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m Random variable X € X has distribution Py, which depends on a
parameter 6 € ©.

m To estimate 6, we often don’t need X but some function of X, say
Y = f(X) € Y is sufficient.

m Y = f(X) is called sufficient statistics for the family {Pxg}.

m In this case, X —— Y —— 6 forms a Markov chain. Equivalently,

PX|9 ZPX|Y (x]y) PY\e ZPX Y\e x,y) V(x,0)
yey yeY

m In information theory language,

1(0;X) = 1(6; £(X)) = 1(6; Y).
Y provides as much information about 6 as X does.
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B X" =(X,...,X,) € {0,1}"is i.i.d. Bernoulli with parameter
6 = Pr[X; = 1]. Then

1 n
1=

forms a Markov chain so Y = f(X") = % >, X; is a sufficient
statistic for the family {Py»y}.
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B X" =(X,...,X,) € {0,1}"is i.i.d. Bernoulli with parameter
6 = Pr[X; = 1]. Then

1 n
1=

forms a Markov chain so Y = f(X") = % >, X; is a sufficient
statistic for the family {Py»y}.

m Exponential family with natural parameter 6 = (6, ...,6,)
Yo (") = PR exp [(Y (x"),0) — nA(0)].

Vector of sufficient statistics ¥ (x*) = (Y™ (x), ..., ¥{" (x")) with

vy =3 Vi), i=1,....d
j=l1
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m If Y is a sufficient statistic relative to {Py¢}, can find f and ¢ s.t.

Py|y can be reproduced exactly using the code (f, ).
m Set decoder as

©(¥) = Pxjy=y = Px|y—y6; S X-Y—6

m Denote (f © Px|p)(y) = 2ex Pxjo(x) Pr[f(x) = y]. Hence,

pofoPxy= Z (f o Pxj0) ) ()
yey
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m Example 1: Binomial case. Since X = {0, 1}, the sufficient statistic
012
fzx c { ! }
I’l I’l n n

can take on n + 1 ~ n! values.
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m Example 1: Binomial case. Since X = {0, 1}, the sufficient statistic
012
fzx c { ! }
I’l n n n

can take on n + 1 ~ n! values.

m Example 2: k-nomial case, i.e., X ={0,1,...,k— 1} and we have
n samples. Size of sufficient statistics ¥ (x") satisfies

|{Y(")(x") Xt e X"}l = <n2f1 1) = k!

so the size of the memory is < nf=1.

m Example 3: § € © = [0, 1] is the unknown mean of a Gaussian.
Sufficient statistics can take uncountable number of values.
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Our Contribution

m Reduce d in n? by relaxing exact recovery condition on P

Xn ~ Pn

Y

X|0°

m Instead of exact recovery

©n © fn © Pyjg = Pyjg;

we only require that

n—o0

synthesized

original

©n

P

VneN,

lim F(gpn © fa 0 Pxig, Py ) p(df) <o, forsomed >0,
O N\ —~—— ~~

where F(-,-) is a “distance measure” between distributions.
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m Instead of exact recovery

©n © fn © Pyjg = Pyjg;

we only require that

n—o0

synthesized

original

©n

Py

VneN,

lim F(gpn © fa 0 Pxig, Py ) p(df) <o, forsomed >0,
O N\ —~—— ~~

where F(-,-) is a “distance measure” between distributions.

m Often, we can reduce the exponent to /2 and this is optimal.
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Definition of Code

X" ~ P}

X0, 1

Definition (Code)

A size-M,, code C, = (fy, pn) consists of

©n

p xn

m A possibly stochastic encoder f, : X" — Y, = {1,...,M,};

m A decoder ¢, : ), — P(X") (set of distributions on X™)
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Definition of Error

Definition (Average Error)

The average error is a code C, = (f,, ¢n) is defined as

e(Cn) = /6F<<Pn Ofn0P§|9’P§(|9> 1(do)
= Egp [F (gon ofyo0 P;’(lo,P;’(la)]

where u(-) is the prior distribution of 6.
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Measuring Errors Between Distributions

m Consider two commonly-used error criteria.

m Variational distance

F(P,Q) =[P —Qlli =2 sup |P(A) — Q(A)| € [0,2]
ACX

m Relative entropy (Kullback-Leibler distance)

D(P|Q) = ZP log € [0, oc]

m Pinsker’s inequality

1
L)
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Minimum Compression Rate

m Given a code C,, denote its error under the variational distance
and relative entropy as £(V)(C,) and £?(C,) resp.

m Denote its size as |C,]|.
m Find smallest exponent r in |C,| < n” subject to a bounded error.

