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Multiple-Access Channel with Feedback
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Message index W1 is uniform over {1, 2, · · · ,M1} and index W2 is uniform
over {1, 2, · · · ,M2}.
Encoders:

X1n = E1n(W1,Y1,Y2, · · · ,Yn−1),

X2n = E2n(W2,Y1,Y2, · · · ,Yn−1), n = 1, 2, · · · ,N.

Channel {X1 ×X2,Pc (y |x1, x2),Y} is discrete and memoryless.
Decoder:

(Ŵ1, Ŵ2) = D(Y1,Y2, · · · ,YN).
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Achievability, Capacity Region

Error probability:

Pe = Pr{(Ŵ1, Ŵ2) 6= (W1,W2)}.

A rate pair (R1,R2) with nonnegative R1 and R2 is achievable for a MAC
with FB if for any ε > 0 there exist for all N large enough encoders and a
decoder with

log2 M1 ≥ N(R1 − ε),
log2 M2 ≥ N(R2 − ε),

Pe ≤ ε.

The set of achievable rate pairs (R1,R2) is the capacity region Rf .
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An Inner and an Outer Bound for Capacity Region Rf

Theorem (Cover-Leung (1981) Inner Bound)

Rf ⊇ {(R1,R2) : 0 ≤ R1 ≤ I (X1;Y |X2,U),

0 ≤ R2 ≤ I (X2;Y |X1,U),

R1 + R2 ≤ I (X1,X2;Y ),

for P(u, x1, x2, y) = P(u)P(x1|u)P(x2|u)Pc (y |x1, x2)}

Theorem (Cut-Set Outer Bound)

Rf ⊆ {(R1,R2) : 0 ≤ R1 ≤ I (X1;Y |X2),

0 ≤ R2 ≤ I (X2;Y |X1),

R1 + R2 ≤ I (X1,X2;Y ),

for P(x1, x2, y) = P(x1, x2)Pc (y |x1, x2)}

QUESTION: Can arbitrary joint distributions {P(x1, x2), x1 ∈ X1, x2 ∈ X2}
be realized?
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A Result for the Binary Adder MAC

X1 X2 Y
0 0 0
0 1 1
1 0 1
1 1 2

Note that X1 ≡ Y − X2 for the binary adder MAC.

Theorem (W. (1982))

For MACs for which there exist a mapping φ such that X1 ≡ φ(Y ,X2) the
Cover-Leung region is the feedback capacity region, hence

Rf = {(R1,R2) : 0 ≤ R1 ≤ I (X1;Y |X2,U) = H(X1|U),

0 ≤ R2 ≤ I (X2;Y |X1,U),

R1 + R2 ≤ I (X1,X2;Y ),

for P(u, x1, x2, y) = P(u)P(x1|u)P(x2|u)Pc (y |x1, x2)}

THEREFORE the Cover-Leung region is the capacity region for the binary
adder MAC.
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Gaarder & Wolf Scheme

X1 X2 Y
0 0 0
0 1 1
1 0 1
1 1 2

Assume that first the encoders independently transmit k binary,
uniformly distributed, digits over the adder channel.

If a 0 or 2 is received, the decoder understands.

However if the output of the channel is 1 (this happens with probability
1/2), the encoders have to resolve 1 bit of uncertainty extra to the
decoder. They can however do this later in full cooperation,
transmitting log2 3 bits/transmission.

Rates (Gaarder & Wolf (1975)):

R1 = R2 =
k

k + k/2
log2 3

= 0.7602 bits/transm.

The system can operate in an independent mode but also in a
full-cooperation, dependent mode.

QUESTION: How much dependence can be created?
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Preliminaries

A. Some identities:

I (A;B|C)− I (A;B) = H(B|C)− H(B|A,C)− H(B) + H(B|A)

= I (B;C |A)− I (B;C)

· · ·
= I (C ;A|B)− I (C ;A).

B: Let Z be an extra output of the MAC. Hence

P(y , z|x1, x2) = Pc (y |x1, x2)Pe(z|x1, x2, y) (1)

where Pe is a channel with output Z having X1, X2, and Y as inputs.

X2

-
-
-

Z

Y
X1

-

Definition

A MAC with an extra output Z is said to be in class K if I (X1;X2) = 0
implies that I (X1;X2|YZ) = 0.
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Local Dependence Balance Bound

I (W1;W2|(YZ)n, (YZ)n−1)− I (W1;W2|(YZ)n−1)

= I ((YZ)n;W1|W2, (YZ)n−1)− I ((YZ)n;W1|(YZ)n−1)

= H((YZ)n|W2, (YZ)n−1)− H((YZ)n|W1,W2, (YZ)n−1)

−H((YZ)n|(YZ)n−1) + H((YZ)n|W1, (YZ)n−1)

(a)

≤ H((YZ)n|X2n, (YZ)n−1)− H((YZ)n|X1n,X2n, (YZ)n−1)

−H((YZ)n|(YZ)n−1) + H((YZ)n|X1n, (YZ)n−1)

= I ((YZ)n;X1n|X2n, (YZ)n−1)− I ((YZ)n;X1n|(YZ)n−1)

= I (X1n;X2n|(YZ)n, (YZ)n−1)− I (X1n;X2n|(YZ)n−1).

