Two by Gel'fand and Pinsker

Amos Lapidoth ETH Zurich

2012 IEEE European School of Information Theory, Antalya, Turkey

April 19, 2012

Joint work with Ligong Wang.

Two Results of Gel'fand and Pinsker from 1980

Problems of Control and Information Theory, Vol. 9 (1), pp. 19-31 (1980)

CODING FOR CHANNEL WITH RANDOM PARAMETERS

S. I. GEL'FAND, M. S. PINSKER

(Moscow)

(Received January 20, 1979)

CAPACITY OF A BROADCAST CHANNEL WITH ONE

DETERMINISTIC COMPONENT

S. I. Gel'fand and M. S. Pinsker

UDC 621.391.1

An internal bound is given for the capacity region of a two-output broadcast channel when there is common information. The capacity region for a broadcast channel with one deterministic component is computed. A noisy Blackwell channel is considered as an example.*

A Channel with Random Parameters

• Channel law

$W(y|x,s), \{S_k\} \sim \text{IID } P_S.$

• The encoder knows the state sequence noncausally:

$$\mathbf{f}: \mathcal{M} \times \mathcal{S}^n \to \mathcal{X}^n.$$

• \mathcal{M} is the message set

$$\mathcal{M}=\big\{1,\ldots,2^{nR}\big\}.$$

- *R* is the rate, and *n* is the blocklength.
- Decoder ignorant of state sequence:

$$\phi\colon \mathcal{Y}^n\to \mathcal{M}.$$

The highest rate of reliably communication

Gel'fand and Pinsker:

$$C = \max I(U; Y) - I(U; S)$$

where the maximum is over all PMFs

 $P_{\mathcal{S}}(s) P_{\mathcal{U}|\mathcal{S}}(u|s) P_{\mathcal{X}|\mathcal{S},\mathcal{U}}(x|s,u) W(y|x,s).$

And there is NLG in choosing $P_{X|S,U}$ deterministic:

 $P_{S}(s) P_{U|S}(u|s) I\left\{x = g(s, u)\right\} W(y|x, s)$

$$C = \max_{P_{U|S}, g: S \times U \to \mathcal{X}} I(U; Y) - I(U; S)$$

Achievability

• Generate $2^{n(R+\tilde{R})}$ sequences IID P_U :

$$\mathbf{u}(m,\ell), \quad m \in \mathcal{M}, \ \ell \in \Big\{1,\ldots,2^{n ilde{R}}\Big\}.$$

- To send Message *m* after observing s, look for some *l* such that (*u*(*m*, *l*), s) are j.t. w.r.t. *P*_{S,U}.
- If none found, "encoding failure."
- The probability of encoding failure vanishes if

 $\tilde{R} > I(U; S).$

- Decoder searches for a unique pair (m', l') such that (u(m', l'), y) is j.t. w.r.t. P_{U,Y}.
- The probability of success tends to one if

$$R+\tilde{R} < I(U;Y).$$

The Converse

$$nR \leq I(M; Y^{n}) + n\epsilon_{n}$$

$$= \sum_{i} I(M; Y_{i}|Y^{i-1}) + n\epsilon_{n}$$

$$= \sum_{i} I(M, S_{i+1}^{n}; Y_{i}|Y^{i-1}) - \sum_{i} I(S_{i+1}^{n}; Y_{i}|M, Y^{i-1}) + n\epsilon_{n}$$

$$= \sum_{i} I(M, S_{i+1}^{n}; Y_{i}|Y^{i-1}) - \sum_{i} I(Y^{i-1}; S_{i}|M, S_{i+1}^{n}) + n\epsilon_{n}$$

$$= \sum_{i} I(M, S_{i+1}^{n}; Y_{i}|Y^{i-1}) - \sum_{i} I(M, Y^{i-1}, S_{i+1}^{n}; S_{i}) + n\epsilon_{n}$$

$$\leq \sum_{i} I(M, Y^{i-1}, S_{i+1}^{n}; Y_{i}) - \sum_{i} I(M, Y^{i-1}, S_{i+1}^{n}; S_{i}) + n\epsilon_{n}$$

$$= \sum_{i} I(U_{i}; Y_{i}) - I(U_{i}; S_{i}) + n\epsilon_{n}.$$

It only remains to check that

$$(M, Y^{i-1}, S^n_{i+1}) \rightarrow (X_i, S_i) \rightarrow Y_i$$

What Is a Broadcast Channel?