Definition (Minimum Compression Rate)
Let 6 > 0. Define

RO(§):= inf { I g [Gul im 0(C,) <6y, i=1,2
{Cilnen (no00 logn  n—oo
lim log |Gl =r |Cu| < n"
n—oo logn
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Minimum Compression Rate: Properties

m Because ¢ — R (§) is monotone
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m Because ¢ — R (§) is monotone

RO(8") <RO(5), VOo<§<d.

m Due to Pinsker’s inequality ¢¢||P — 0|} < D(P||0),

RM(0) < R®(0).

m Our goal is to characterize R()(4) for all values of § for statistical
models {Pyy} under reasonable assumptions.

m Typically for © c R,

RO (§) = g.
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(i) Parameter space © c R? is bounded and has positive Lebesgue
measure (in RY).

(i) Local approximation of relative entropy: As 8’ — 6,
1
D(Pxjo || Pxjor) = 5(9 — 0TI —0)+o(l0 — 0|
where J is the Fisher information matrix.

(i) Asymptotic efficiency: Exists a sequence of estimators 6,(X") s.t.

Pxo)] =;+0(;>.

(iv) Local asymptotic normality of MLE

Eop [D (Pyja,xm

(v) Local asymptotic sufficiency of MLE
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Main Result

Theorem (Hayashi and Tan (2018))

Assume (i), (ii), (iv), and (v), under the variational distance
criterion

RD@G) ==  Vvée0,2).
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Main Result

Theorem (Hayashi and Tan (2018))

Assume (i), (ii), (iv), and (v), under the variational distance
criterion
RO == Vvéelo,2).
Assume (i), (ii), and (iii), under the relative entropy criterion
d
@5 = 2 <
RO (5) Vde[z,oo).

If in addition {Px|g }eco is an exponential family,

RO () = g V5 € [0, 00).
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Main Result : Remarks

m We construct codes C, that achieve zero asymptotic error and
have memory size |C,| =< n/?.
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Main Result : Remarks

m We construct codes C, that achieve zero asymptotic error and
have memory size |C,| =< n/?.

m Compare to exact sufficient statistics in which |C,| < n¢.

m But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,

lim £(V(C,) <46, foranyé e [0,2),

n—oo
lim £ (¢,) <4, foranyéd e [0,00),

n—oo

the memory requirement d/2 is asymptotically the same.
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Main Result : Remarks

m We construct codes C, that achieve zero asymptotic error and
have memory size |C,| =< n/?.

m Compare to exact sufficient statistics in which |C,| < n¢.

m But (this is more cool!), we show that even if the error is
non-vanishing, i.e.,
lim W, <6, foranyselo,2),

Iim e?(c,) <6, foranyd e [0,0),

n—oo

the memory requirement d/2 is asymptotically the same.

m This is known in information theory as a strong converse.
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Main Result : Strong Converse

lim ¢ (C,)

n—oo

1P = QI

— 1
0 % _ Tm 0g |Cnl
d/2 n—oo logn
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1P = QI
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Proof Ideas : Achievability

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 20/33



Weak Achievability for Relative Entropy: R (‘5)
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Weak Achievability for Relative Entropy: R!

