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Graphical Models

I A graphical model provides a graphical representation of the local
dependence structure for a set of random variables

I factor graphs [KFL01], Bayesian networks [Pea88], etc...

I Consider random variables (X1, X2, . . . , X4) ∈ X 4 and Y where:

P (x1, x2, x3, x4) , P(X1 =x1, X2 =x2, . . . , X4 =x4|Y = y)

∝ f(x1, x2, x3, x4)

, f1(x1, x2)f2(x2, x3)f3(x3, x4)

I Given Y = y, this describes a Markov chain whose factor graph is

x1 f1 x2 f2 x3 f3 x4
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Inference via Marginalization

I Marginalizing out all variables except X1 gives

P(X1 = x1|Y = y) ∝ g1(x1) ,
∑

(x2,...,x4)∈X 3

f(x1, x2, x3, x4)

I Thus, the maximum a posteriori decision for X1 given Y = y is

x̂1 = arg max
x1∈X

∑
(x2,...,x4)∈X 3

f(x1, x2, x3, x4)

I For a general function, this requires roughly |X |4 operations

I Marginalization is efficient for tree-structured factor graphs

I For this Markov chain, roughly 5 |X |2 operations required

g1(x1) =
∑
x2∈X

f1(x1, x2)
∑
x3∈X

f2(x2, x3)
∑
x4∈X

f3(x3, x4)
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Sudoku: A Well-Known Example

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}

columns are permutations of {1, 2, . . . , 9}
subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

( 9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)



Graphical Models and Inference: Insights from Spatial Coupling 7 / 56

Sudoku: A Well-Known Example

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}
columns are permutations of {1, 2, . . . , 9}

subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

( 9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)



Graphical Models and Inference: Insights from Spatial Coupling 7 / 56

Sudoku: A Well-Known Example

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}
columns are permutations of {1, 2, . . . , 9}

subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

( 9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)



Graphical Models and Inference: Insights from Spatial Coupling 7 / 56

Sudoku: A Well-Known Example

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}
columns are permutations of {1, 2, . . . , 9}

subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

( 9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)



Graphical Models and Inference: Insights from Spatial Coupling 8 / 56

Solving Sudoku via Marginalization

I Consider any constraint satisfaction problem with erased entries

I One can write f(x) as the product of indicator functions

I Some factors force x to be valid (i.e., satisfy constraints)

I Other factors force x to be compatible with observed values

I Summing over x counts the # of valid compatible sequences

I Marginalization allows uniform sampling from valid compatible set

I Sample x′1 ∼ g1(·), fix x1 = x′1, sample x′2 ∼ g2(·|x1), etc...

I For Sudoku, this always works because only one solution!

I fast marginalization via BP if factor graph forms a tree

I But, in general, marginalization is #P-complete
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Marginalization via Belief Propagation

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

µ
(1
)

1→
1

µ (1)1→
2

µ
(1
)

2
→

1

µ (1
)3→

1 µ
(1
)

4
→

2

µ (1
)6→

2

µ
(1
)

4
→

3

µ (1
)4→

4

µ
(1

)
5→

4variable-to-factor message: µ
(`)
i→a(x)

factor-to-variable message: µ̂
(`)
a→i(x)

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)
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Sudoku Example

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6
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What is Spatial Coupling?

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

.

1 3 5

2 9 4

8 7 6

6

7

8

5

3

1
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4

6
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3
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8
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3

5

8

6 3

1

6

4

7

4

3 8

4 9

6 2

9

4

3

7

2

1

I Spatially-Coupled Factor Graphs

I Variable nodes have a natural global orientation

I Boundaries help variables to be recovered in an ordered fashion
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Capacity of Point-to-Point Communication

X PY |X Y

I Coding for Discrete-Time Memoryless Channels

I Transition probability: PY |X(y|x) for x ∈ X and y ∈ Y
I Transmit a length-n codeword x ∈ C ⊂ Xn

I Decode to most likely codeword given received y

I Channel Capacity introduced by Shannon in 1948

I Random code of rate R , 1
n log2 |C| (bits per channel use)

I As n→∞, reliable transmission possible if R < C with

C , max
p(x)

I(X;Y )
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The Binary Erasure Channel (BEC)

0

1

0

?