- One transmitter and two receivers.
- Transmitted symbol: $X \in \mathcal{X}$.
- Received symbols: $Y \in \mathcal{Y}$ and $Z \in \mathcal{Z}$.
- Message $m_y \in \mathcal{M}_y$ for Receiver Y, and $m_z \in \mathcal{M}_z$ for Z.
- Channel is used *n* times ("the blocklength").
- The rates are

$$R_y = rac{\log \# \mathcal{M}_y}{n}, \qquad R_z = rac{\log \# \mathcal{M}_z}{n}.$$

• The encoder:

$$(m_y, m_z) \mapsto \mathbf{x}(m_y, m_z) = (x_1(m_y, m_z), \dots, x_n(m_y, m_z)) \in \mathcal{X}^n.$$

• The decoders:

$$\phi_{\mathbf{y}}\colon \mathcal{Y}^n \to \mathcal{M}_{\mathbf{y}}, \qquad \phi_{\mathbf{z}}\colon \mathcal{Z}^n \to \mathcal{M}_{\mathbf{z}}.$$

The Probability of Error

A memoryless BC of law W(y, z|x):

$$\Pr[\mathbf{Y} = \mathbf{y}, \mathbf{Z} = \mathbf{z} | \mathbf{X} = \mathbf{x}] = \prod_{k=1}^{n} W(y_k, z_k | x_k).$$

The probabilities of error:

$$\frac{1}{\# \mathcal{M}_y} \frac{1}{\# \mathcal{M}_z} \sum_{m_y \in \mathcal{M}_y} \sum_{m_z \in \mathcal{M}_z} \Pr[\phi_y(\mathbf{Y}) \neq m_y | M_y = m_y, \ M_z = m_z]$$

and

$$\frac{1}{\# \mathcal{M}_y} \frac{1}{\# \mathcal{M}_z} \sum_{m_y \in \mathcal{M}_y} \sum_{m_z \in \mathcal{M}_z} \Pr[\phi_z(\mathbf{Z}) \neq m_z | M_y = m_y, \ M_z = m_z].$$

Capacity Region

- (R_y, R_z) is achievable if for every $\epsilon > 0$ and $\delta > 0$ we are guaranteed that for all sufficiently large blocklengths *n* we can find encoder/decoders of rates $(R_y - \delta, R_z - \delta)$ for which both error probabilities are smaller than ϵ .
- Some special cases for which the capacity is known:
 - The degraded BC
 - Less Noisy
 - More capable
 - The deterministic BC
 - The semideterministic BC.

The Deterministic Broadcast Channel

$$Y = f_y(X), \qquad Z = f_z(X)$$

for some

$$f_{y}: \mathcal{X} \to \mathcal{Y}, \qquad f_{z}: \mathcal{X} \to \mathcal{Z}.$$

Gel'fand, Marton, and Pinsker: The capacity region is the convex closure of the union over all PMFs P_X of the (sets of) rate pairs

$$egin{aligned} R_y &\leq H(Y) \ R_z &\leq H(Z) \ R_y + R_z &\leq H(Y,Z) \end{aligned}$$

where the entropies are computed for the joint PMF

$$P_{XYZ}(x, y, z) = P_X(x) \mathbf{1} \{ y = f_y(x) \} \mathbf{1} \{ z = f_z(x) \}.$$

The Converse for the Deterministic BC

The converse is easy:

$$I(M_y; \mathbf{Y}) \leq \sum_{k=1}^n H(Y_k),$$

$$I(M_z;\mathbf{Z}) \leq \sum_{k=1}^n H(Z_k),$$

and

$$I(M_y, M_z) \leq \sum_{k=1}^n H(Y_k, Z_k).$$

To bound R_y we ignore the fact that $H(\mathbf{Y}|M_y)$ is typically not zero (because of M_z). Likewise for R_z . And to bound $R_y + R_z$ we pretend that the receivers can cooperate.

Deterministic BC-the Direct Part

- Choose P_X , inducing a joint $P_X P_{Y|X} P_{Z|X}$ of marginal $P_{Y,Z}$.
- In two independent assignments, assign to each $\mathbf{y} \in \mathcal{Y}^n$ a random index $I \in \{1, \dots, 2^{nR_y}\}$ and to each $\mathbf{z} \in \mathcal{Z}^n$ a random index $J \in \{1, \dots, 2^{nR_z}\}$.
- Let B(i,j) comprise the pairs (\mathbf{y}, \mathbf{z}) that are mapped to (i,j).
- If (y, z) are jointly typical w.r.t. P_{Y,Z}, then there must exist some x ∈ Xⁿ that produces the outputs (y, z), because joint typicality implies

$$\Pr[\mathbf{Y} = \mathbf{y}, \mathbf{Z} = \mathbf{z}] > 2^{-n \left(H(Y, Z) + \epsilon\right)} > 0,$$

and the only way this probability can be positive is if some ${\bf x}$ induces these outputs.