Universal Coding, Information,
Prediction, and Estimation

JORMA RISSANEN

A conneetion between universal codes and the problems of
Mum ‘ot emiia con s o o ot s
for the mean length of universal codes |5 shaspened nd generalized, and
optimun universal codes constructed. The bound is deflned o give the
information.in sirings relafive o the consklered elass af processes.
length eriterion for estimation of
paramet number, s given a fundumental information.
thearetic justification by \N!w"g that ifs estimators achieve the informa-
tion in the strings. Tt is also shown that one camnot do prediction i

Masuscript received July 13, 1983; revised Tanuary 16, 1984, This work
was presented in pat at the IEEE Interational Symposium on Informa-
tion Theory, St. Jovite, Canada, Sepumbet 26 30 1983,

‘This work was done while the author was Visiting Professor at the
Daparimint o1 Syoem Scmon, Univaraty of e Loe Angeles
while on leave: from the TBM Research Laboratory, San Jose, CA 95163

Guussian nd,
which 15 determined by the (RIGrMation in e dar.

L. InTrRODUCTION

HERE are three main problems in signal processing:
prediction, data compression, and estimation, In the
first, we are given a string of observed data points x,,
=1,-+,n one after another, and the objective is to
predict for each ¢ the next outcome x,,, from what we
have seen so far. In the data compression problem we are
given a similar sequence of observations, each truncated 1o
some finite precision, and the objective is to redescribe the
data with a suitably designed code as efficiently as possi-
ble, i.c., with a short code length.

J. Rissanen

m Inventor of the minimum description length (MDL) principle for
model selection (among many other things).
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Universal Coding, Information,
Prediction, and Estimation

JORMA RISSANEN

A connection between universal codes and the problemss of  Gaussian nd,
Mvm st emiia e Db Ko bt s ik & e Uy the (Riormation in e @ats.
for the mean length of universal codes Is sharpened and generalized, wnd
aptinum universal codes constructed. The bound is defined fo ghve the L INTRODUCTION
information in strings relative fo the considered class of processes.
earlier derived mininum description length criterion for estimation of HERE are three main problems in signal processing:
m#h!w;“wm;ym‘-:'?:‘ -“lon;-;m.:ul‘;m;mm prediction, data compression, and estimation. In the
ieation g ht 1 et ve. the informa- i i
ion In e strings. Tt o, tha one cannat do. predicion Ixisl\ we are given a string of observed data points x,
£=1:-,n one after another, and the objective is to

predict for each ¢ the next outcome x,,, from what we
Manusceips received July 13, 1983, revised Tanuary 16, 1984, This work  1a¥e seen 50 far. In the data compression problem we are

s presented in part ot the [EEL Internaional Symposium on Informa:  Riven a similar sequence of observations, each truncated to J. Rissanen
tcn Theosy, S Jovi i:f:umgn Septenber 16-10, 1963 some finite precision, and the objective is 1o redescribe the .

Prof the . » h
Depariment of System Scincer University of Pty Lo oo, data with a suitably designed code as efficiently as possi-
while on leave from the TBM I\crnldl Laboratory, San Jose, CA 95193, ble, i.e., with a short code length,

m Inventor of the minimum description length (MDL) principle for
model selection (among many other things).

m Quantize the MLE similarly to Rissanen.
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Weak Achievability for Relative Entropy: R (‘5)

m Compute MLE 6, from data X".
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m Compute MLE 6, from data X".

m Encoder: Apply discretization to 6, with span ¢/,/n and store this
discretized parameter 6, € ©,,, in the memory ©,,,.

t/v/n On,s A
L q L1 e
B ]

m Memory is ©,, = ©N J=Z and [©,,| = nd/?

m Decoder is the deterministic map from #/, to distribution Pn|9/

m Can show that 4
lim £?)(C,) < 5

n—o0
by eventually taking 7 | 0. But error is non-vanishing. Weak
achievability.
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m Decoder: Uniform mixture of conditional distributions whose
moment parameter is discretized to 7):

L)D(ﬁ;l) - ’,3 ( )| Z PX”\Y nn
)

where

B (i) = {in : Bilim) =i}
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Exponential Families yield Stronger Result: R?)(0) <

m Decoder: Uniform mixture of conditional distributions whose
moment parameter is discretized to 7):

L)D(ﬁ;l) - ’,6 ( )| Z PX”\Y nn
)

where

B (i) = {in : Bilim) =i}

B (i)
m Asymptotic error under relative entropy is zero and |H,,,| = n?/2.
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Weak Converse Variational Distance: R (0) > 4
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Information-Theoretic Asymptotics
of Bayes Methods

