Cloud Storage Space vs. Download Time for Large Files Emina Soljanin, Rutgers

 \leftarrow data (k = 2 chunks)

 \leftarrow data (k = 2 chunks)

 \leftarrow data (k = 2 chunks)

Any k coded pieces (out of n) are sufficient for content recovery.

Coding in Distributed Storage

... because disks fail & data changes

 \implies

If a disk (node) fails, we want to

- 1. still be able to recover data from the remaining storage (reliability) &
- 2. reproduce the lost data (or reliability) on each replacement disk with
 - minimal download from the remaining storage (repair bandwidth), or
 - by downloading (coded) data from only a few other nodes.

If the stored data changes, we must accordingly update the storage.

Many new interesting problems in coding theory.

Coding in Distributed Storage

... because disks fail & data changes

 \implies

If a disk (node) fails, we want to

- 1. still be able to recover data from the remaining storage (reliability) &
- 2. reproduce the lost data (or reliability) on each replacement disk with
 - minimal download from the remaining storage (repair bandwidth), or
 - by downloading (coded) data from only a few other nodes.

If the stored data changes, we must accordingly update the storage.

Many new interesting problems in coding theory.

Do new codes for distributed storage affect data retrieval?

Demand for Low Latency

Webpage download

Amazon: 100ms \sim costs 1% sales, Google: 1s \sim page view drops 11%

- Interactive Tasks: 100ms 150ms
- Online Gaming: 30ms
- Augmented Reality: 7ms 20ms
- ▶ 5G, The Tactile Internet: 1ms

Download Latency

Whose fault was that?

Download Latency

How do we reduce it?

Download Latency

How do we reduce it?

How about rolling out many wheels of fortune?

000000000

Buying Ground Coffee

(n, k) Multiple Broadcasts Data Access Model

- ▶ Users request the same content (file F), stored in the cloud.
- Upon receiving a request, server s
 - 1. acquires F from the cloud at the time $W_s \sim exp(W)$
 - 2. delivers F by broadcast to the users in time $D_s \sim D$

 \Rightarrow File F download time from server s is $W_s + D_s$.

(n, k) Multiple Broadcasts Data Access Model

- ▶ Users request the same content (file F), stored in the cloud.
- Upon receiving a request, server s
 - 1. acquires F from the cloud at the time $W_s \sim \text{exp}(W)$
 - 2. delivers F by broadcast to the users in time $D_s \sim D$

 \Rightarrow File F download time from server s is $W_s + D_s$.

- F is split into k blocks and encoded into n blocks s.t. any k out of n blocks are sufficient for content reconstruction.
- Each user's request is sent to **n** servers, for one block each.

(n, k) Multiple Broadcasts Data Access Model

- ▶ Users request the same content (file F), stored in the cloud.
- Upon receiving a request, server s
 - 1. acquires F from the cloud at the time $W_s \sim \text{exp}(W)$
 - 2. delivers F by broadcast to the users in time $D_s \sim D$

 \Rightarrow File F download time from server s is $W_s + D_s$.

- F is split into k blocks and encoded into n blocks s.t. any k out of n blocks are sufficient for content reconstruction.
- ▶ Each user's request is sent to **n** servers, for one block each.

When do k out of n servers delver their F/k-size blocks?

For iid RVs $\{X_1, X_2, \cdots, X_n\}$, the k^{th} smallest among them is an RV, known as the k^{th} order statistics $X_{k:n}$.

For iid RVs { X_1, X_2, \cdots, X_n }, the kth smallest among them is an RV, known as the kth order statistics $X_{k:n}$.

When X_i 's are $\exp(W)$, the mean and variance of $X_{k,n}$ are

$$\mathsf{E}[X_{k,n}] = W(\mathsf{H}_n - \mathsf{H}_{n-k})$$
 and $\mathsf{V}[X_{k,n}] = W^2(\mathsf{H}_{n^2} - \mathsf{H}_{(n-k)^2})$,

where H_n and H_{n^2} are (generalized) harmonic numbers

$${\sf H}_n = \sum_{j=1}^n \frac{1}{j} \ \, \text{and} \ \, {\sf H}_{n^2} = \sum_{j=1}^n \frac{1}{j^2}$$

For iid RVs { X_1, X_2, \cdots, X_n }, the k^{th} smallest among them is an RV, known as the k^{th} order statistics $X_{k:n}$.

When X_i 's are $\exp(W)$, the mean and variance of $X_{k,n}$ are

$$\mathsf{E}[X_{k,n}] = W(\mathsf{H}_n - \mathsf{H}_{n-k})$$
 and $\mathsf{V}[X_{k,n}] = W^2(\mathsf{H}_{n^2} - \mathsf{H}_{(n-k)^2})$,

where H_n and H_{n^2} are (generalized) harmonic numbers

$$H_n = \sum_{j=1}^n \frac{1}{j} \text{ and } H_{n^2} = \sum_{j=1}^n \frac{1}{j^2}.$$

When do k out of n servers delver their F/k-size blocks?

