Personal tools
Author(s): |
Creation Date: Apr 30, 2014
Published In: Jul 2014
Paper Type: Journal Article
Abstract:The nonlinear Fourier transform (NFT), a powerful tool in soliton theory and exactly solvable models, is a method for solving integrable partial differential equations governing wave propagation in certain nonlinear media. The NFT decorrelates signal degrees-of-freedom in such models, in much the same way that the Fourier transform does for linear systems. In this three-part series of papers, this observation is exploited for data transmission over integrable channels, such as optical fibers, where pulse propagation is governed by the nonlinear Schrödinger equation. In this transmission scheme, which can be viewed as a nonlinear analogue of orthogonal frequency-division multiplexing commonly used in linear channels, information is encoded in the nonlinear frequencies and their spectral amplitudes. Unlike most other fiber-optic transmission schemes, this technique deals with both dispersion and nonlinearity directly and unconditionally without the need for dispersion or nonlinearity compensation methods. This paper explains the mathematical tools that underlie the method.
IEEE Explore link: https://ieeexplore.ieee.org/document/6808480/
Award(s) Received: |
Home | Contact | Accessibility | Nondiscrimination Policy | Privacy & Opting Out of Cookies
© Copyright 2019 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.