1

1− ε

ε

1− ε

ε

I Denoted BEC(ε) when erasure probability is ε

I C = 1− ε = expected fraction bits not erased

I Coding with a binary linear code

I Parity-check matrix H ∈ {0, 1}m×n with m = (1−R)n

I Codebook C , {x ∈ {0, 1}n |Hx = 0} has 2Rn codewords

I Let E denote the index set of erased positions so that

Hx =
[
HE HEc

][ xE
yEc

]
= 0 ⇔ HExE = −HEcyEc

I Decoding fails iff submatrix HE is singular

I One can achieve capacity by drawing H uniformly at random!
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Some Early Milestones in Coding

I 1948: Shannon defines channel capacity and random codes

I 1950: Hamming formalizes linear codes and Hamming distance

I 1954: Reed-Muller codes (Muller gives codes, Reed the decoder)

I 1955: Elias introduces the erasure channel and convolutional codes;
also shows random parity-check codes achieve capacity on the BEC

I 1959: BCH Codes (Hocquenghem’59 and Bose-Ray-Chaudhuri’60)

I 1960: Gallager introduces low-density parity-check (LDPC) codes
and iterative decoding

I 1960: Reed-Solomon codes
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Achieving Capacity in Practice

But, more than 35 years passed before we could:

I Achieve capacity in practice

I Provably achieve capacity with determinstic constructions

Modern Milestones:

I 1993: Turbo Codes (Berrou, Glavieux, Thitimajshima)

I 1995: Rediscovery of LDPC codes (MacKay-Neal,Spielman)

I 1997: Optimized irregular LDPC codes for the BEC (LMSSS)

I 2001: Optimized irregular LDPC codes for BMS channels (RSU)

I 2008: Polar codes provable, low-complexity, deterministic (Arikan)

I 1999-2011: Understanding LDPC convolutional codes and coupling
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Key Tools That Made the Difference

I Factor Graphs (FGs)

I Compact description of joint distribution for random variables

I Natural setup for inference problems with partial observations

I Belief-Propagation (BP)

I Message-passing algorithm for inference on a FG

I Probability estimates are passed along edges in the factor graph

I Provides exact marginals if factor graph is a tree

I Density Evolution (DE)

I Tracks distribution of messages passed by belief propagation

I In some cases, allows rigorous analysis of BP-based inference

I Spatial Coupling (SC): Enables near-optimal performance using BP
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Applications of These Tools

I Error-Correcting Codes

I Random code defined by random factor graph

I Low-complexity decoding via belief propagation

I Analysis of belief-propagation decoding via density evolution

I Provides code constructions that provably achieve capacity!

I Boolean Satisfiability: K-SAT

I Random instance of K-SAT defined by random factor graph

I Non-rigorous analysis via the cavity method

I Predicted thresholds later proved exact!

I Compressed Sensing

I Random measurement matrix defined by random factor graph

I Low-complexity reconstruction via message passing

I Schemes provably achieve the information-theoretic limit!
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Outline

Graphical Models

Point-to-Point Communication

Low-Density Parity-Check Codes

Compressed Sensing

Universality for Multiuser Scenarios

Natural Spatial Coupling in Cellular Systems

Abstract Formulation of Threshold Saturation
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Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits

I Linear codes defined by xHT = 0 for all c.w. x ∈ C ⊂ {0, 1}n
I H is an r × n sparse parity-check matrix for the code

I Code bits and parity checks associated with cols/rows of H

I Factor graph: H is the biadjacency matrix for variable/factor nodes

I Ensemble defined by configuration model for random graphs

I Checks define factors: feven(xd1) = I(x1 ⊕ · · · ⊕ xd = 0)

I Let xF (a) be the x-subvector for the a-th check and

f(x1, . . . , xn) =

(
r∏
a=1

feven(xF (a))

)
︸ ︷︷ ︸

1C(xn
1 )

(
n∏
i=1

PY |X(yi|xi)

)
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A Little History

Robert Gallager introduced LDPC codes in 1962 paper

Judea Pearl defined general belief-propagation in 1986 paper
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Simple Message-Passing Decoding for the BEC

I Constraint nodes define the valid patterns

I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)

I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC

I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

?
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Computation Graph and Density Evolution

x1 = ε

y1 = 1−(1−x1)3
x2 = εy21

y2 = 1−(1−x2)3
x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3
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Density Evolution (DE) for LDPC Codes