(n,k) Multiple Broadcasts Response Time

Allerton'12, with G. Joshi, MIT, and Y. Liu, WISC

Theorem:

$$T_{n,k} = W(H_n - H_{n-k}) + \frac{D}{k} \qquad H_{\ell} = \sum_{i=1}^{\ell} \frac{1}{i}$$

(n, k) Multiple Broadcasts Response Time Allerton'12, with G. Joshi, MIT, and Y. Liu, WISC

Theorem:

$$T_{n,k} = \frac{W(H_n - H_{n-k})}{k} + \frac{D}{k} \qquad H_{\ell} = \sum_{i=1}^{\ell} \frac{1}{i}$$

• k-th order statistics

(n, k) Multiple Broadcasts Response Time Allerton'12, with G. Joshi, MIT, and Y. Liu, WISC

Theorem:

$$T_{n,k} = \frac{W(H_n - H_{n-k})}{k} + \frac{D}{k} \qquad H_{\ell} = \sum_{i=1}^{\ell} \frac{1}{i}$$

• k-th order statistics

• one k-th of data

(n, k) Multiple Broadcasts Response Time Allerton'12, with G. Joshi, MIT, and Y. Liu, WISC

Theorem:

$$T_{n,k} = \frac{W(H_n - H_{n-k})}{k} + \frac{D}{k} \qquad H_{\ell} = \sum_{i=1}^{\ell} \frac{1}{i}$$

• k-th order statistics

• one k-th of data

$$\implies$$
k that minimizes $T_{n,k}$ is
$$k \approx \frac{-D + \sqrt{D^2 + 4nWD}}{2W}$$

What is Really the Optimal k?

What is Really the Optimal k?

12/42

What is Really the Optimal k?

12/42
Queueing for Content

@ Plus Leafanan * www.DipartDf.com/440128

Office Louisean * www.DipartDisaminectrat

Queueing for Content

Queueing for Content

Single Queues and Server Farms

Single M/M/1 Queue:

- Requests arrive at rate λ according to a Poisson process.
- Job service times have an exponential distribution with rate μ .
- Many metrics of interest are well understood for this model,
 e.g. the response time is exponential with rate μ λ.

Single Queues and Server Farms

Single M/M/1 Queue:

- Requests arrive at rate λ according to a Poisson process.
- Job service times have an exponential distribution with rate μ .
- Many metrics of interest are well understood for this model,
 e.g. the response time is exponential with rate μ λ.

A Fork-Join n-Server Queue Model:

- requests arrive at rate λ according to a Poisson process, & are split on arrival and must be joined before departure.
- At each queue, service times are exponential with rate μ .

Single Queues and Server Farms

Single M/M/1 Queue:

- Requests arrive at rate λ according to a Poisson process.
- Job service times have an exponential distribution with rate μ .
- Many metrics of interest are well understood for this model,
 e.g. the response time is exponential with rate μ λ.

A Fork-Join n-Server Queue Model:

- requests arrive at rate λ according to a Poisson process, & are split on arrival and must be joined before departure.
- At each queue, service times are exponential with rate μ .
- ▶ It is seen as a key model for parallel/distributed systems, e.g., RAID.
- ► There is a renewed interest in the problem (e.g., map-reduce).
- ► Few analytical results exist, but various approximations are known.

The (n, k) Fork-Join System

Allerton'12, with G. Joshi, MIT, and Y. Liu, WISC

Architecture:

- F is split into k blocks and encoded into n blocks s.t.
 any k out of n blocks are sufficient for content reconstruction.
- The n coded blocks are stored on n disks.

Operation:

- User request for F are forked to all n disks.
- Downloads from any k disks jointly enables reconstruction of F.

\Rightarrow Arrival rate at each of the n queues is λ and service rate is $k\mu.$

(3, 2) Fork-Join System Architecture

- Content F is split into equal parts a and b, and stored on 3 disks as a, b, and a + b ⇒ each disk stores half the size of F.
- User request for F are forked to all 3 disks.
- Downloads from any 2 disks jointly enables reconstruction of F.

Storage is 50% higher, but download time (per disk & overall) is reduced.

(3, 2) Fork-Join System Operation

J

Stability of (n, k) Fork-Join FHW System

The rate of arrivals λ and the service rate $k\mu$ per node must satisfy

$$\lambda - \frac{\lambda(n-k)}{n} < k \mu$$

Some Related Work on (n, k)-Type Sytems

Fork-Join Queues (1980's, 1990's, 2000's)

Baccelli, Makowski, Shwartz, Flatto, Boxma, Koole, Kim, Agrawala, Nelson, Tantawi, Xia, Liu, Towsley, Lelarge, ...

