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NETWORK MULTICAST — The Butterfly

@ » Sources S; and S, produce bits o7 and o5.
» Each receiver needs bits from both sources.

» The edges have unit capacity.
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Can both sources simulaneosly transmit to both reseivers?
Yes if nodes can XOR bits.
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Three Unicasts in a Multicast Network



Network Multicast Theorem
Conditions:

» Network is represented as a directed, acyclic graph.

\4

Edges have unit-capacity and parallel edges are allowed.

There are h unit-rate information sources Sq, ..., Sh.

v

\4

There are N receivers Ry, ..., RN located at N distinct nodes.

Between the sources and each receiver node,

v

» the number of edges in the min-cut is h (or equivalently)
» there are h edge-disjoint paths (S;, Rj) for 1 <i < h.
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Network is represented as a directed, acyclic graph.
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Edges have unit-capacity and parallel edges are allowed.
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There are h unit-rate information sources Sq, ..., Sh.

\4

There are N receivers Ry, ..., RN located at N distinct nodes.

Between the sources and each receiver node,

v

» the number of edges in the min-cut is h (or equivalently)
» there are h edge-disjoint paths (S;, Rj) for 1 <i < h.

Claim: There exists a multicast transmission scheme of rate h.
Moreover, multicast at rate h
» cannot always be achieved by routing, but

» can be achieved by allowing the nodes to linearly combine

their inputs over a sufficiently large finite field.
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» The main theorem does not hold.
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UNDIRECTED GRAPHS

» The main theorem does not hold.

» Coding can at most double the throughput.
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Network Multicast — Linear Combining

» Source S; emits o; which is an element of some finite field.
» Edges carry linear combinations of their parent node inputs.

» Consequently,

edges carry linear combinations of source symbols o;.



Network Multicast — Linear Combining

» Source S; emits o; which is an element of some finite field.
» Edges carry linear combinations of their parent node inputs.

» Consequently,

edges carry linear combinations of source symbols o;.

Network Coding Multicast Problem:
How should nodes combine their inputs to ensure that any h edges

observed by a receiver carry independent combinations of oy-s?
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Network Multicast — Code Design

» Edges carry linear combinations of their parent node inputs;

{otc} are the coefficients used in these linear combinations.
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» Edges carry linear combinations of their parent node inputs;

{otc} are the coefficients used in these linear combinations.

> p% is the symbol on the last edge of the path (S, R;) =
Receiver j has to solve the following system of equations:
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where the elements of matrix C; are polynomials in {o}.
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Network Multicast — Code Design

» Edges carry linear combinations of their parent node inputs;

{otc} are the coefficients used in these linear combinations.

> pi is the symbol on the last edge of the path (S, R;) =
Receiver j has to solve the following system of equations:

where the elements of matrix C; are polynomials in {o}.

The Code Design Problem:
Select {a } so that all matrices Cy ... Cy are full rank.
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Network Multicast — Code Existence

> The goal is to select {ot)} so that C;...Cy are full rank.

» Equivalently, the goal is to select {o¢,} so that
f({x}) £ det(Cy) - - - det(Cn) # 0.

Can such {o} be found?
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Network Multicast — Code Existence

> The goal is to select {ot)} so that C;...Cy are full rank.

» Equivalently, the goal is to select {a} so that
f({oa}) = det(Cy) - - - det(Cn) # 0.

Can such {o} be found?

RLNC [Ho et al]
Yes, by selecting {o} uniformly at random from a “large filed”,
we will have the polynomial f({ax}) # 0 with “high probability”.

LIF [Jaggi et al ]
Yes, {ou} can be selected form Fy where g > N.

But, we don’t know of any networks for which q > O(v/N) is required.
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Combination Network B(h, m)
A Popular Network With a Small-Alphabt Code

B(h, m) has
» h information sources,
m .
> (') receivers, and
» m bottlenecks.

Design a rate-h multicast!
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Combination Network B(h, m)
A Popular Network With a Small-Alphabt Code

B(h, m) has
» h information sources,
> (') receivers, and
» m bottlenecks.

Design a rate-h multicast!

Ry R

Map {oj} to {yi} by an [m, h] Reed-Solomon code.

But, what if fewer than h sources are available at the bottlenecks?

)
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Coding Points

The multicast condition:

Between the sources and each receiver node,
» the number of edges in the min-cut is h (or equivalently)

> there are h edge-disjoint paths (Si, Rj) for 1 <i < h.

Coding points are edges where paths from different sources merge. |
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Local and Global Coding Vectors

v

v

{ok} are the local coding coefficients.

» Each edge e carries a linear combination of source symbols:
01
ci(e)or + - +cn(e)on = [cile)...cn(e)]
Oh

> [ci(e)...cn(e)] € Fa‘ is the global coding vector of edge e.

Edges carry linear combinations of their parent node inputs.
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Decoding for Receiver j

> p{ is the symbol on the last edge on the path (Si, R;).

> ci is the coding vector of the last edge on the path (S;, Rj).

> Cj is the matrix whose i-th row is c]i.

» Receiver j has to solve the following system of equations:
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Network Multicast — Code Design

Select a coding vector for each edge e of the network so that
1. the matrices C; ... Cy are full rank.

2. the coding vector of e is in the linear span of the coding

vectors of the input edges to the parent node of e.

The only edges of interest are coding points.
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Local and Global View
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Local and Global View
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Local and Global View
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Roughly speaking, we need to find a collection of vectors s.t.

some are in the span of others & some are linearly independent.
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Minimal h-Multicast Graph I' = (G, 8, R)
Ingredients:

1. Directed, acyclic graph G with
Example:
» h source nodes 8§ =S1,...,Sh

» nodes with in-degree d, 2 < d < h. S1 Sy

2. Set of labels R = Ry, ..., RN (receivers). e e

_ (labeling rules):

1. Each Ry is used to label exactly h nodes. @
Nodes can have multiple labels.

2. Nodes labeled by R; are connectible to
the sources by h node-disjoint paths.

If an edge is removed, the multicast property is lost.

