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§  Phase noise due to (1) oscillator instability; (2) fiber non-linearities

§  Phase noise statistics:

§  phase-locked loops (PLLs) residual noise: von Mises/Tikhonov 
distribution

§  satellite (DVB-S2): white Gaussian process filtered by IIR filters

§  fiber-optic lasers: Wiener process

§  Raman amplification: large bandwidth Gaussian process

1) Phase Noise Models
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n  Simplified model (Barletta-Kramer, 2014) 
 
  
 
Θ(t) is white* and N(t) is white Gaussian* (both are idealizations)

n  Motivation: phase noise bandwidth much larger than receiver bandwidth

n  Mathematically: let {øm(t)} be an orthonormal basis of L2[0,T] 
and project X(t), N(t), and R(t) onto the øm(t) 
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R(t)= X(t) ⋅e jΘ(t ) +N(t)

White Phase Noise

* We use E[Θ(t)Θ(t+𝝉)] = σ2𝛿𝝉 and E[N(t)N(t+𝝉)]=σ2𝛿(𝝉)
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Discretization (1)

n  X(t) and N(t):

n  Receiver: 
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Discretization (2)

n  Samples: 
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Barletta-Kramer, 2014:
Almost sure convergence 
for white phase noise with 
uncorrelated samples of 
process {ejΘ(t)} 
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Discretization (3)

n  Model*: 
 
 
An AWGN channel (!) but with SNR penalty |μΘ|2

n  Penalty called spectral loss**: “lost” power is spread across all 
frequencies as white noise

n  Proof: use Borel-Cantelli lemma with a classic trick and a simplified 
step via assumed boundedness of ∫|øm(t) øk(t)*| dt

n  I expect this insight to be useful for fiber channels
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* Barletta-Kramer 2014, ** Goebel et al. 2011



n  Single-Mode Fiber (SMF): a small core that carries one mode of light

n  Here one mode has 2 complex dimensions: two polarizations

n  Theory papers often consider one complex dimension; 
the general case is interesting too of course (see below)

n  In fact, a hot topic in the fiber community is MIMO fiber

2) Fiber Channel(s)

Single-mode 
fiber (SMF)

Multi-core 
fiber (MCF)

Multi-mode 
fiber (MMF)
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SMF Pulse Propagation Equation

E :   Electromagnetic field, function of z and T
z:    Distance
T :   Retarded time t-β1z
α :   Fiber loss coefficient (~ 3 dB/15 km) 
β1 :  Inverse of group velocity 
β2 :  Fiber group velocity dispersion 
β3 :  Fiber dispersion slope (include if β2 small)
γ  :  Fiber nonlinear parameter (n2 ω)/(c Aeff)

Fiber
Loss/Gain

Dispersion
Slope

DispersionDistance
Evolution

Kerr
Nonlinearity

∂E
∂z

= −
α
2
E −

i
2
β2
∂2E
∂T 2

+
1
6
β3
∂3E
∂T 3

+ iγ E 2 E + n

Linear Nonlinear

• Maxwell’s equations and low-order approximations* result in a 
generalized nonlinear Schrödinger equation (GNSE):

n2 :   Fiber nonlinear coefficient
ω :   Angular frequency 
c :   Speed of light 
Aeff :  Fiber effective area

*See Ch. 2 in G.P. Agrawal, “Nonlinear Fiber Optics”, 3rd ed., 2001

Noise 
(Gaussian, 
Bandlimited)

Figure courtesy of R.-J. Essiambre



Fiber
Loss/Gain

Nonlinear

• To simulate, split the fiber length z* into K small steps (Δz) and the 
time T into L small steps (Δt)

• Split-step Fourier method at distance zk, k=0,1,...,K

Noise

DN
E(zk )

Linear

F DL F-1

•  Ideal Raman amplification: removes the loss and adds noise

• F = Fourier transform 

• DL = diagonal matrix with fixed entries of unit amplitude (all-pass filter)

• DN = diagonal matrix with unit amplitude entries; the (ℓ,ℓ)-entry phase 
shift is proportional to the magnitude-squared of the ℓth entry of EN(zk+1 )

th entry of EN(zk+1 )

E(zk+1 )
EN(zk+1 )

time signal: 
vector with L entries

10



n  Consider a complex column vector X = Xc + j Xs with covariance and 
pseudo-covariance matrices

n  For interest: X is called proper if its pseudo-covariance matrix is 0

n  Example: Consider a complex, zero-mean, scalar X = Xc + j Xs . 