- To send (m_y, m_z) look for a pair (y, z) in B(m_y, m_z) that is jointly typical, and transmit the sequence x that produces it.
- If there is no j.t. (\mathbf{y}, \mathbf{z}) in $B(m_y, m_z)$, \Rightarrow "encoding failure."

The Semideterministic Broadcast Channel Only Y is deterministic given x:

$$Y = f_y(x),$$
 $\Pr[Z = z | X = x] = W(z|x).$

Gel'fand and Pinsker: The capacity is the convex hull of the union over all P_X of the sets of rate pairs (R_y, R_z)

$$R_y < H(Y)$$

$$R_z < I(U; Z)$$

$$R_y + R_z < H(Y) + I(U; Z) - I(U; Y)$$

over all joint distribution on (X, Y, Z, U) under which, conditional on X, the channel outputs Y and Z are drawn according to the channel law independently of U:

$$P_{XYZU}(x, y, z, u) = P_{X,U}(x, u) \mathbf{1} \{ y = f_y(x) \} W(z|x).$$

Achievability follows from Marton's Inner Bound (More later).

State-Dependence and Prescience

• A state sequence S_1, \ldots, S_n is generated IID $\sim P_S$. The channel law is

W(y, z|s, x).

• A prescient encoder knows S_1, \ldots, S_n before transmission begins:

$$\mathbf{x} = \mathbf{x}(m_y, m_z, \mathbf{s}).$$

State-Dependence and Prescience

• A state sequence S_1, \ldots, S_n is generated IID $\sim P_S$. The channel law is

W(y, z|s, x).

• A prescient encoder knows S_1, \ldots, S_n before transmission begins:

$$\mathbf{x} = \mathbf{x}(m_y, m_z, \mathbf{s}).$$

At least as hard as the BC without a state....

The Steinberg-Shamai Inner Bound

Achievability of (R_1, R_2) is guaranteed whenever

$$R_{1} \leq I(U_{0}, U_{1}; Y) - I(U_{0}, U_{1}; S)$$

$$R_{2} \leq I(U_{0}, U_{2}; Z) - I(U_{0}, U_{2}; S)$$

$$R_{1} + R_{2} \leq -\left[\max\{I(U_{0}; Y), I(U_{0}; Z)\} - I(U_{0}; S)\right]^{+}$$

$$+ I(U_{0}, U_{1}; Y) - I(U_{0}, U_{1}; S)$$

$$+ I(U_{0}, U_{2}; Z) - I(U_{0}, U_{2}; S) - I(U_{1}; U_{2}|U_{0}, S),$$

for some PMF of marginal P_S ; that satisfies

$$(U_0, U_1, U_2) \rightarrow (X, S) \rightarrow (Y, Z);$$

with the conditional of (Y, Z) given (X, S) being W(y, z|x, s).

The Semideterministic State-Dependent BC with a Prescient Transmitter

• Y is a deterministic function of (x, s) but Z possibly not:

$$Y = f(s, x),$$
 $\Pr[Z = z | X = x, S = s] = W(z | x, s).$

• The transmitter has noncausal state-information:

$$(m_y, m_z, \mathbf{s}) \mapsto \mathbf{x}(m_y, m_z, \mathbf{s}) = (x_1(m_y, m_z, \mathbf{s}), \dots, x_n(m_y, m_z, \mathbf{s}))$$

Two Special Cases

• State is null \implies (classical) semideterministic BC.

(Gel'fand and Pinsker'80b).

Two Special Cases

• State is null \implies (classical) semideterministic BC.

(Gel'fand and Pinsker'80b).

 Y is null ⇒ the single-user "Gel'fand-Pinsker problem" (Gel'fand and Pinsker'80a):

$$C = \max_{U \to -(X,S) \to -Z} I(U;Z) - I(U;S)$$

where the maximization is over PMFs of the form

$$P_{\mathcal{S}}(s) P_{U|\mathcal{S}}(u|s) P_{X|\mathcal{S},U}(x|s,u) W(z|x,s),$$

and $P_{X|S,U}$ can be taken to be deterministic.

Who Is S.I Gel'fand?

Who Is S.I Gel'fand?

Sergey Israilevich Gel'fand. Ph.D. 1968 Moscow State Univeristy

Supervisor: A. A. Kirillov.

