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Sufficient Statistics

Random variable X ∈ X has distribution PX|θ which depends on a
parameter θ ∈ Θ.

To estimate θ, we often don’t need X but some function of X, say
Y = f (X) ∈ Y is sufficient.

Y = f (X) is called sufficient statistics for the family {PX|θ}.

In this case, X (−− Y (−− θ forms a Markov chain. Equivalently,

PX|θ(x) =
∑
y∈Y

PX|Y(x|y)PY|θ(y) =
∑
y∈Y

PX,Y|θ(x, y) ∀(x, θ)

In information theory language,

I(θ; X) = I(θ; f (X)) = I(θ; Y).

Y provides as much information about θ as X does.
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Examples

Xn = (X1, . . . ,Xn) ∈ {0, 1}n is i.i.d. Bernoulli with parameter
θ = Pr[Xi = 1]. Then

Xn (−− 1
n

n∑
i=1

Xi (−− θ

forms a Markov chain so Y = f (Xn) = 1
n

∑n
i=1 Xi is a sufficient

statistic for the family {PXn|θ}.

Exponential family with natural parameter θ = (θ1, . . . , θd)

Pn
X|θ(xn) = Pn

X(xn) exp
[
〈Y(n)(xn), θ〉 − nA(θ)

]
.

Vector of sufficient statistics Y(n)(xn) = (Y(n)
1 (xn), . . . ,Y(n)

d (xn)) with

Y(n)
i (xn) =

n∑
j=1

Yi(xj), i = 1, . . . , d.
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Another Interpretation : Exact Reproduction of PX|θ

- - -
X ∼ PX|θ Y P̂X = EX|θ[ϕ(f (X))]

f ϕ

If Y is a sufficient statistic relative to {PX|θ}, can find f and ϕ s.t.
PX|θ can be reproduced exactly using the code (f , ϕ).

Set decoder as

ϕ(y) = PX|Y=y = PX|Y=y,θ, ∵ X − Y − θ

Denote (f ◦ PX|θ)(y) =
∑

x∈X PX|θ(x) Pr[ f (x) = y ]. Hence,

ϕ ◦ f ◦ PX|θ =
∑
y∈Y

(f ◦ PX|θ)(y)ϕ(y)

=
∑
y∈Y

PX|θ{x ∈ X : f (x) = y}PX|Y=y,θ = PX|θ.
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Memory Size

Example 1: Binomial case. Since X = {0, 1}, the sufficient statistic

1
n

n∑
j=1

Xj ∈
{

0
n
,

1
n
,

2
n
, . . . ,

n
n

}

can take on n + 1 ∼ n1 values.

Example 2: k-nomial case, i.e., X = {0, 1, . . . , k − 1} and we have
n samples. Size of sufficient statistics Y(n)(xn) satisfies

∣∣{Y(n)(xn) : xn ∈ X n}
∣∣ =

(
n + k − 1

k − 1

)
� nk−1

so the size of the memory is � nk−1.

Example 3: θ ∈ Θ = [0, 1] is the unknown mean of a Gaussian.
Sufficient statistics can take uncountable number of values.
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Our Contribution

Reduce d in nd by relaxing exact recovery condition on Pn
X|θ.

- - -
Xn ∼ Pn

X|θ Y P̂Xn

fn ϕn

Instead of exact recovery

ϕn ◦ fn ◦ Pn
X|θ = Pn

X|θ, ∀ n ∈ N,

we only require that

lim
n→∞

∫
Θ

F
(
ϕn ◦ fn ◦ Pn

X|θ︸ ︷︷ ︸
synthesized

, Pn
X|θ︸︷︷︸

original

)
µ(dθ) ≤ δ, for some δ ≥ 0,

where F(·, ·) is a “distance measure” between distributions.