Codes and Queues (2012 –)

Joshi, Liu, Soljanin, Liang, Kozat, Kumar, Tandon, Clancy, Ziang, Lang, Agawall, Chen, Shah, Lee, Ramchandran, Huang, Pawar, Zhang, ...

Replication and Queues (2012 –)

Vulimiri, Godfrey, Mittal, Sherry, Ratnasamy, Shenker, Gardner, Zbarsky, Doroudi, Harchol-Balter, Scheller-Wolf, Hyytiä, ...

Codes and Blocking (2012 –)

Ferner, Médard, Soljanin

The system behaves as an M/M/1 queue with service rate $n\mu$

 \Rightarrow the system response time is $\exp(1/(n\mu - \lambda))$.

The system behaves as an M/M/1 queue with service rate $n\mu$

 \Rightarrow the system response time is $exp(1/(n\mu - \lambda))$.

A model "superimposing" multiple $(n_{\ell}, 1), \mu_{\ell}, \lambda_{\ell}$ systems: "Queueing with Redundant Requests: First Exact Analysis," at Sigmetrics 2015 by Gardner, Zbarsky, Doroudi, Harchol-Balter, Scheller-Wolf, Hyytiä

Response Time Histogram for 10^4 Downloads (10, k) Fork-Join Queue, FHW Model, $\lambda = 1$, $\mu = 3$

k = 10

10-fork, k-join queue

response time

response time

Storage Space vs. Download Time in (10, k) Systems

Doubling Storage Space Shortens Download Time 2k-fork, k-join Queue, M/M/1, request rate $\lambda = 1$, $\mu = 3$ per unit-download

FHW (n, k) Fork-Join System

• k = n means there is no redundancy \Rightarrow fork-join FHW queue.

FHW (n, k) Fork-Join System

- k = n means there is no redundancy \Rightarrow fork-join FHW queue.
- k = 1 means replication $\Rightarrow n$ independent M/M/1 queues.

FHW (n, k) Fork-Join System

- ▶ k = n means there is no redundancy \Rightarrow fork-join FHW queue.
- ▶ k = 1 means replication $\Rightarrow n$ independent M/M/1 queues.
- 1 < k < n means coding \Rightarrow
 - 1. there is no independence and the system is not memoryless \Rightarrow hard to derive analytical results,
 - 2. but there is enough independence to benefit from diversity.

We are interested in the mean response time $T_{n,k}$.

Previous work has attempted finding $T_{n,n}$, but only bounds are known.

Upper Bound on Response Time $T_{n,k}$

Consider a modified (n, k) fork-join system in which a completed task does not exit its queue until k tasks of the same job are completed. (cf. split-merge system)

The (n, k) split-merge system

- has response time greater than its fork-join counterpart, and
- ▶ is equivalent to an M/G/1 queue with service time S_k, the kth order statistics of exp(kµ), with the mean and variance

$$E[S_k] = \frac{H_n - H_{n-k}}{k\mu}$$
 $V[S_k] = \frac{H_{n^2} - H_{(n-k)^2}}{k\mu^2}$

 \Rightarrow An upper bound on $T_{n,k}$ is given by the Pollaczek-Khinchin formula:

$$\mathsf{T}_{n,k} \leqslant \mathsf{E}[\mathsf{S}_k] + \frac{\lambda \left(\mathsf{V}[\mathsf{S}_k] + \mathsf{E}[\mathsf{S}_k]^2\right)}{2(1 - \lambda \mathsf{E}[\mathsf{S}_k])}$$

Remarks on the Upper Bound

Stability Condition:

$$\frac{1}{\lambda} > \mathsf{E}[S_k] \ \ \Rightarrow \ \ \frac{\lambda}{\mu} \cdot \frac{\mathsf{H}_n - \mathsf{H}_{n-k}}{k} < 1$$

Remarks on the Upper Bound

Stability Condition:

$$\frac{1}{\lambda} > \mathsf{E}[S_k] \ \ \Rightarrow \ \ \frac{\lambda}{\mu} \cdot \frac{\mathsf{H}_n - \mathsf{H}_{n-k}}{k} < 1$$

The Nelson & Tantawi approach upper bound on $T_{n,n}$:

- the response times of the n queues form a set of associated RVs
- the expected maximum of associated RVs is smaller than that of independent RVs with identical marginal distributions.

$$\mathsf{T}_{n,n} \leqslant \frac{\mathsf{H}_n}{n\mu - \lambda}$$

This does not hold for the k^{th} order statistics when k < n.