19/1



Code Design Problem for Network Multicast

Example:

Select a vector in Fz‘ for each node in G s.t.
(10] [01]

1. Sj is assigned e;. e e

2. vectors of the h nodes sharing a receiver label
are linearly independent

3. the vector assigned to a node is in the span @ [11]
of the vectors assigned to its parents.

We call such assignments network multicast codes. [1 o or [01]

Can such selection of vectors be made? Over how small field? |

20/



The Field Size?

Theorem [Fragouli & Soljanin '06]:

» For networks with 2 sources and N receivers,

q>a=|V2N—7/4+1/2]

is sufficient, and, for some networks, necessary.

» For networks with h sources and N receivers,
qgza=N

is sufficient. (Proven even earlier a couple of times.)

We don't have any examples where we need a > O(v/N).

21/



Coding for Networks with Two Sources

> Let £ be the following set of (q + 1) vectors:
[01], [10], and [1 '] for0 <i< q—2,

where o is a primitive element of IFy.
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Coding for Networks with Two Sources

> Let £ be the following set of (q + 1) vectors:
[01], [10], and [1 '] for0 <i< q—2,

where o is a primitive element of IFy.
» Consider any two different vectors in £:

» they are linearly independent, and

» any vector in £ is in their linear span.

— Vectors in £ can be treated as colors.

Example:

22/



Vertex Coloring and Code Design
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Vertex Coloring and Code Design
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Vertex Coloring and Code Design

[54]

-0
©)

“C?
@

R3




Vertex Coloring and Code Design

23



Vertex Coloring and Code Design

5]
<~@

23



Vertex Coloring and Code Design

5]

23



Vertex Coloring and Code Design

5]

bod
~<;>

R3

23/



Vertex Coloring and Code Design
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Field Size for Network with Two Sources
{ -The Chromatic Number of Q

Claim: €< /2N —7/4+1/2] +1

Elements of the Proof:

» Lemma: Every vertex in an Q has degree at least two.
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Field Size for Network with Two Sources
{ -The Chromatic Number of Q

Claim: €< /2N —7/4+1/2] +1
Elements of the Proof:
» Lemma: Every vertex in an Q has degree at least two.
» Lemma: Every {-chromatic graph has at least { vertices of
degree at least £ — 1.
» For an QO with n nodes, chromatic number £, and € edges:

1L.e>[f—1)+ (n—10)2]/2 < from the lemmas
2. e<N+n-2 + receiver and flow edges

Recall that [Fy provides q + 1 colors when h = 2.
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h>?2

We cannot dispose of geometry and just do combinatorics

Is there generalization of the coloring idea?

» We have used points on the projective line as colors.

» Con we use the points on arcs in PG(h — 1, q) as colors?

Yes, if each non-source node has h inputs.

Roughly speaking, we need to find a collection of vectors s.t.

some are in the span of others & some are linearly independent.

Are there counterparts to the “coloring graph” 7
E.g., matroids, finite geometry relations?



Combination Network B(h, m)

A Popular Network With a Small-Alphabt Code
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B(h, m) has
» h information sources,
m .
> (') receivers, and
» m bottlenecks.

Design a rate-h multicast!
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Map {oj} to {yi} by an [m, h] Reed-Solomon code.
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A Distributed Combination Network

Fewer than h sources are available at the bottlenecks

S1 S2 S3

There are
» 3 information sources,
» 9 bottlenecks, and
> (3) — 3 = 81 receivers.

Design a rate-3 multicast!
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A Distributed Combination Network

Fewer than h sources are available at the bottlenecks

S1 S2 S3

There are
» 3 information sources,

» O bottlenecks, and

3

Design a rate-3 multicast!
R1 Rs1

Only information that is locally available can be combined.

> (9) — 3 = 81 receivers.
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Non-Monotonicity

There may be a solution over Fg, but not over FF; for some q > 0
Coding vectors for our example network:
a azx as b1 b2 b3 0 0 0

Ci C2 C3 0 0 0 d1 d2 d3
0 0 O le e e3|f1 fo fs

Vi V2 V3

All 3 x 3 sub-matrices, except v1, Vp, vs, should be non-singular.

28/



Non-Monotonicity

There may be a solution over Fy, but not over IF for some q > 0
Coding vectors for our example network:

by b b3| 0 0 O

Ci C2 C3 0 0 0 d1 d2 d3

0 0 0 €1 €y e3 fl fz f3

a azx as

Vi V2 V3

All 3 x 3 sub-matrices, except vi, V2, v3, should be non-singular.

4

In which fields IFq does a solution exist?

» No solution exists when q < 7.

v

A solution exists for all ¢ > 9.

v

A solution exists for q =7

» No solution exists for q = 8.
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What Would We Like To Do?

.. short of solving the problem ...

Find relations (_) with other problems, e.g.,
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What Would We Like To Do?

.. short of solving the problem ...
Find relations (lequivalences|) with other problems, e.g.,

Something old :
Three problems of Segre in PG(h—1, q)

1. What is the size g(h, q) of the maximal arc,
and which arcs have g(h, q) points?

2. For which q and h < q are all arcs with q 4+ 1 points equivalent?

3. What are the sizes of the complete arcs,
and what is the size of the second largest complete arc?

Something new :
constrained MDS codes, codes with locality constraints,

minimal multicast graph topologies vs. geometry of arcs.
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Who are We?

From left to right: Fragouli, Valdez, Manganiello, Halbawi, Soljanin, Anderson, Walker, Kaplan
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