X is proper if E[Xc
2]=E[Xs

2] and E[XcXs]=0. 

Note: circularly symmetric X are proper, but proper X are not 

necessarily circularly symmetric (e.g. QAM signal sets)

QX = E X − E X[ ]( ) X − E X[ ]( )†"
#

$
%

!QX = E X − E X[ ]( ) X − E X[ ]( )T"
#

$
%

But First More IT Preliminaries

3) Upper Bound
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n  Maximum Entropy: consider the correlation matrix RX=E[X X†] where X 
has L entries. Then 
 
 
 
 
with equality if and only if X is Gaussian and proper (or circularly 
symmetric)

n  For a complex square matrix M we have 
 
 
 
In particular, if M is unitary then h( M X ) = h( X )

h X( ) ≤ log πe( )L det RX
"
#

$
%

h M X( ) = h X( )+ 2log det M( )

Maximum Entropy
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n  Entropy Power: 

n  Entropy Power Inequality: for independent X and Y we have

n  Conditional version: for conditionally independent X and Y we have 

Entropy Power Inequality

V X( ) = eh(X ) L πe( )

V X +Y( ) ≥V X( )+V Y( )

V X U( ) = eh X U( ) L πe( )
V X +Y U( ) ≥V X U( )+V Y U( )
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Main Observations

• The linear step conserves energy and entropy

• The non-linear step also conserves energy and entropy (the key result)

Nonlinear Noise

DN
E(zk )

Linear

F DL F-1 E(zk+1 )
EN(zk+1 )

Energy and Entropy Conservation

h a e
jarg(a)+ jf ( a )!

"
#

$

%
& = h a ,arg(a)+ f ( a )( )+E log a'( )*

= h a( )+ h arg(a)+ f ( a ) a( )
h a ,arg(a)( )

! "##### $#####
+E log a'( )*= h(a)
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• Energy after K steps: EnergyLaunch + KN . We thus have:

Nonlinear Noise

DN
E(zk )

Linear

F DL F-1 E(zk+1 )
EN(zk+1 )

Energy Recursion

h E zK( )( ) ≤ log πe( )L det R E zK( )( )( )"
#

$
% … maximum entropy

≤ log πe Ri,i E zK( )( )"# $%
i=1

L

∑ … Hadamard's inequality

≤ L ⋅ log πe EnergyLaunch +KN( ) L"# $% … Jensen's inequality
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• Entropy recursion:

• We thus have:

Nonlinear Noise

DN
E(zk )

Linear

F DL F-1 E(zk+1 )
EN(zk+1 )

Entropy Recursion

V E zk+1( ) E z0( )( ) ≥V E zk( ) E z0( )( )+N L

V E zK( ) E z0( )( ) ≥ KN L

or h E zK( ) E z0( )( ) ≥ Llog πe KN L( )
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*SNR = receiver signal-to-noise ratio

So for every step we have:

• Signal energy grows by the noise variance: can upper bound h( E(zK) )

• Entropy power grows by at least the noise variance: 
can lower bound h( E(zK) | E(z0) )

• Result*:

Nonlinear Noise

DN
E(zk )

Linear

F DL F-1 E(zk+1 )
EN(zk+1 )

I E( z0 );E( zK )( ) = h E( zK )( )− h E( zK ) E( z0 )( )
≤ L ⋅ log 1+SNR( )
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⇒
1

L
I E( z0 );E( zK

)( ) ≤ log 1+SNR( )

•  Let B = 1/Δt be the “bandwidth” of the simulation

• So L = T/Δt = TB is the time-bandwidth product

• The spectral efficiency is thus bounded by

η ≤ log 1+SNR( )   [bits/sec/Hz]
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5) Conclusions

1)  Spectral efficiency of (an idealized model of) SMF with linear 
polarization is ≤ log(1+SNR)

2)  Many extensions are possible:

–  lumped amplification, 3rd-order dispersion, delayed Kerr effect

–  uniform loss, linear filters (for capacity results)

–  MIMO fiber (MMF or MCF)

3)  More difficult:

–  better bounds and understanding at high SNR

–  frequency-dependent loss, dispersion, non-linearity 
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