BERTRAND S. CLARKE AND ANDREW R. BARRON, MEMBER, IEEE

Absiract —1n the absence of knowledge of the rue demsity function,
Bayesian models take the joint density function for a sequence of 1
randam variabkes to be an average of densities with respect o a prior.
We examine the relative entropy distance D, between the fruc densiy
nd the Bayesian density and s that the asymptotic distance i
(d 72Kiog )+ is the dimension of the parameter vector.
Therelare, the relative mlmpv rate D, /7 converges (o zero at rate
(log 1)/ The constant c, which we explicity identiy. depends only an
the prior ﬂemilv function and the Fisher information marrix evaluated
at the teue parainetsr value, Consequences are given for densily cstima-
(o, universl dats sompression, <ompeste Mypolhesis testngs am
stock-market portiolio selectiun.

L IxTRODUCTION

TIIE RELATIVE

entropy is a mathematical expres-

cent Tan (NUS)

we identify. We note that if the mixture excludes a
ncighborhood of the truc density, then the behavior of
the relative entropy is, asymptotically, of the order of the
sample size; in addition, if the prior is discrete and assigns
positive mass at d,, the relative entropy then asymptoti-
cally tends to a constant

The relative entropy rate between the true distribution
and the mixture of distributions has been examined by
Barron [4]. It is shown that if the prior assigns positive
mass to the relative entropy neighborhoods {8: DCP, || ;)
<€l e >0, then
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Weak Converse Variational Distance: R (0) > 4

m Can obtain a weak converse R (0) > ¢ by using Clarke and
Barron’s asymptotic formula:

D( |0

d
/ PYigr ,u(d&’)) =3 logn + O(1).
(C]
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m Can obtain a weak converse R (0) > ¢ by using Clarke and
Barron’s asymptotic formula:

D( |0

m Additionally use

d
/ Py ,u(d&’)) =3 logn + O(1).
(C]

e, =0

and the uniform continuity of mutual information [Zhang (1997)]:
|1p(A; B) — Ipr(A; B)| < 3vlog(|A||B] — 1) + 3H(v)
where

1
= _||P—P||;.
v=3llP~P
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Weak Converse Variational Distance: R (0) > 4

m Can obtain a weak converse R(V(0) > 4 by using Clarke and
Barron’s asymptotic formula:

d
D<P§|9 /@P;le,u(de’)) = Elogn—i-O(l).

m Additionally use

1, =0
and the uniform continuity of mutual information [Zhang (1997)]:
| Ip(A;B) —  Ip(A;B) | < 3vlog(lA||B| — 1) +3H(v)
N—— N—_——

~
~dlogn  <H(Yn)<log|V| small

where

1
=_[|P=P|;.
2|| It
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Strong Converse Variational Distance : R()(27)

m We want to show that for any sequence of codes {C, }.en such that

Iim ¢V (c,) <2

n— 00

the memory size cannot be smaller than n¢G =) for any ~ > 0.
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m We want to show that for any sequence of codes {C, }.en such that

Iim ¢V (c,) <2

n—oo
the memory size cannot be smaller than n¢G =) for any ~ > 0.

m Assume, to the contrary, that 3C, and « € (0,2) with error
Eg [||Phis = (02O, ] <2

with memory size M,, = O(n%‘"’) for some v > 0.
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m We want to show that for any sequence of codes {C, }.en such that

Iim ¢V (c,) <2

n—oo
the memory size cannot be smaller than n¢G =) for any ~ > 0.

m Assume, to the contrary, that 3C, and « € (0,2) with error
Eg [||Phis = (02O, ] <2
with memory size M,, = O(n%‘"’) for some v > 0.

m DefineS={0cO:|P; Yo — (0o N0 <2 - 21. Markov
inequality says

u(S) =

> 0.
—
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Strong Converse Variational Distance : R™)(27) >

m Assume A < p. Then A(S) > 0.
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. o 5 !
Py~ (el 2= 5, 10-01 > x) (2,

S
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Strong Converse Variational Distance : R()(27)

m Assume A < p. Then A(S) > 0.

m Can choose 2M, points {#;:i=1,...,2M,} C S such that

. o 5 !
Py~ (el 2= 5, 10-01 > x) (2,

S

0 6
e @
{ Q(n=217) 1
m Because separation is Q(n*%“), there exists disjoint D; C X",
i=1,...,2M, such that
Y0, (Di) = 1 —, forany e € (0,1).