Israil Moiseevich Gel'fand (father)

The Main Result

The capacity region is convex closure of the union of rate-pairs (R_y, R_z) satisfying

$$R_{y} < H(Y|S) R_{z} < I(U; Z) - I(U; S) R_{y} + R_{z} < H(Y|S) + I(U; Z) - I(U; S, Y)$$

over all joint distribution on (X, Y, Z, S, U) whose marginal P_S is the given state distribution and under which, conditional on X and S, the channel outputs Y and Z are drawn according to the channel law independently of U:

$$P_{XYZSU}(x, y, z, s, u) = P_S(s)P_{XU|S}(x, u|s)\mathbf{1}\left\{y = f(x, s)\right\}W(z|x, s).$$

Moreover, the capacity region is unchanged if the state sequence is revealed to the deterministic receiver.

If the State Is Null

$$\begin{split} R_{y} &< H(Y) \$) \\ R_{z} &< I(U; Z) - I(U; S)^{-0} \\ R_{y} + R_{z} &< H(Y) \$) + I(U; Z) - I(U; S, Y)^{-1} \\ P_{XYZ \$ U}(x, y, z, \$, u) &= P_{\$}(\$) P_{XU} \$ (x, u | \$) \mathbf{1} \{ y = f(x, \$) \} W(z | x, \$). \end{split}$$
That is,

$$R_y < H(Y)$$

$$R_z < I(U; Z)$$

$$R_y + R_z < H(Y) + I(U; Z) - I(U; Y)$$

$$P_{XYZU}(x, y, z, u) = P_{XU}(x, u)\mathbf{1}\{y = f(x)\}W(z|x).$$

If the Deterministic Receiver Is Null

$$R_{y} \ll H(Y|S)$$

$$R_{z} < I(U; Z) - I(U; S)$$

$$R_{y} + R_{z} < H(Y|S) + I(U; Z) - I(U; S, Y)$$

$$I(U; S)$$

 $P_{XYZSU}(x, y, z, s, u) = P_S(s)P_{XU|S}(x, u|s)\mathbf{1}\left\{y = f(x, s)\right\}W(z|x, s).$

If the Deterministic Receiver Is Null

$$\begin{array}{l}
 B_{y} \ll H(Y|S) \\
 R_{z} < I(U;Z) - I(U;S) \\
 R_{y} \ll R_{z} < H(Y|S)^{-1} I(U;Z) - I(U;S,Y)^{-1} I(U;S)
 \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\
 I(U;S) \\$$

 $P_{XYZSU}(x, y, z, s, u) = P_{S}(s)P_{XU|S}(x, u|s)\mathbf{1}\{y = f(x, s)\}W(z|x, s).$

Third and second constraints are identical and

$$R_z < I(U;Z) - I(U;S)$$

$$P_{XZSU}(x,z,s,u) = P_S(s) P_{XU|S}(x,u|s) W(z|x,s).$$

Previous Work

• On the degraded BC, see

Y. Steinberg, "Coding for the degraded broadcast channel with random parameters, with causal and noncausal side information," *IEEE Trans. Inform. Theory*, vol. 51, no. 8, pp. 2867–2877, Aug. 2005.

Previous Work

• On the degraded BC, see

Y. Steinberg, "Coding for the degraded broadcast channel with random parameters, with causal and noncausal side information," *IEEE Trans. Inform. Theory*, vol. 51, no. 8, pp. 2867–2877, Aug. 2005.

- Reza Khosravi and Farokh Marvasti solved the following special cases of our setting:
 - The deterministic case.
 - The case where S is also known to the nondeterministc receiver Z.
 - The degraded case, from the deterministic to the noisy:

$$W(z|x,s) = \tilde{W}(z|y).$$

"Capacity Bounds for Multiuser Channels with Non-Causal Channel State Information at the

Transmitters," arXiv:1102.3410v2 (Feb. and May 2011).

The Achievability—the Proof for Yossi and Shlomo

Substitute in the Steinberg-Shamai inner bound

$$U_0=0, \quad U_1=Y, \quad U_2=U.$$

$$\begin{aligned} R_{1} &\leq I(\mathcal{U}_{0},\mathcal{U}_{1};Y) - I(\mathcal{U}_{0},\mathcal{U}_{1};S) \\ R_{2} &\leq I(\mathcal{U}_{0},\mathcal{U}_{2};Z) - I(\mathcal{U}_{0},\mathcal{U}_{2};S) \end{aligned}$$

$$R_{1} + R_{2} &\leq -\left[\max\{I(\mathcal{U}_{0};Y),I(\mathcal{U}_{0};Z)\} - I(\mathcal{U}_{0};S)\right]^{+} \\ &+ I(\mathcal{U}_{0},\mathcal{U}_{1};Y) - I(\mathcal{U}_{0},\mathcal{U}_{1};S) \\ &+ I(\mathcal{U}_{0},\mathcal{U}_{2};Z) - I(\mathcal{U}_{0},\mathcal{U}_{2};S) - I(\mathcal{U}_{1};\mathcal{U}_{2}|\mathcal{U}_{0},S), \end{aligned}$$

