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Coding in Distributed Storage
... because disks fail & data changes

If a disk (node) fails, we want to

1. still be able to recover data from the remaining storage (reliability) &

2. reproduce the lost data (or reliability) on each replacement disk with
I minimal download from the remaining storage (repair bandwidth), or
I by downloading (coded) data from only a few other nodes.

If the stored data changes, we must accordingly update the storage.
=)
Many new interesting problems in coding theory.

Do new codes for distributed storage affect data retrieval?
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Demand for Low Latency

I Webpage download
Amazon: 100ms s costs 1% sales, Google: 1s s page view drops 11%

I Interactive Tasks: 100ms - 150ms

I Online Gaming: 30ms

I Augmented Reality: 7ms - 20ms

I 5G, The Tactile Internet: 1ms
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Download Latency
Whose fault was that?
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Download Latency
How do we reduce it?

How about rolling out many wheels of fortune?
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Buying Ground Coffee
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Getting Data from the Cloud(s)

? Diversity vs. Parallelism
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(n, k) Multiple Broadcasts Data Access Model

I Users request the same content (file F), stored in the cloud.
I Upon receiving a request, server s

1. acquires F from the cloud at the time Ws ⇠ exp(W)

2. delivers F by broadcast to the users in time Ds ⇠ D

) File F download time from server s is Ws +Ds.

I F is split into k blocks and encoded into n blocks s.t.
any k out of n blocks are sufficient for content reconstruction.

I Each user’s request is sent to n servers, for one block each.

When do k out of n servers delver their F/k-size blocks?
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Order Statistics

For iid RVs {X1,X2, · · · ,Xn}, the kth smallest among them is an RV,
known as the kth order statistics Xk:n.

When Xi’s are exp(W), the mean and variance of Xk,n are

E[Xk,n] = W(Hn -Hn-k) and V[Xk,n] = W2(Hn2-H(n-k)2),

where Hn and Hn2 are (generalized) harmonic numbers

Hn =
nX

j=1

1

j
and Hn2 =

nX

j=1

1

j2
.

When do k out of n servers delver their F/k-size blocks?
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(n, k) Multiple Broadcasts Response Time
Allerton’12, with G. Joshi, MIT, and Y. Liu, WISC

Theorem:
The mean download completion time is given by

Tn,k = W(Hn -Hn-k) +
D

k
H` =

X̀

i=1

1

i

I k-th order statistics

I one k-th of data

=)
k that minimizes Tn,k is

k ⇡ -D+
p
D2 + 4nWD

2W
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What is Really the Optimal k?
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Queueing for Content
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Single Queues and Server Farms
Single M/M/1 Queue:

I Requests arrive at rate � according to a Poisson process.

I Job service times have an exponential distribution with rate µ.

I Many metrics of interest are well understood for this model,
e.g. the response time is exponential with rate µ- �.

A Fork-Join n-Server Queue Model:

I requests arrive at rate � according to a Poisson process, &
are split on arrival and must be joined before departure.

I At each queue, service times are exponential with rate µ.

I It is seen as a key model for parallel/distributed systems, e.g., RAID.

I There is a renewed interest in the problem (e.g., map-reduce).

I Few analytical results exist, but various approximations are known.
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The (n, k) Fork-Join System
Allerton’12, with G. Joshi, MIT, and Y. Liu, WISC

Architecture:

I F is split into k blocks and encoded into n blocks s.t.
any k out of n blocks are sufficient for content reconstruction.

I The n coded blocks are stored on n disks.

Operation:

I User request for F are forked to all n disks.

I Downloads from any k disks jointly enables reconstruction of F.

) Arrival rate at each of the n queues is � and service rate is kµ.
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(3, 2) Fork-Join System Architecture
I Content F is split into equal parts a and b, and stored on 3 disks

as a, b, and a+ b ) each disk stores half the size of F.

I User request for F are forked to all 3 disks.

I Downloads from any 2 disks jointly enables reconstruction of F.

a+ b

b

a

a+ b

b

Storage is 50% higher, but download time (per disk & overall) is reduced.
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(3, 2) Fork-Join System Operation
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Stability of (n, k) Fork-Join FHW System

The rate of arrivals � and the service rate kµ per node must satisfy

�-
�(n- k)

n
< kµ

) � < nµ
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Some Related Work on (n, k)-Type Sytems

Fork-Join Queues (1980’s, 1990’s, 2000’s)
Baccelli, Makowski, Shwartz, Flatto, Boxma, Koole, Kim, Agrawala,
Nelson, Tantawi, Xia, Liu, Towsley, Lelarge, ...

Codes and Queues (2012 – )
Joshi, Liu, Soljanin, Liang, Kozat, Kumar, Tandon, Clancy, Ziang, Lang,
Agawall, Chen, Shah, Lee, Ramchandran, Huang, Pawar, Zhang, ...

Replication and Queues (2012 – )
Vulimiri, Godfrey, Mittal, Sherry, Ratnasamy, Shenker, Gardner, Zbarsky,
Doroudi, Harchol-Balter, Scheller-Wolf, Hyytiä, ...

Codes and Blocking (2012 – )
Ferner, Médard, Soljanin
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The (n, 1) Fork-Join System

The system behaves as an M/M/1 queue with service rate nµ

) the system response time is exp(1/(nµ- �)).