Follows by weak law of large numbers.
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m Note that 1(|P — Q|1 = sup, [P(A) — Q(A)].
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Strong Converse Variational Distance :

m Note that 1(|P — Q|1 = sup, [P(A) — Q(A)].
m Take P = (pof(#;)) and Q = P,

m This implies
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Strong Converse Variational Distance : R(V(27)

m Note that 1(|P — Q|1 = sup, [P(A) — Q(A)].
m Take P = (pof(#;)) and Q = P,

m This implies

1— % > (p o f(6:))(D5) — Py, (D5) = (0 0 f(6:))(D5) — e

m We have

(QD Of(el))(D,) 2 — €, VZ: 1,...,%Mn.

AR
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Strong Converse Variational Distance : R™)(27) >

M, > n (p()) ( QU D,) [¢(j) is a prob. meas.|
j=1 i=1

Vincent Tan (NUS) Approximate Sufficient Statistics POSTECH 31/33



Vincent Tan (NUS)
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v

M,
Z(@U))( Di) [o(j) is a prob. meas.]

=1 i=1

SMu , m,

Z (Z((P(i))(ﬂ)) [D; are disjoint]

i=1 N j=I

M,

Z(SO o f(6;))(D;) [ of is acvx. comb. of p(j)]
i=1
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v |

Qo ~. Qwn
< IM:
S
(@]
\H

v

M, M,
Z(@(i))( Di) [o(j) is a prob. meas.]
j=1 i=1
SMu , m,
(Z((P(i))(ﬂ)) [D; are disjoint]
i=1 j=1
(0:))(Dy) [pofis acvx. comb. of p(j)]

/N
&2
|
(@)
N—
Il
Qlw
<
/N
|0
|
(@)
N—

Il
—
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v

>

M, M,
Z(@(i))( Di) [o(j) is a prob. meas.]
j=1 i=1
M, M,
(Z((P(i))(ﬂ)) [D; are disjoint]
i=1 j=1
My
> (@ of(6:)) (D)) [ of is a cvx. comb. of ()]
i=1
M, 5
(5-9) = (59

Il
—

Contradiction if 0 < e < 5.
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B Conclusion
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Concluding Remarks

Xn

~ 1
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Y

I

©n

iz: Exn|9[80n(fn(xn))]

~ 71
~ Py

m Approximate sufficient statistics and minimum size of memory Y.
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m Approximate sufficient statistics and minimum size of memory Y.

m The optimal rate ¢ (exponent in n%/2) is reduced from d (cf. exact
sufficient statistics) for multinomial distributions.
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m Weak results (weak converse and weak achievability) follow from
the results by Rissanen and Clarke-Barron.
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m Approximate sufficient statistics and minimum size of memory Y.

m The optimal rate ¢ (exponent in n%/2) is reduced from d (cf. exact
sufficient statistics) for multinomial distributions.

m Weak results (weak converse and weak achievability) follow from
the results by Rissanen and Clarke-Barron.

m Achievability and strong converse parts do not follow from them.
We invented new methods.
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Y

X0, 1

©n

iz: Exn|9[80n(fn(xn))]

~ 71
~ Py

m Approximate sufficient statistics and minimum size of memory Y.

m The optimal rate ¢ (exponent in n%/2) is reduced from d (cf. exact
sufficient statistics) for multinomial distributions.

m Weak results (weak converse and weak achievability) follow from

the results by Rissanen and Clarke-Barron.

m Achievability and strong converse parts do not follow from them.

We invented new methods.

m Feb 2018 issue of the IEEE Trans. on Inform. Th.
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