$$H(Y|S)$$

$$R_{1} \leq H(Y) - t(Y;S)$$

$$R_{2} \leq I(U_{2};Z) - I(U_{2};S)$$

$$H(Y|S)$$

$$R_{1} + R_{2} \leq H(Y) - t(Y;S) + I(U_{2};Z)$$

$$-I(U_{2};S) - I(Y;U_{2}|S).$$

The condition

$$(\mathcal{U}_0, \mathcal{U}_1, \mathcal{U}_2) \rightarrow (X, S) \rightarrow (Y, Z)$$

becomes

$$(Y, U_2) \rightarrow (X, S) \rightarrow (Y, Z),$$

which, because Y is a deterministic function of (X, S), holds whenever

$$U_2 \rightarrow (X, S) \rightarrow Z.$$

Fix some P_{XYZSU} of the form

 $P_{XYZSU}(x, y, z, s, u) = P_S(s)P_{XU|S}(x, u|s)\mathbf{1}\left\{y = f(x, s)\right\}W(z|x, s).$

Fix some P_{XYZSU} of the form

 $P_{XYZSU}(x, y, z, s, u) = P_S(s)P_{XU|S}(x, u|s)\mathbf{1}\left\{y = f(x, s)\right\}W(z|x, s).$

Sum over z to obtain P_{SUYX} and write it as

 $P_{SUY}(s, u, y) P_{X|S, U, Y}(x|s, u, y).$

Fix some P_{XYZSU} of the form

 $P_{XYZSU}(x, y, z, s, u) = P_S(s)P_{XU|S}(x, u|s)\mathbf{1}\left\{y = f(x, s)\right\}W(z|x, s).$

Sum over z to obtain P_{SUYX} and write it as

$$P_{SUY}(s, u, y) P_{X|S, U, Y}(x|s, u, y).$$

For fixed P_{SUY} , only the terms in red depend on $P_{X|S,U,Y}$:

$$R_y < H(Y|S)$$

$$R_z < I(U; Z) - I(U; S)$$

$$R_y + R_z < H(Y|S) + I(U; Z) - I(U; S, Y)$$

Fix some P_{XYZSU} of the form

 $P_{XYZSU}(x, y, z, s, u) = P_S(s)P_{XU|S}(x, u|s)\mathbf{1}\left\{y = f(x, s)\right\}W(z|x, s).$

Sum over z to obtain P_{SUYX} and write it as

$$P_{SUY}(s, u, y) P_{X|S, U, Y}(x|s, u, y).$$

For fixed P_{SUY} , only the terms in red depend on $P_{X|S,U,Y}$:

$$R_y < H(Y|S)$$

$$R_z < I(U; Z) - I(U; S)$$

$$R_y + R_z < H(Y|S) + I(U; Z) - I(U; S, Y)$$

so, by convexity, we can assume that $P_{X|S,U,Y}$ is zero-one-valued:

$$g:(y,u,s)\mapsto x.$$

The Reduction

Henceforth we only consider joint PMFs satisfying

$$P_{XYZSU}(x, y, z, s, u) = P_S(s)P_{YU|S}(y, u|s)\mathbf{1}\{x = g(y, u, s)\}W(z|x, s)$$

and

$$Y=f(S,X).$$

Codebook and Encoder

Generate 2^{nR_y} y-bins, each containing $2^{n\tilde{R}_y}$ y-tuples IID $\sim P_Y$

$$\mathbf{y}(m_y, l_y), \quad m_y \in \{1, \dots, 2^{nR_y}\}, \ l_y \in \{1, \dots, 2^{n\tilde{R}_y}\}.$$

Codebook and Encoder

Generate 2^{nR_y} y-bins, each containing $2^{n\tilde{R}_y}$ y-tuples IID $\sim P_Y$

$$\mathbf{y}(m_y, l_y), \quad m_y \in \{1, \dots, 2^{nR_y}\}, \ l_y \in \{1, \dots, 2^{n\tilde{R}_y}\}.$$

Independently of that, generate 2^{nR_z} *u*-bins, each containing $2^{n\tilde{R}_z}$ *u*-tuples IID $\sim P_U$

$$\mathbf{u}(m_z, l_z), \quad m_z \in \{1, \dots, 2^{nR_z}\}, \ l_z \in \{1, \dots, 2^{n\tilde{R}_z}\}.$$

