Achievable Rate Estimates from Fiber-Optic Transmission Experiment Measurements

Georg Böcherer

Institute for Communications Engineering
Technical University of Munich
georg.boecherer@tum.de

Sixth Van Der Meulen Seminar: Optical Communications
15. September 2016
Eindhoven University of Technology, The Netherlands
References

Outline

1. Fiber-Optic Transmission Experiment
2. Achievable Information Rates
3. Coded Modulation System Design
Outline

1. Fiber-Optic Transmission Experiment
2. Achievable Information Rates
3. Coded Modulation System Design
Experimental Setup
Experimental Setup: Interfaces

Input x^n

Output y^n
Input Sequences

We provide input sequences to the experimentalist:

- $n = 200\,000$ QAM symbols $x^n = x_1, x_2, \ldots, x_n$.
- **Probabilistic shaping:** use outer QAM symbols less often:
Example 64-QAM Distributions P_X
Measurement Campaign

- Measurement campaign with provided input sequences x^n.
- For each measurement, a noisy output sequences $y^n = y_1, y_2, \ldots, y_n$ is stored.
- We get a data set with the noisy output sequences y^n.
Outline

1. Fiber-Optic Transmission Experiment
2. Achievable Information Rates
3. Coded Modulation System Design
Reliable Transmission

- The receiver must recover input sequence x^n from output sequence y^n.
- An **achievable information rate** (AIR) indicates if recovery is possible.
Channel Coding Theorem (Achievability Part)

- Memoryless channel $p_{Y|X}$.
- Random code $C = \{X^n(1), \ldots, X^n(2^{nR})\}$ with entries iid $\sim P_X$.
- Message $w \in \{1, 2, \ldots, 2^{nR}\}$
- ML decoder
 \[
 \hat{W} = \arg\max_w p_{Y^n|X^n}(Y^n|X^n(w)) = \prod_{i=1}^{n} p_{Y|X}(Y_i|X_i(w))
 \]
- Error probability $\Pr(W \neq \hat{W}) \xrightarrow{n \to \infty} 0$ if
 \[
 R < I(X; Y).
 \]
Estimating Mutual Information

- **Mutual information:**

\[
I(X; Y) = E \left[\log \frac{p_{Y|X}(Y|X)}{p_Y(Y)} \right].
\]

- **Calculation by Monte-Carlo simulation:** Sample sequences \(x^n, y^n \) of \(n \) independent channel uses.

- **Weak law of large numbers:**

\[
I(X; Y) \approx \hat{I}(x^n; y^n) := \frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{Y|X}(y_i|x_i)}{p_Y(y_i)}.
\]
Measurements

- \hat{I} can be calculated also when x^n, y^n are measurements of some channel.
- The memoryless channels $p_{Y|X}$ is now an auxiliary channel of our choice.
Auxiliary AWGN Channel

- Input distribution is $P_{X^n} = P^n_X$.
- Memoryless auxiliary output channel $p_{Y^n|X^n} = p^n_{Y|X}$
- Auxiliary I/O relation

$$Y = h \cdot X + Z$$

with $Z \sim \mathcal{N}(0, \sigma^2)$.
- Choose h, σ^2 maximizing \hat{I}.
What is the operational meaning of \hat{I} now?

Assumptions of channel coding theorem not fulfilled:

- We don’t know the channel $p_{Y^n | X^n}$.
- The “true” channel very likely has memory.
Mismatched Decoding

LM Rate

- Random code ensemble $\sim P_{X^n}$.
- Auxiliary channel $q(\cdot|\cdot)$
- Decoder $\hat{W} = \arg\max_w q(\tilde{Y}^n|X^n(w))$.
- Achievable rate

$$R_{LM} = \mathop{\text{p-\lim\,inf}}_{n \to \infty} \frac{1}{n} \log \frac{q(\tilde{Y}^n|X^n)^s r(X^n)}{q_s(\tilde{Y}^n)} =: \hat{R}_{LM}$$

where

- Auxiliary output distribution $q_s(\cdot) = E[q(\cdot|X^n)^s r(X^n)]$
- $s \geq 0$.
- Function $r: \frac{1}{n} \log[r(X^n)] \xrightarrow{n \to \infty} E\{\frac{1}{n} \log[r(X^n)]\}$.
Mutual Information Estimate

- $\hat{I} = \hat{R}_{LM}$ for $s = 1$, $r(x) = 1$, and

 $$q = p^n_{Y|X}$$

\Rightarrow \hat{I} is an achievable rate lower bound for a decoder assuming memoryless channel $q = p^n_{Y|X}$.