Often, we can reduce the exponent to d/2 and this is optimal.
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Definition of Code

- - -
Xn ∼ Pn

X|θ Y P̂Xn

fn ϕn

Definition (Code)

A size-Mn code Cn = (fn, ϕn) consists of

A possibly stochastic encoder fn : X n → Yn = {1, . . . ,Mn};

A decoder ϕn : Yn → P(X n) (set of distributions on X n)
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Definition of Error

Definition (Average Error)

The average error is a code Cn = (fn, ϕn) is defined as

ε(Cn) :=

∫
Θ

F
(
ϕn ◦ fn ◦ Pn

X|θ,P
n
X|θ

)
µ(dθ)

= Eθ∼µ
[
F
(
ϕn ◦ fn ◦ Pn

X|θ,P
n
X|θ

)]
where µ(·) is the prior distribution of θ.
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Measuring Errors Between Distributions

Consider two commonly-used error criteria.

Variational distance

F(P,Q) = ‖P− Q‖1 = 2 sup
A⊂X

|P(A)− Q(A)| ∈ [0, 2]

Relative entropy (Kullback-Leibler distance)

D(P‖Q) =
∑

x

P(x) log
P(x)

Q(x)
∈ [0,∞]

Pinsker’s inequality

log e
2
‖P− Q‖2

1 ≤ D(P‖Q)
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Minimum Compression Rate

Given a code Cn, denote its error under the variational distance
and relative entropy as ε(1)(Cn) and ε(2)(Cn) resp.

Denote its size as |Cn|.

Find smallest exponent r in |Cn| � nr subject to a bounded error.

Definition (Minimum Compression Rate)

Let δ ≥ 0. Define

R(i)(δ) := inf
{Cn}n∈N

{
lim

n→∞

log |Cn|
log n

: lim
n→∞

ε(i)(Cn) ≤ δ
}
, i = 1, 2.

lim
n→∞

log |Cn|
log n

= r ⇐⇒ |Cn| � nr
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Minimum Compression Rate: Properties

Because δ 7→ R(i)(δ) is monotone

R(i)(δ′) ≤ R(i)(δ), ∀ 0 ≤ δ ≤ δ′.

Due to Pinsker’s inequality log e
2 ‖P− Q‖2

1 ≤ D(P‖Q),

R(1)(0) ≤ R(2)(0).

Our goal is to characterize R(i)(δ) for all values of δ for statistical
models {PX|θ} under reasonable assumptions.

Typically for Θ ⊂ Rd,

R(i)(δ) =
d
2
.
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Assumptions

(i) Parameter space Θ ⊂ Rd is bounded and has positive Lebesgue
measure (in Rd).

(ii) Local approximation of relative entropy: As θ′ → θ,

D
(
PX|θ

∥∥PX|θ′
)

=
1
2

(θ − θ′)TJ(θ − θ′) + o(‖θ − θ′‖2)

where J is the Fisher information matrix.

(iii) Asymptotic efficiency: Exists a sequence of estimators θ̂n(Xn) s.t.

Eθ∼µ
[
D
(
PX|θ̂n(Xn)

∥∥PX|θ
)]

=
d
2n

+ o
(

1
n

)
.

(iv) Local asymptotic normality of MLE

(v) Local asymptotic sufficiency of MLE
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Main Result

Theorem (Hayashi and Tan (2018))

1 Assume (i), (ii), (iv), and (v), under the variational distance
criterion

R(1)(δ) =
d
2

∀ δ ∈ [0, 2).

2 Assume (i), (ii), and (iii), under the relative entropy criterion

R(2)(δ) =
d
2

∀ δ ∈
[d

2
,∞
)
.

3 If in addition {PX|θ}θ∈Θ is an exponential family,

R(2)(δ) =
d
2

∀ δ ∈ [0,∞).
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Main Result : Remarks

We construct codes Cn that achieve zero asymptotic error and
have memory size |Cn| � nd/2.

Compare to exact sufficient statistics in which |Cn| � nd.

But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,

lim
n→∞

ε(1)(Cn) ≤ δ, for any δ ∈ [0, 2),

lim
n→∞

ε(2)(Cn) ≤ δ, for any δ ∈ [0,∞),

the memory requirement d/2 is asymptotically the same.

