Matrix Completion from a Few Entries
Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh, Department of Electrical Engineering, Stanford University

What is Matrix Completion?

Problem: How many revealed entries \(|E|\) do we need to get

\[
\frac{1}{mn} \| M - \hat{M} \|_F^2 \leq \delta
\]

Algorithm [OptSpace]

Trim : Trim \(M^E \) to \(M^E \);

Project : Project \(M^E \) onto \(\text{Tr}(M^E) \);

Clean : Minimize Cost \(F(X,Y) \), s.t. \(X,Y \) orthogonal.

SVD : \(\text{Tr}(M^E) = \frac{mn}{|E|} \sum_{i=1}^{r} \sigma_i X_i^T Y_i \)

Solution : Trimming

Main Results

Theorem (Keshavan, Montanari, Oh, 2009 [1])

Assume \(r = O(1) \), and let \(M \) be an \(n \times n \) matrix satisfying \((\mu_0, \mu_1) \)-incoherence with \(\sigma_1(M) / \sigma_r(M) = O(1) \). If \(|E| \geq C'n \log n \), then OptSpace returns, whp., the matrix \(M \).

Theorem (Keshavan, Montanari, Oh, 2009 [2])

Let \(N = M + Z \) with \(M \) as above and \(Z \) any \(n \times n \) matrix. If \(|E| \geq C'n \log n \), then (under appropriate technical conditions) OptSpace with input \(N^E \) returns \(\hat{M} \) such that whp.

\[
\frac{1}{\sqrt{mn}} \| M - \hat{M} \|_F \leq C \frac{n^{\alpha r}}{|E|^r} \| Z^E \|_2
\]

Implementation

References