- Optimizing over s, r may improve the bound.
Discussion: Signal-to-Noise Ratio

- “Signal-to-noise ratio” is

\[
\text{SNR} = \frac{h^2 \mathbb{E}[|X|^2]}{\sigma^2}
\]

- Depends on our model parameters \(h, \sigma^2 \).
- Can be very different from OSNR measured by the spectral analyzer.
Discussion: Parameter Choice at the Receiver

- MMSE estimate:
 \[h = \frac{xy^H}{xx^H}, \quad \sigma^2 = \frac{1}{n}(yy^H - |h|^2xx^H) \]

- Problem: the receiver does not know \(x^n \).
Discussion: Scatterplot
Discussion: Blind Estimation of h, σ^2

- **Blind**: use only y^n to optimize h.
- Approach:

 $$D(p_Y \| q_Y) \geq 0 \Rightarrow \mathbb{E} \left[\log_2 \frac{1}{q_Y(Y)} \right] \geq H(Y).$$

 $$\Rightarrow \text{minimize expectation over } q_Y.$$

- Choose

 $$q_{Y_h}(y) = \sum_{x \in \mathcal{X}} P_X(x) P_{Z_h}(y - h \cdot x)$$

 where $Z_h \sim \mathcal{N}(0, \frac{yy^H}{n} - |h|^2 \text{Var}(X))$,

 $$h_{\text{blind}} = \arg\min_h \frac{1}{n} \sum_{i=1}^n \log_2 \frac{1}{q_{Y_h}(y_i)}$$
AIR Estimates

Loops

\hat{I}_{awgn} [bit/QAM symbol]

64-QAM (P_1)
64-QAM (P_2)
64-QAM (P_3)
64-QAM (P_4)
16-QAM Uniform
64-QAM Uniform

Net data rate (Gbit/s)

480 960 1440 1920 2400 2880 3360 3840 4320 4800

Distance (km)

2 4 6 8 10 12 14 16 18 20 22 24

3
3.5
4
4.5
5
5.5
6

\hat{I}_{awgn} [bit/QAM symbol]

Loops

Outline

1. Fiber-Optic Transmission Experiment
2. Achievable Information Rates
3. Coded Modulation System Design
Input Distribution P_X

- **Symmetry:**
 \[P_X(x) = P_X(-x). \]

- **Amplitude-Sign Factorization:**
 \[P_X(x) = P_A(|x|)P_S(\text{sign}(x)) \]
 where \(A := |X| \) and \(S := \text{sign}(X) \).

- **Uniform sign:**
 \[P_S(-1) = P_S(1) = \frac{1}{2}. \]
Generation of Amplitude Sequence

Constant Composition Distribution Matching (CCDM) \(^2\):

\[
D^k \xrightarrow{\text{CCDM}} A^n
\]

- Data bits \(D_i\) iid Bernoulli(1/2).
- \(A_i \sim P_A\).
- Rate is \(k/n = H(A)\).
- Invertible: \(D^k\) can be recovered from \(A^n\) with zero error.

Shaping and Channel Coding

Binary systematic rate \((m-1)/m \) generator matrix \(G = [I|P] \).
Binary amplitude representation \(b(A_i) \in \{0,1\}^{m-1} \).
Binary sign representation \(b(S_i) \in \{0,1\} \).
\(b(S)^n = b(A)^n P \).

Assumption: \(S_i \) is approximately uniformly distributed.

\[A_i S_i \sim P_X. \]
Uniform Check Bit Assumption: Example
DVB-S2 rate 1/2 LDPC code

- **Data:** empirical distribution \(P_D(1) = 1 - P_D(0) = 0.1082 \).
- **Check bits:** empirical dist. \(P_R(1) = 1 - P_R(0) = 0.4970 \).
Probabilistic Amplitude Shaping (PAS)3

\[P_{S_i \cdot A_i} = P_X \]

Receiver

- Binary label of X is $b(S)b(A) =: B_1B_2\cdots B_m$
- The demapper calculates bitwise soft-information

\[
L_j = \log \frac{P_{B_j}(0)}{P_{B_j}(1)} + \log \frac{p_{Y|B_j}(Y|0)}{p_{Y|B_j}(Y|1)}, \quad j = 1, \ldots, m.
\]

- No iterative demapping.
Numerical Results: Operating Points FER = “0”

![Graph showing operating points for different modulation schemes and distances.]

- **OP1**: 64-QAM (P1)
- **OP2**: 64-QAM (P2)
- **OP3**: 64-QAM (P3)
- **OP4**: 64-QAM Uniform
- **Ref1**: 64-QAM Uniform
- **Ref2**: 16-QAM Uniform

Parameters:
- **Loops**: 2 to 24
- **Distance (km)**: 2 to 24
- **Net data rate (Gbit/s)**: 480 to 5760
- **[bit/QAM symbol]**: 3 to 6
Conclusions

- Achievable Information Rates as interface between fiber-optic transmission experiment and coded modulation system design.
- Probabilistic shaping opportunities: reach & rate increase.
- Experimental work is rewarding.
References I

References II