Codebook and Encoder

Generate 2^{nR_y} y-bins, each containing $2^{n\tilde{R}_y}$ y-tuples IID $\sim P_Y$

$$\mathbf{y}(m_y, l_y), \quad m_y \in \{1, \dots, 2^{nR_y}\}, \ l_y \in \{1, \dots, 2^{n\tilde{R}_y}\}.$$

Independently of that, generate 2^{nR_z} *u*-bins, each containing $2^{n\tilde{R}_z}$ *u*-tuples IID $\sim P_U$

$$\mathbf{u}(m_z, l_z), \quad m_z \in \{1, \dots, 2^{nR_z}\}, \ l_z \in \{1, \dots, 2^{n\tilde{R}_z}\}.$$

To send (m_y, m_z) look for a y-tuple $\mathbf{y}(m_y, l_y)$ in y-bin m_y and a u-tuple $\mathbf{u}(m_z, l_z)$ in u-bin m_z such that

 $(\mathbf{y}(m_y, l_y), \mathbf{u}(m_z, l_z), \mathbf{s})$ are jointly typical P_{YUS} .

If such a pair can be found, send (componentwise)

$$\mathbf{x} = g(\mathbf{y}(m_y, l_y), \mathbf{u}(m_z, l_z), \mathbf{s}).$$

Analysis: The Deterministic Decoder Errs:

- The deterministic receiver observes $\mathbf{y}(m_{y}, l_{y})$.
- It errs only if

$$\mathbf{y}(m_y, l_y) = \mathbf{y}(m_y', l_y'), \quad \text{for } m_y' \neq m_y.$$

• This probability of error tends to zero whenever

$$R_y + \tilde{R}_y < H(Y).$$

Analysis: The Nondeterministic Decoder Errs:

- The nondeterministic decoder searches for a unique pair (m_z, l_z) such that $u(m_z, l_z)$ & z are jointly typical.
- The probability of error tends to zero if

$$R_z + \tilde{R}_z < I(U; Z).$$

Analysis: An Encoding Error

• Encoding error: We cannot find a pair (l_y, l_z) such that $(\mathbf{y}(m_y, l_y), \mathbf{u}(m_z, l_z), \mathbf{s})$ are jointly typical P_{YUS} .

Analysis: An Encoding Error

- Encoding error: We cannot find a pair (l_y, l_z) such that $(\mathbf{y}(m_y, l_y), \mathbf{u}(m_z, l_z), \mathbf{s})$ are jointly typical P_{YUS} .
- For the probability of this event to tend to zero it suffices that:
 - For every fixed j.t. (**u**, **s**), the expected number of **y**'s in y-Bin(m_y) that are j.t. with (**u**, **s**) be exponentially large.
 - For every fixed j.t. (**y**, **s**), the expected number of **u**'s in *u*-Bin(*m_z*) that are j.t. with (**y**, **s**) be exponentially large.
 - For every fixed typical **s**, the expected number of (l_y, l_z) pairs such that $(\mathbf{y}(m_y, l_y), \mathbf{u}(m_z, l_z), \mathbf{s})$ are joinly typical be exponentially large.

Analysis: An Encoding Error

- Encoding error: We cannot find a pair (l_y, l_z) such that $(\mathbf{y}(m_y, l_y), \mathbf{u}(m_z, l_z), \mathbf{s})$ are jointly typical P_{YUS} .
- For the probability of this event to tend to zero it suffices that:
 - For every fixed j.t. (**u**, **s**), the expected number of **y**'s in y-Bin(m_y) that are j.t. with (**u**, **s**) be exponentially large.
 - For every fixed j.t. (**y**, **s**), the expected number of **u**'s in *u*-Bin(*m_z*) that are j.t. with (**y**, **s**) be exponentially large.
 - For every fixed typical **s**, the expected number of (l_y, l_z) pairs such that $(\mathbf{y}(m_y, l_y), \mathbf{u}(m_z, l_z), \mathbf{s})$ are joinly typical be exponentially large.
- Hence, it suffices that

$$\begin{split} \tilde{R}_y &> I(Y;S) \\ \tilde{R}_z &> I(U;S) \\ \tilde{R}_y + \tilde{R}_z &> H(Y) + H(U) + H(S) - H(Y,U,S). \end{split}$$

Concluding the Achievability Proof

The constraints

$$R_y + \tilde{R}_y < H(Y)$$
 (a)

$$R_z + \tilde{R}_z < I(U; Z) \tag{b}$$

$$ilde{R}_y > I(Y;S)$$
 (c)

$$\tilde{R}_z > I(U;S) \tag{d}$$

$$ilde{R}_y + ilde{R}_z > H(Y) + H(U) + H(S) - H(Y, U, S).$$
 (e)