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4
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0.6

x`

x
`+

1
(3,4) LDPC Code with ε = 0.6

Density evolution for a
(3, 4)-regular LDPC code:

x`+1 = ε
(
1− (1− x`)3

)2
Decoding Thresholds:

εBP ≈ 0.647

εMAP ≈ 0.746

εSh = 0.750

I Binary erasure channel (BEC) with erasure prob. ε

I DE tracks bit-to-check msg erasure rate x` after ` iterations

I Defines noise threshold εBP for the large system limit

I Easily computed numerically for given code ensemble
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Spatially-Coupled (or Convolutional) LDPC Codes

...

...

π0

π′0

−L −2 −1 0 1 2 L... ...

...

...

π−L

π′−L

...

...

π−2

π′−2

...

...

π−1

π′−1

...

...

π1

π′1

...

...

π2

π′2

...

...

πL

π′L

...

...

...

...

l = 3

w = 3

r = 4

−L−2 −L−1 L+1 L+2

π−L−2

...

π−L−1

...

πL+1

...

πL+2

...

π′L+1

...

π′L+2

...

I Historical Notes

I LDPC convolutional codes introduced in [FZ99]

I Shown to have near optimal noise thresholds in [LSZC05]

I (l, r, L, w) ensemble proven to achieve capacity in [KRU11]



Graphical Models and Inference: Insights from Spatial Coupling 26 / 56

Spatially-Coupled (or Convolutional) LDPC Codes

...

...

π0

π′0

−L −2 −1 0 1 2 L... ...

...

...

π−L

π′−L

...

...

π−2

π′−2

...

...

π−1

π′−1

...

...

π1

π′1

...

...

π2

π′2

...

...

πL

π′L

...

...

...

...

l = 3

w = 3

r = 4

−L−2 −L−1 L+1 L+2

π−L−2

...

π−L−1

...

πL+1

...

πL+2

...

π′L+1

...

π′L+2

...

I Historical Notes

I LDPC convolutional codes introduced in [FZ99]

I Shown to have near optimal noise thresholds in [LSZC05]

I (l, r, L, w) ensemble proven to achieve capacity in [KRU11]



Graphical Models and Inference: Insights from Spatial Coupling 26 / 56

Spatially-Coupled (or Convolutional) LDPC Codes

...

...

π0

π′0

−L −2 −1 0 1 2 L... ...

...

...

π−L

π′−L

...

...

π−2

π′−2

...

...

π−1

π′−1

...

...

π1

π′1

...

...

π2

π′2

...

...

πL

π′L

...

...

...

...

l = 3

w = 3

r = 4

−L−2 −L−1 L+1 L+2

π−L−2

...

π−L−1

...

πL+1

...

πL+2

...

π′L+1

...

π′L+2

...

I Historical Notes

I LDPC convolutional codes introduced in [FZ99]

I Shown to have near optimal noise thresholds in [LSZC05]

I (l, r, L, w) ensemble proven to achieve capacity in [KRU11]



Graphical Models and Inference: Insights from Spatial Coupling 26 / 56

Spatially-Coupled (or Convolutional) LDPC Codes

...

...

π0

π′0

−L −2 −1 0 1 2 L... ...

...

...

π−L

π′−L

...

...

π−2

π′−2

...

...

π−1

π′−1

...

...

π1

π′1

...

...

π2

π′2

...

...

πL

π′L

...

...

...

...

l = 3

w = 3

r = 4

−L−2 −L−1 L+1 L+2

π−L−2

...

π−L−1

...

πL+1

...

πL+2

...

π′L+1

...

π′L+2

...

I Historical Notes

I LDPC convolutional codes introduced in [FZ99]

I Shown to have near optimal noise thresholds in [LSZC05]

I (l, r, L, w) ensemble proven to achieve capacity in [KRU11]



Graphical Models and Inference: Insights from Spatial Coupling 27 / 56

The LDPCC Gang
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The Spatial Coupling KRU
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Density Evolution for the (l, r, L, w)-SC LDPC Ensemble
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Density Evolution for the (l, r, L, w)-SC LDPC Ensemble
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Density Evolution for the (l, r, L, w)-SC LDPC Ensemble
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Density Evolution for the (l, r, L, w)-SC LDPC Ensemble
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Density Evolution for the (l, r, L, w)-SC LDPC Ensemble
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Threshold Saturation via Spatial Coupling

I General Phenomenon (observed by Kudekar, Richardson, Urbanke)

I BP threshold of the spatially-coupled system converges to the
MAP threshold of the uncoupled system

I Can be proven rigorously in many cases!