Lower Bound on Response Time $T_{n,k}$

Stages of Job Processing:

(Varki et al. approach)

- ► A job goes through k stages of processing, one for each task.
- ▶ At stage j, $0 \leq j \leq k-1$, the job has completed j tasks.
- The service rate of a job in stage j stage is at most $(n j)k\mu$.

$$\begin{split} T_{n,k} \geqslant \sum_{j=0}^{k-1} \frac{1}{(n-j)k\mu - \lambda} & \leftarrow \text{sum of response times of } k \text{ stages} \\ &= \frac{1}{k\mu} \big[H_n - H_{n-k} + \rho \cdot (H_{n(n-\rho)} - H_{(n-k)(n-k-\rho)}) \big] \quad (\rho = \frac{\lambda}{\mu}) \end{split}$$

Tightness of the Bounds

Diversity - the Power of Choosing All

A Coding Tale of a Tail at Scale

Splitting jobs into smaller tasks allows parallel task execution, but increases randomness in the system, hence the tail.

A Coding Tale of a Tail at Scale

Splitting jobs into smaller tasks allows parallel task execution, but increases randomness in the system, **hence the tail.**

Coding cuts the tail.

Which jobs permit cutting the tail?

When are the Bounds Valid, Tight, Applicable?

Cost of Replication

Allerton'15, with G. Joshi and G. Wornell, MIT

- \blacktriangleright A job is forked in n independent & statistically identical servers.
- If a single server completes the job in time X, then
 - ▶ the (n, 1) system completes the job in time $X_{1:n}$ ← delay
 - ▶ the system service time spent on the job is $\frac{n \cdot X_{1:n}}{n \cdot X_{1:n}}$ ← cost

Cost of Replication

Allerton'15, with G. Joshi and G. Wornell, MIT

- \blacktriangleright A job is forked in n independent & statistically identical servers.
- ► If a single server completes the job in time X, then
 - ▶ the (n, 1) system completes the job in time $X_{1:n}$ \leftarrow delay
 - the system service time spent on the job is $n \cdot X_{1:n} \leftarrow \text{cost}$

The expected cost of replication: $nE[X_{1:n}] = E[X]$ if X is exponential, $nE[X_{1:n}] \leq E[X]$ if \overline{F}_X is log-convex, $nE[X_{1:n}] \geq E[X]$ if \overline{F}_X is log-concave.

Cost of Replication

Allerton'15, with G. Joshi and G. Wornell, MIT

Theorem:

If \overline{F}_X log-convex, then $nE[X_{1:n}]$ is non-increasing in n. If \overline{F}_X log-concave, then $nE[X_{1:n}]$ is non-decreasing in n.

Implications:

- How many redundant requests should be issued and when?
- When is canceling redundant tasks beneficial?

How About Hot Data?

How About Hot Data?

A code has (\boldsymbol{r},t) availability if

- \blacktriangleright there are t disjoint repair groups for each data symbol &
- each repair group has at most r symbols.

A (2, 3)-availability code:
{
$$a, b, c$$
} \longrightarrow { a , b , c , $a + b$, $b + c$, $a + c$, $a + b + c$, }

How Helpful is a Repair Group

How Helpful is a Repair Group

vs.

How Helpful is a Repair Group

vs.

or ... or

Decrease r or Increase t?

Decrease r or Increase t?

Cloud Data Security

Challenges are posed by coding, distributed storage, independent clouds.

Cloud Data Security

Challenges are posed by coding, distributed storage, independent clouds.

Cloud Data Security

Challenges are posed by coding, distributed storage, independent clouds.

Data Centers, Energy, and Smart (Power) Grid

Data centers electricity usage is large $\approx 2 - 3\%$ of the US total electricity, & growing $\approx 12\%$ (cf. 1% total growth).

Redundant requests reduce storage requirements for a given latency. **But do they introduce some other costs?**

Who's Getting Rich in The Big Data Gold Rush ?

Who's Getting Rich in The Big Data Gold Rush ?

Some Papers

G. Joshi, Y. Liu, and E. Soljanin, "On the delay-storage trade-off in content download from coded distributed storage systems," *IEEE J-SAC Special Issue on Communication Methodologies for the Next-Generation Storage Systems*, pp. 989–997, May 2014.

G. Joshi, E. Soljanin, and G. Wornell, "On the delay-storage trade-off in content download from coded distributed storage systems," *ACM Trans. on Modeling and Performance Evaluation of Computing Systems*, submitted Oct. 2015.

S. Kadhe, E. Soljanin, and A. Sprintson, "Analyzing the download time of availability codes," 2015 IEEE Int. Symp. Inform. Theory (ISIT'15), Hong Kong, June 2015.