Concluding the Achievability Proof

The constraints

$$R_y + \tilde{R}_y < H(Y)$$
 (a)

$$R_z + \tilde{R}_z < I(U; Z) \tag{b}$$

$$\tilde{R}_{y} > I(Y; S)$$
 (c)

$$\tilde{R}_z > I(U;S) \tag{d}$$

$$ilde{R}_y + ilde{R}_z > H(Y) + H(U) + H(S) - H(Y, U, S).$$
 (e)

allow the achievability of

$$R_{y} < H(Y|S)$$
from (a) and (c)

$$R_{z} < I(U;Z) - I(U;S)$$
from (b) and (d)

$$R_{y} + R_{z} < H(Y|S) + I(U;Z) - I(U;S,Y)$$
from (a)+(b) and (e)

(Constraint (e) pinches more than (c) + (d).)

The Converse I

Upper-bounding R_y is straightforward:

$$nR_{y} = H(M_{y})$$

$$\leq I(M_{y}; Y^{n}, S^{n}) + n\epsilon_{n}$$

$$= I(M_{y}; Y^{n}|S^{n}) + n\epsilon_{n}$$

$$= \sum_{i=1}^{n} I(M_{y}; Y_{i}|Y^{i-1}, S^{n}) + n\epsilon_{n}$$

$$\leq \sum_{i=1}^{n} H(Y_{i}|Y^{i-1}, S^{n}) + n\epsilon_{n}$$

$$\leq \sum_{i=1}^{n} H(Y_{i}|S_{i}) + n\epsilon_{n},$$

where ϵ_n decays to zero as *n* tends to infinity.

The Converse II

Upper-bounding R_z à-la-Gelf'and-Pinsker (first approach):

$$nR_{2} \leq I(M_{z}; Z^{n}) + n\epsilon_{n}$$

$$= \sum_{i} I(M_{z}; Z_{i}|Z^{i-1}) + n\epsilon_{n}$$

$$= \sum_{i} I(M_{z}, S_{i+1}^{n}; Z_{i}|Z^{i-1}) - \sum_{i} I(S_{i+1}^{n}; Z_{i}|M_{z}, Z^{i-1}) + n\epsilon_{n}$$

$$= \sum_{i} I(M_{z}, S_{i+1}^{n}; Z_{i}|Z^{i-1}) - \sum_{i} I(Z^{i-1}; S_{i}|M_{z}, S_{i+1}^{n}) + n\epsilon_{n}$$

$$= \sum_{i} I(M_{z}, S_{i+1}^{n}; Z_{i}|Z^{i-1}) - \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}; S_{i}) + n\epsilon_{n}$$

$$\leq \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}; Z_{i}) - \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}; S_{i}) + n\epsilon_{n}$$

$$= \sum_{i} I(V_{i}; Z_{i}) - I(V_{i}; S_{i}) + n\epsilon_{n}.$$

The Converse III

Upper-bounding the sum-rate:

$$n(R_y + R_z) = H(M_y, M_z)$$

= $H(M_z) + H(M_y|M_z)$
 $\leq I(M_z; Z^n) + I(M_y; Y^n, S^n|M_z) + n\epsilon_n.$

The Converse IV

Another bound on $I(M_2; Z^n)$:

$$\begin{split} &I(M_{z}; Z^{n}) \\ &= \sum_{i} I(M_{z}; Z_{i} | Z^{i-1}) \\ &\leq \sum_{i} I(M_{z}, Z^{i-1}; Z_{i}) \\ &= \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}, Y_{i+1}^{n}; Z_{i}) - \sum_{i} I(S_{i+1}^{n}, Y_{i+1}^{n}; Z_{i} | M_{z}, Z^{i-1}) \\ &= \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}, Y_{i+1}^{n}; Z_{i}) - \sum_{i} I(Z^{i-1}; S_{i}, Y_{i} | M_{z}, S_{i+1}^{n}, Y_{i+1}^{n}) \\ &= \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}, Y_{i+1}^{n}; Z_{i}) - \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}, Y_{i+1}^{n}; S_{i}, Y_{i}) \\ &+ \sum_{i} I(M_{z}, S_{i+1}^{n}, Y_{i+1}^{n}; S_{i}, Y_{i}) . \end{split}$$

The Converse V

The last term and $I(M_y; Y^n, S^n | M_z)$ add to

$$\sum_{i=1}^{n} I(M_z, S_{i+1}^n, Y_{i+1}^n; S_i, Y_i) + I(M_y; Y^n, S^n | M_z) = \sum_{i=1}^{n} H(Y_i | S_i).$$

(After lots of identities).