I Connection to statistical physics

I Factor graph defines system of coupled particles

I Valid sequences are ordered crystalline structures

I Between BP and MAP threshold, system acts as supercooled liquid

I Correct answer (crystalline state) has minimum energy.

I Spontaneous crystallization (i.e., decoding) does not occur

http://www.youtube.com/watch?v=Xe8vJrIvDQM

http://www.youtube.com/watch?v=Xe8vJrIvDQM
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Compressed Sensing (CS)

Φm

n

measurement

un

1

signal

=vm

1

observation

+ zm

1

noise

I For a signal vector in u ∈ Rn (e.g., drawn iid from PU (u))

I Let Φ ∈ Rm×n be an m× n measurement matrix

I Let z ∈ Rm be a noise vector (e.g., Gaussian noise)

I Problem: Reconstruct u from the observation v = Φu+ z ∈ Rm
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Signal Reconstruction

pU,V (u, v) =

(
m∏
i=1

exp

(
− 1

2σ2

∣∣∣vi −∑n

j=1
Φi,juj

∣∣∣2))
 n∏
j=1

PU (uj)


I Joint distribution factors naturally using continuous variables

I Standard BP defined using pdf messages ⇒ impractical

I Gaussian approx. leads to Relaxed Belief Propagation (RBP)

I Simplification leads to Approximate Message Passing (AMP)

I For random Φ, the “density evolution” is called state evolution

I Spatially-Coupled Measurement Matrices

I Introduced by [KP10] and analyzed by [KMS+12]

I Are essentially equal to random band-diagonal matrices

I Shown to be information-theoretically optimal by [DJM13]
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Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)

I For a sequence of coding schemes involving parameters, the
parameter region where decoding succeeds in the limit

I In contrast, a capacity region is a rate region for fixed channels

I Properties

I For fixed encoders, the ACPR depends on the decoders

I For example, one has BP-ACPR ⊆ MAP-ACPR

I Often, ∃ unique maximal ACPR given by information theory

I Universality

I A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

I Channel parameters are assumed unknown at the transmitter

I At the receiver, the channel parameters are easily estimated

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.8

1

1.2

1.4

1.6

1.8

2

2.2

MAC-ACPR boundary
for rate 1/2

α1

α
2



Graphical Models and Inference: Insights from Spatial Coupling 35 / 56

Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)

I For a sequence of coding schemes involving parameters, the
parameter region where decoding succeeds in the limit

I In contrast, a capacity region is a rate region for fixed channels

I Properties

I For fixed encoders, the ACPR depends on the decoders

I For example, one has BP-ACPR ⊆ MAP-ACPR

I Often, ∃ unique maximal ACPR given by information theory

I Universality

I A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

I Channel parameters are assumed unknown at the transmitter

I At the receiver, the channel parameters are easily estimated



Graphical Models and Inference: Insights from Spatial Coupling 35 / 56

Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)

I For a sequence of coding schemes involving parameters, the
parameter region where decoding succeeds in the limit

I In contrast, a capacity region is a rate region for fixed channels

I Properties

I For fixed encoders, the ACPR depends on the decoders

I For example, one has BP-ACPR ⊆ MAP-ACPR

I Often, ∃ unique maximal ACPR given by information theory

I Universality

I A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

I Channel parameters are assumed unknown at the transmitter

I At the receiver, the channel parameters are easily estimated



Graphical Models and Inference: Insights from Spatial Coupling 36 / 56

2-User Binary-Input Gaussian Multiple Access Channel

X1

X2

+

h1

h2

Z ∼ N (0, 1)

Y

I Fixed noise variance

I Real channel gains h1 and h2 not known at transmitter

I Users encode separately with rate-R codes

I MAC-ACPR denotes the information-theoretic optimal region
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A Little History: SC for Multiple-Access (MAC) Channels