A model “superimposing” multiple (n`, 1),µ`, �` systems:
“Queueing with Redundant Requests: First Exact Analysis,”
at Sigmetrics 2015 by
Gardner, Zbarsky, Doroudi, Harchol-Balter, Scheller-Wolf, Hyytiä
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Response Time Histogram for 104 Downloads
(10, k) Fork-Join Queue, FHW Model, � = 1, µ = 3
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Storage Space vs. Download Time in (10, k) Systems
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Doubling Storage Space Shortens Download Time
2k-fork, k-join Queue, M/M/1, request rate � = 1, µ = 3 per unit-download
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FHW (n, k) Fork-Join System

I k = n means there is no redundancy ) fork-join FHW queue.

I k = 1 means replication ) n independent M/M/1 queues.
I

1 < k < n means coding )
1. there is no independence and the system is not memoryless
) hard to derive analytical results,

2. but there is enough independence to benefit from diversity.

We are interested in the mean response time Tn,k.

Previous work has attempted finding Tn,n, but only bounds are known.
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Upper Bound on Response Time Tn,k

Consider a modified (n, k) fork-join system in which a completed task
does not exit its queue until k tasks of the same job are completed.
(cf. split-merge system)

The (n, k) split-merge system

I has response time greater than its fork-join counterpart, and

I is equivalent to an M/G/1 queue with service time Sk, the kth

order statistics of exp(kµ), with the mean and variance

E[Sk] =
Hn -Hn-k

kµ
V[Sk] =

Hn2 -H(n-k)2

kµ2
.

) An upper bound on Tn,k is given by the Pollaczek-Khinchin formula:

Tn,k 6 E[Sk] +
�
�
V[Sk] + E[Sk]2

�

2(1- �E[Sk])

25 / 42



Remarks on the Upper Bound

Stability Condition:

1

�
> E[Sk] )

�

µ
· Hn -Hn-k

k
< 1

The Nelson & Tantawi approach upper bound on Tn,n:

I the response times of the n queues form a set of associated RVs

I the expected maximum of associated RVs is smaller than
that of independent RVs with identical marginal distributions.

Tn,n 6 Hn

nµ- �

This does not hold for the kth order statistics when k < n.
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Lower Bound on Response Time Tn,k

Stages of Job Processing:

(Varki et al. approach)

I A job goes through k stages of processing, one for each task.

I At stage j, 0 6 j 6 k- 1, the job has completed j tasks.

I The service rate of a job in stage j stage is at most (n- j)kµ.

Tn,k >
k-1X

j=0

1

(n- j)kµ- �
 sum of response times of k stages

=
1

kµ

⇥
Hn -Hn-k + ⇢ · (Hn(n-⇢) -H(n-k)(n-k-⇢))

⇤
(⇢ =

�

µ
)
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Tightness of the Bounds

(10, k) Fork-Join Queue, FHW Model, � = 1

µ = 3 µ = 1.001
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Diversity – the Power of Choosing All
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A Coding Tale of a Tail at Scale

Splitting jobs into smaller tasks allows parallel task execution,
but increases randomness in the system, hence the tail.

Coding cuts the tail. Which jobs permit cutting the tail?
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When are the Bounds Valid, Tight, Applicable?
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What is a Good Model for Service Time?

Xlog-concave (convex)
Xjob-dependent
Xcancelation time
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Cost of Replication
Allerton’15, with G. Joshi and G. Wornell, MIT

I A job is forked in n independent & statistically identical servers.
I If a single server completes the job in time X , then

I the (n, 1) system completes the job in time X1:n  delay
I the system service time spent on the job is n · X1:n  cost

The expected cost of replication:

nE[X1:n] = E[X] if X is exponential,
nE[X1:n] 6 E[X] if ¯FX is log-convex,
nE[X1:n] > E[X] if ¯FX is log-concave.
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Cost of Replication
Allerton’15, with G. Joshi and G. Wornell, MIT

Theorem:

If ¯FX log-convex, then nE[X1:n] is non-increasing in n.
If ¯FX log-concave, then nE[X1:n] is non-decreasing in n.

Implications:

I How many redundant requests should be issued and when?

I When is canceling redundant tasks beneficial?
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How About Hot Data ?

A code has (r, t) availability if

I there are t disjoint repair groups for each data symbol &

I each repair group has at most r symbols.

A (2, 3)-availability code:

{a,b, c} �! { a , b , c , a+ b , b+ c , a+ c , a+ b+ c , }
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How Helpful is a Repair Group
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Decrease r or Increase t?
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When Data is Changing and/or Expanding ...
Data Updates

 Update a,b,a+ b with new a.

Storage Upgrades

vs.

Expand a,b,a+ b to include c and d.
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Cloud Data Security

Challenges are posed by coding, distributed storage, independent clouds.

a a+ b b
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Data Centers, Energy, and Smart (Power) Grid

Data centers electricity usage is
large ⇡ 2- 3% of the US total electricity,
& growing ⇡ 12% (cf. 1% total growth).

Redundant requests reduce storage requirements for a given latency.
But do they introduce some other costs?
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Who’s Getting Rich in The Big Data Gold Rush ?
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