The Converse VI

$$n(R_{y} + R_{z}) \leq \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}, Y_{i+1}^{n}; Z_{i}) - \sum_{i} I(M_{z}, Z^{i-1}, S_{i+1}^{n}, Y_{i+1}^{n}; S_{i}, Y_{i}) + \sum_{i=1}^{n} H(Y_{i}|S_{i}) + n\epsilon_{n} = \sum_{i=1}^{n} I(V_{i}, T_{i}; Z_{i}) - \sum_{i=1}^{n} I(V_{i}, T_{i}; S_{i}, Y_{i}) + \sum_{i=1}^{n} H(Y_{i}|S_{i}) + n\epsilon_{n}.$$

The Converse VII

We have:

$$R_{y} < H(Y|S)$$

$$R_{z} < I(V;Z) - I(V;S)$$

$$R_{y} + R_{z} < H(Y|S) + I(V,T;Z) - I(V,T;S,Y).$$

$$(V,T) - - (X,S) - - (Y,Z).$$

The Converse VII

We have:

$$R_{y} < H(Y|S)$$

$$R_{z} < I(V; Z) - I(V; S)$$

$$R_{y} + R_{z} < H(Y|S) + I(V, T; Z) - I(V, T; S, Y).$$

$$(V, T) - - (X, S) - - (Y, Z).$$

We want:

$$\begin{aligned} R_{y} &< H(Y|S) \\ R_{z} &< I(U;Z) - I(U;S) \\ R_{y} + R_{z} &< H(Y|S) + I(U;Z) - I(U;S,Y) \\ & U - - (X,S) - - (Y,Z). \end{aligned}$$

The Converse IIX

We are looking for an auxiliary r.v. U such that

 $U \rightarrow (X, S) \rightarrow (Y, Z).$

for which

 $I(V; Z) - I(V; S) \le I(U; Z) - I(U; S)$ and $H(Y|S) + I(V, T; Z) - I(V, T; S, Y) \le H(Y|S) + I(U; Z) - I(U; S, Y)$

The Converse IIX

We are looking for an auxiliary r.v. U such that

 $U \multimap (X, S) \multimap (Y, Z).$

for which

 $I(V; Z) - I(V; S) \le I(U; Z) - I(U; S)$ and $H(Y|S) + I(V, T; Z) - I(V, T; S, Y) \le H(Y|S) + I(U; Z) - I(U; S, Y)$

Choosing U as V will work if

$$I(T;Z|V) - I(T;S,Y|V) \leq 0.$$

The Converse IIX

We are looking for an auxiliary r.v. U such that

 $U \rightarrow (X, S) \rightarrow (Y, Z).$

for which

$$I(V; Z) - I(V; S) \le I(U; Z) - I(U; S)$$

and
$$H(Y + S) + I(V, T; Z) - I(V, T; S, Y) \le H(Y + S) + I(U; Z) - I(U; S, Y)$$

 $H(Y|S) + I(V, I; Z) - I(V, I; S, Y) \le H(Y|S) + I(U; Z) - I(U; S, Y)$

Choosing U as V will work if

$$I(T;Z|V) - I(T;S,Y|V) \leq 0.$$

Choosing U as (V, T) will work if

$$I(T;Z|V)-I(T;S|V)\geq 0.$$

The Converse IX

At least one of the conditions

$$I(T;Z|V) - I(T;S,Y|V) \le 0$$

and

$$I(T;Z|V) - I(T;S|V) \ge 0$$

must hold:

The Converse IX

At least one of the conditions

$$I(T;Z|V) - I(T;S,Y|V) \le 0$$

and

$$I(T;Z|V) - I(T;S|V) \ge 0$$

must hold: having the first be positive and the second negative violates

$$I(T;Z|V) - I(T;S,Y|V) \leq I(T;Z|V) - I(T;S|V).$$

The Converse IX

At least one of the conditions

$$I(T;Z|V) - I(T;S,Y|V) \le 0$$

and

$$I(T;Z|V) - I(T;S|V) \ge 0$$

must hold: having the first be positive and the second negative violates

$$I(T;Z|V) - I(T;S,Y|V) \leq I(T;Z|V) - I(T;S|V).$$

The latter holds because

 $I(\mathcal{T}, \mathcal{Z} \not V) - I(T; S | V) - (I(\mathcal{T}, \mathcal{Z} \not V) - I(T; S, Y | V)) = I(T; Y | S, V)$

and is thus nonnegative.

Thank you.

Cardinality Bounds

$\# \mathcal{U} \leq (\# \mathcal{S})(\# \mathcal{X}) + 2.$