This is known in information theory as a strong converse.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 18 / 33



Main Result : Remarks

We construct codes Cn that achieve zero asymptotic error and
have memory size |Cn| � nd/2.

Compare to exact sufficient statistics in which |Cn| � nd.

But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,

lim
n→∞

ε(1)(Cn) ≤ δ, for any δ ∈ [0, 2),

lim
n→∞

ε(2)(Cn) ≤ δ, for any δ ∈ [0,∞),

the memory requirement d/2 is asymptotically the same.

This is known in information theory as a strong converse.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 18 / 33



Main Result : Remarks

We construct codes Cn that achieve zero asymptotic error and
have memory size |Cn| � nd/2.

Compare to exact sufficient statistics in which |Cn| � nd.

But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,

lim
n→∞

ε(1)(Cn) ≤ δ, for any δ ∈ [0, 2),

lim
n→∞

ε(2)(Cn) ≤ δ, for any δ ∈ [0,∞),

the memory requirement d/2 is asymptotically the same.

This is known in information theory as a strong converse.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 18 / 33



Main Result : Remarks

We construct codes Cn that achieve zero asymptotic error and
have memory size |Cn| � nd/2.

Compare to exact sufficient statistics in which |Cn| � nd.

But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,

lim
n→∞

ε(1)(Cn) ≤ δ, for any δ ∈ [0, 2),

lim
n→∞

ε(2)(Cn) ≤ δ, for any δ ∈ [0,∞),

the memory requirement d/2 is asymptotically the same.

This is known in information theory as a strong converse.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 18 / 33



Main Result : Strong Converse

-

6

d/2
lim

n→∞

log |Cn|
log n0

2

‖P− Q‖1

lim
n→∞

ε(1)(Cn)
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Weak Achievability for Relative Entropy: R(2)(d
2) ≤

d
2

J. Rissanen

Inventor of the minimum description length (MDL) principle for
model selection (among many other things).

Quantize the MLE similarly to Rissanen.
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Weak Achievability for Relative Entropy: R(2)(d
2) ≤

d
2

Compute MLE θ̂n from data Xn.

Encoder: Apply discretization to θ̂n with span t/
√

n and store this
discretized parameter θ̂′n ∈ Θn,t in the memory Θn,t.

Θ

Θn,t-�
t/
√

n tθ̂n
θ̂′nt

Memory is Θn,t = Θ ∩ t√
nZ

d and |Θn,t| � nd/2.

Decoder is the deterministic map from θ̂′n to distribution Pn
X|θ̂′n

.

Can show that
lim

n→∞
ε(2)(Cn) ≤ d

2
by eventually taking t ↓ 0. But error is non-vanishing. Weak
achievability.
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Exponential Families yield Stronger Result: R(2)(0) ≤ d
2

Assume that {PX|θ} is an exponential family

PX|θ(x) = PX(x) exp [〈θ,Y(x)〉 − A(θ)] .

Moment parametrization:

η(θ) = ∇θA(θ) = Eθ[Y(X)].

Set of feasible moment parameters H := {η(θ) : θ ∈ Θ}.

η̂n = 1
n

∑n
j=1 Y(Xj) is a sufficient statistic for Xn ∼ Pn

X|θ.

Encoder: Apply discretization to η̂ with span t/
√

n, i.e.,

η̂′n = βt(η̂n) = arg min
η′∈Hn,t

‖η′ − η̂n‖2, where Hn,t = H ∩ t√
n
Zd

H
Hn,t-�

t/
√

n tη̂n
η̂′nt
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‖η′ − η̂n‖2, where Hn,t = H ∩ t√
n
Zd

H

Hn,t-�
t/
√

n tη̂n
η̂′nt
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Exponential Families yield Stronger Result: R(2)(0) ≤ d
2

Decoder: Uniform mixture of conditional distributions whose
moment parameter is discretized to η̂′n:

ϕ(η̂′n) =
1

|β−1
t (η̂′n)|

∑
η∈β−1

t (η̂′n)

PXn|Y=nη

where
β−1

t (η̂′n) :=
{
η̂n : βt(η̂n) = η̂′n

}
.