I [KK11] considers a binary-adder erasure channel

I SC exhibits threshold saturation for the joint decoder

I [YPN11] consider the Gaussian MAC

I SC exhibits threshold saturation for the joint decoder

I For channel gains h1, h2 unknown at transmitter,
SC provides universality

I Others consider CDMA systems without coding

I [TTK11] shows SC improves BP demod of standard CDMA

I [ST11] proves saturation for a SC protograph-style CDMA
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Spatially-Coupled Factor Graph for Joint Decoder

2L+ 1
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DE Performance of the Joint Decoder
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Cellular Multiple Access: 19-Cell Topology

19 cell model

with wraparound

with wraparound

intercell interference

passive interference management

- soft handoff

- user scheduling

interference-aware multicell coordination and
joint decoding

- backhaul links, data center

- Ultimate goal is to achieve single-cell perfor-
mance with optimal power control

- Ultimate goal is to achieve single-cell perfor-
mance with optimal power control
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Natural Spatial Coupling in Cellular Systems

I Spatially-coupled codes show that

I Edge effects can make a big difference!

I Wrap-around may not provide an accurate picture

I Edge effects are common in real systems

I Regional and city boundaries

I Lightly loaded cells due to random loading

I Periodic scheduling for interference reduction

I Can this be used to improve cellular systems?

I Wyner’s 1D model: N -chip spreading and K = βN users/cell
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Example: Wyner’s 1D Cellular Model
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)
> 4R−1
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left-to-right peeling

⇒ lower-bound on system load
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Proving Threshold Saturation: General Approach

Let f : X →X and g : X →X be strictly increasing smooth functions on
X = [0, 1]. Then, the scalar recursion (from x(0) =1)

y(`+1) = g
(
x(`)
)

= 1− (1− x)3

x(`+1) = f
(
y(`+1)

)

= εx2
Ex. (3,4) LDPC

characterizes fixed point of the coupled recursion
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The Potential Function of the Scalar Recursion
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ε = 0.600

Let the potential function Us : X → R of the scalar recursion be

Us(x) ,
∫ x

0

(
z − f (g(z))

)
g′(z)dz.

Theorem [YJNP14] (arXiv:1309.7910)

lim
w→∞

lim
M→∞

max
i∈{1,...,M}

x
(∞)
i ≤ max

(
arg min

x∈X
Us(x)

)
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Spatially-Coupled (SC) Compressed Sensing

I Compressive sensing reconstruction of a length-n signal

I whose entries are i.i.d. copies of a r.v. U with E[U2] <∞
I from δn linear measurements with i.i.d. noise Z ∼ N (0, σ2)

I Assume SC measurements with chain length N and width w

I The MSE x∗ for SC measurements with BP reconstruction

[DJM13][KMS+12] satisfies (for M � w →∞)

x∗ ≤ max

{
argmin
x∈X

(
− x

σ2 + 1
δx

+ δ ln
(

1 +
x

δσ2

)
+2I

(
U ;

√
1

σ2+x/δ
U+Z

))}
I RHS matches the replica method prediction for the optimal MSE
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History of Threshold Saturation Proofs

I the BEC in 2010 [KRU11]

I Established many properties and tools used by later approaches

I the Curie-Weiss model of physics in 2010 [HMU12]

I CDMA using a GA in 2011 [TTK12]

I CDMA with outer code via GA in 2011 [Tru12]

I compressive sensing using a GA in 2011 [DJM13]

I regular codes on BMS channels in 2012 [KRU13]

I increasing scalar and vector recursions in 2012 [YJNP14]

I irregular LDPC codes on BMS channels in 2012 [KYMP14]

I non-decreasing scalar recursions in 2012 [KRU15]

I non-binary LDPC codes on the BEC in 2014 [AG16]

I and more since 2014...
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Summary and Open Problems

I Factor Graphs

I Useful tool for modeling dependent random variables

I Low-complexity algorithms for approximate inference

I Density evolution can be used to analyze performance

I Spatial Coupling

I Powerful technique for designing and understanding FGs.

I Related to the statistical physics of supercooled liquids

I Simple proof of threshold saturation for scalar recursions

I Interesting Open Problems

I Finding new problems where SC provides benefits

I Code constructions that reduce the rate-loss due to termination
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Thanks for your attention
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