs Sampler

Gibbs sampler associated with the local specifications $Q_i(\cdot|\bar{y}_i)$:
Markov chain with state space \mathcal{X}^n **and transition law** $\Gamma(z^n|y^n)$ **defined as follows:**

Given $y^n \in \mathcal{X}^n$,

1. **(i) select a random index** $i \in [1, n]$ **independently of** y^n **and uniformly distributed;**
2. **(ii) Set**

$$\Gamma(z^n|y^n) = \delta_{\bar{y}_i, \bar{z}_i} \cdot Q_i(z_i|\bar{y}_i).$$

Dobrushin’s uniqueness condition implies that the Gibbs sampler Γ **is a contraction with respect to the distance** $W_{1,n}^{(\delta)}$:

$$W_{1,n}^{(\delta)}(p^n \Gamma, r^n \Gamma) \leq \left(1 - \frac{1 - \|A\|_{\infty}}{n}\right) \cdot W_{1,n}^{(\delta)}(p^n, r^n).$$
Theorem, Li Ming Wu 2006

If q^n satisfies Dobrushin’s uniqueness condition then

$$W^{(\delta)}_{1,n}(p^n, q^n) \leq \frac{1}{1 - \|A\|_{\infty}} \sqrt{\frac{n}{2}} \cdot D(p^n || q^n)$$

for all $p^n \in \mathbb{P}(\mathcal{X})^n$.

Remark

A similar theorem holds for Gibbs samplers with state space \mathbb{R}^n and $W^{(e)}_{2,n}$. (With the appropriate modification of Dobrushin’s uniqueness condition.)

Theorem, Li Ming Wu 2006

If q^n satisfies Dobrushin’s uniqueness condition then

$$W_{1,n}^{(\delta)}(p^n, q^n) \leq \frac{1}{1 - \|A\|_\infty} \sqrt{\frac{n}{2} \cdot D(p^n || q^n)}$$

for all $p^n \in \mathbb{P}(X)^n$.

Remark

A similar theorem holds for Gibbs samplers with state space \mathbb{R}^n and $W_{2,n}^{(e)}$. (With the appropriate modification of Dobrushin’s uniqueness condition.)

Theorem: The Gibbs sampler Decreases Divergence by a rate < 1, Marton, in preparation

Assume

(i) $\alpha \triangleq \inf_{x^n,i} Q_i(x_i|x_{\bar{i}}) > 0$;
(ii) q^n satisfies the L_2-version of Dobrushin's uniqueness condition:

For the matrix of Dobrushin's interdependence coefficients

$$\|A\|_2 < 1.$$

Then:

$$D(p^n \| q^n) \leq \left(1 - \frac{\alpha \cdot \left(1 - \|A\|_2\right)^2}{2n}\right) \cdot D(p^n \| q^n).$$
The proof uses the following "Converse" of Pinsker’s lemma

Let q be a probability measure on a finite set \mathcal{X}, and assume:

$$\alpha \triangleq \min_x q(x) > 0.$$

Then:

$$D(p||q) \leq \frac{4}{\alpha} \cdot |p - q|^2_{TV}, \quad \forall p \in \mathbb{P}(\mathcal{X}).$$
Corollary

\[D(p^n \Gamma^t || q^n) \to 0 \text{ exponentially, as } t \to \infty. \]
Distances between measures that are not Wasserstein distances

Example:

\mathcal{X}^n: product Borel space,
p^n and r^n: Borel probability measures on \mathcal{X}^n.

\[\tilde{W}(p^n, r^n) \triangleq \min_{\pi = \mathcal{L}(Y^n, Z^n) \in \Pi(p^n, r^n)} \sqrt{\sum_{i=1}^{n} Pr_\pi^2 \{Y_i \neq Z_i\}}. \]