Hn,t-�
t/
√

n

H
η̂′nt

- �
� 1/n

.......︸︷︷︸
.......β−1

t (η̂′n)

Asymptotic error under relative entropy is zero and |Hn,t| � nd/2.
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Weak Converse Variational Distance: R(1)(0) ≥ d
2

B. Clarke A. Barron

D
(

Pn
X|θ

∥∥∥∥ ∫
Θ

Pn
X|θ′ µ(dθ′)︸ ︷︷ ︸
mixture

)
= ??
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Weak Converse Variational Distance: R(1)(0) ≥ d
2

Can obtain a weak converse R(1)(0) ≥ d
2 by using Clarke and

Barron’s asymptotic formula:

D
(

Pn
X|θ

∥∥∥∥ ∫
Θ

Pn
X|θ′ µ(dθ′)

)
=

d
2

log n + O(1).
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2 by using Clarke and

Barron’s asymptotic formula:

D
(

Pn
X|θ

∥∥∥∥ ∫
Θ

Pn
X|θ′ µ(dθ′)

)
=

d
2

log n + O(1).

Additionally use
ε(1)(Cn)→ 0

and the uniform continuity of mutual information [Zhang (1997)]:∣∣IP(A; B)− IP′(A; B)
∣∣ ≤ 3ν log(|A||B| − 1) + 3H(ν)

where

ν =
1
2
‖P− P′‖1.
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Strong Converse Variational Distance : R(1)(2−) ≥ d
2

We want to show that for any sequence of codes {Cn}n∈N such that

lim
n→∞

ε(1)(Cn) < 2

the memory size cannot be smaller than nd( 1
2−γ) for any γ > 0.

Assume, to the contrary, that ∃ Cn and α ∈ (0, 2) with error

Eθ∼µ
[∥∥Pn

X|θ − (ϕ ◦ f )(θ)
∥∥

1

]
≤ 2− α,

with memory size Mn = O(n
1
2−γ) for some γ > 0.

Define S =
{
θ ∈ Θ : ‖Pn

X|θ − (ϕ ◦ f )(θ)‖1 ≤ 2− α
2

}
. Markov

inequality says
µ(S) ≥ α

4− α
> 0.
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Strong Converse Variational Distance : R(1)(2−) ≥ d
2

Assume λ� µ. Then λ(S) > 0.

Can choose 5
αMn points {θi : i = 1, . . . , 5

αMn} ⊂ S such that

‖Pn
X|θi
− (ϕ ◦ f )(θi)‖1 ≤ 2− α

2
, |θi − θj| > λ(S)

(
5
α

Mn

)−1

Θ

[ ]St t t t t t t tθi θj

-�

Ω(n−
1
2 +γ)

Because separation is Ω(n−
1
2 +γ), there exists disjoint Di ⊂ X n,

i = 1, . . . , 5
αMn such that

Pn
X|θi

(Di) ≥ 1− ε, for any ε ∈ (0, 1).

Follows by weak law of large numbers.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 29 / 33



Strong Converse Variational Distance : R(1)(2−) ≥ d
2

Assume λ� µ. Then λ(S) > 0.

Can choose 5
αMn points {θi : i = 1, . . . , 5

αMn} ⊂ S such that

‖Pn
X|θi
− (ϕ ◦ f )(θi)‖1 ≤ 2− α

2
, |θi − θj| > λ(S)

(
5
α

Mn

)−1

Θ

[ ]St t t t t t t tθi θj

-�

Ω(n−
1
2 +γ)

Because separation is Ω(n−
1
2 +γ), there exists disjoint Di ⊂ X n,

i = 1, . . . , 5
αMn such that

Pn
X|θi

(Di) ≥ 1− ε, for any ε ∈ (0, 1).

Follows by weak law of large numbers.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 29 / 33



Strong Converse Variational Distance : R(1)(2−) ≥ d
2

Assume λ� µ. Then λ(S) > 0.