In (a) we use that

H((YZ)n|W2, (YZ)n−1) = H((YZ)n|W2,X2n, (YZ)n−1)

≤ H((YZ)n|X2n, (YZ)n−1),

etc., and

H((YZ)n|W1,W2, (YZ)n−1) = H((YZ)n|W1,W2,X1n,X2n, (YZ)n−1)

= H((YZ)n|X1n,X2n, (YZ)n−1).
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Lemma (Local dependence balance bound)

I (W1;W2|(YZ)n, (YZ)n−1)− I (W1;W2|(YZ)n−1)

≤ I (X1n;X2n|(YZ)n, (YZ)n−1)− I (X1n;X2n|(YZ)n−1).

Increase in dependence between W1 and W2 by observing (YZ)n is upper
bounded by increase in dependence between X1n and X2n by observing
(YZ)n, all given (YZ)n−1.

Lemma

For a MAC with extra output Z in class K we have that
I (W1;W2|(YZ)n−1) = 0 for all n = 1, 2, · · · ,N.

PROOF: By induction.

1 First note that I (W1;W2) = 0.

2 Let I (W1;W2|(YZ)n−1) = 0 for some n = 1, 2, · · · ,N. Then also
I (X1n;X2n|(YZ)n−1) = 0 and for a MAC with extra output Z in K this
implies that I (X1n;X2n|(YZ)n, (YZ)n−1) = 0. Now from the local DBB
it follows that I (W1;W2|(YZ)n, (YZ)n−1) = 0.
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Consequences of the Local DBB

Using standard techniques we can now prove:

Theorem

An outer bound for a MAC with FB is

Rf ⊆ {(R1,R2) : 0 ≤ R1 ≤ I (X1;YZ |X2,U),

0 ≤ R2 ≤ I (X2;YZ |X1,U),

R1 + R2 ≤ I (X1,X2;Y ), for

P(u, x1, x2, y , z) = P(u)P(x1|u)P(x2|u)P(y , z|x1, x2)}

if the MAC with an extra output Z is in class K.

CONSEQUENCE: A MAC for which there is a function φ such that
X1 = φ(Y ,X2) with extra output Z = X1 is in class K, since
I (X1;X2|Y ,Z) = I (X1;X2|Y ,X1) = 0.
By the above theorem again the Cover-Leung region is the capacity region
for such channels, since I (X1;YZ |X2,U) = I (X1;Y |X2,U) and
I (X2;YZ |X1,U) = I (X2;Y |X1,U).
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Global Dependence Balance Bound

0 ≤ I (W1;W2|(YZ)N)− I (W1;W2)

=
N∑

n=1

[I (W1;W2|(YZ)n−1), (YZ)n)− I (W1;W2|(YZ)n−1)]

(b)
=

N∑
n=1

[I (X1n;X2n|(YZ)n, (YZ)n−1)− I (X1n;X2n|(YZ)n−1)].

where (b) follows from the local DBB.

Lemma (Global dependence balance bound)

N∑
n=1

[I (X1n;X2n|(YZ)n, (YZ)n−1)− I (X1n;X2n|(YZ)n−1)] ≥ 0.
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A Consequence of the Global DBB

Using standard techniques we can now prove:

Theorem

An outer bound for a MAC with FB is

Rf ⊆ {(R1,R2) : 0 ≤ R1 ≤ I (X1;YZ |X2,U),

0 ≤ R2 ≤ I (X2;YZ |X1,U),

R1 + R2 ≤ I (X1,X2;Y ), for

P(u, x1, x2, y , z) = P(u)P(x1, x2|u)P(y , z|x1, x2)

such that I (X1;X2|YZ ,U) ≥ I (X1;X2|U)}

if the MAC has an extra output Z.

DEPENDENCE BALANCE: I (X1;X2|YZ ,U) ≥ I (X1;X2|U), i.e. produced
dependence cannot be smaller than consumed dependence.
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Concluding Remarks

Bounds and capacity regions for MACs with FB (Hekstra-W. (1985,
1989)).

Similar results for Two-Way Channels, especially for the binary
multiplying channel (Hekstra-W. (1985, 1989)).

Gaussian MAC and Interference Channels with FB (Gastpar-Kramer
(2006, 2007))

Recent results on MACs with FB, MACs with noisy FB or with user
cooperation, Interference Channels with user cooperation, Gaussian
cases (Tandon-Ulukus (2007 ...)

Relay Channel?

Does something similar exist for the broadcast channel?
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