Can choose 5
αMn points {θi : i = 1, . . . , 5

αMn} ⊂ S such that

‖Pn
X|θi
− (ϕ ◦ f )(θi)‖1 ≤ 2− α

2
, |θi − θj| > λ(S)

(
5
α

Mn

)−1

Θ

[ ]S

t t t t t t t tθi θj

-�

Ω(n−
1
2 +γ)

Because separation is Ω(n−
1
2 +γ), there exists disjoint Di ⊂ X n,

i = 1, . . . , 5
αMn such that

Pn
X|θi

(Di) ≥ 1− ε, for any ε ∈ (0, 1).

Follows by weak law of large numbers.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 29 / 33



Strong Converse Variational Distance : R(1)(2−) ≥ d
2

Assume λ� µ. Then λ(S) > 0.

Can choose 5
αMn points {θi : i = 1, . . . , 5

αMn} ⊂ S such that

‖Pn
X|θi
− (ϕ ◦ f )(θi)‖1 ≤ 2− α

2
, |θi − θj| > λ(S)

(
5
α

Mn

)−1

Θ

[ ]St t t t t t t tθi θj

-�

Ω(n−
1
2 +γ)

Because separation is Ω(n−
1
2 +γ), there exists disjoint Di ⊂ X n,

i = 1, . . . , 5
αMn such that

Pn
X|θi

(Di) ≥ 1− ε, for any ε ∈ (0, 1).

Follows by weak law of large numbers.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 29 / 33



Strong Converse Variational Distance : R(1)(2−) ≥ d
2

Assume λ� µ. Then λ(S) > 0.

Can choose 5
αMn points {θi : i = 1, . . . , 5

αMn} ⊂ S such that

‖Pn
X|θi
− (ϕ ◦ f )(θi)‖1 ≤ 2− α

2
, |θi − θj| > λ(S)

(
5
α

Mn

)−1

Θ

[ ]St t t t t t t tθi θj

-�

Ω(n−
1
2 +γ)

Because separation is Ω(n−
1
2 +γ), there exists disjoint Di ⊂ X n,

i = 1, . . . , 5
αMn such that

Pn
X|θi

(Di) ≥ 1− ε, for any ε ∈ (0, 1).

Follows by weak law of large numbers.

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 29 / 33



Strong Converse Variational Distance : R(1)(2−) ≥ d
2

Note that 1
2‖P− Q‖1 = supA |P(A)− Q(A)|.

Take P = (ϕ ◦ f (θi)) and Q = Pn
X|θi

.

This implies

1− α

4
≥ (ϕ ◦ f (θi))(Dc

i )− Pn
X|θi

(Dc
i ) ≥ (ϕ ◦ f (θi))(Dc

i )− ε

We have

(ϕ ◦ f (θi))(Di) ≥
α

4
− ε, ∀ i = 1, . . . ,

5
α

Mn.
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Strong Converse Variational Distance : R(1)(2−) ≥ d
2

Mn ≥
Mn∑
j=1

(ϕ(j))
( 5

α
Mn⋃

i=1

Di

)
[ϕ(j) is a prob. meas.]

=

5
α

Mn∑
i=1

( Mn∑
j=1

(ϕ(j))(Di)

)
[Di are disjoint]

≥

5
α

Mn∑
i=1

(ϕ ◦ f (θi))(Di) [ϕ ◦ f is a cvx. comb. of ϕ(j)]

≥

5
α

Mn∑
i=1

(α
4
− ε
)

=
5
α

Mn

(α
4
− ε
)

Contradiction if 0 < ε < α
20 .
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Concluding Remarks

- - -
Xn ∼ Pn

X|θ Y P̂Xn = EXn|θ[ϕn(fn(Xn))]

≈ Pn
X|θ

fn ϕn

Approximate sufficient statistics and minimum size of memory Y.

The optimal rate d
2 (exponent in nd/2) is reduced from d (cf. exact

sufficient statistics) for multinomial distributions.

Weak results (weak converse and weak achievability) follow from
the results by Rissanen and Clarke-Barron.

Achievability and strong converse parts do not follow from them.
We invented new methods.

Feb 2018 issue of the IEEE Trans. on Inform. Th.
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