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Recap: Channel Model

Broadcast (w1, . . . , wK) to multiple receivers {(SNR, S)} where
S ⊂ {1, . . . ,K} denotes the available side information

Decoder
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Recap: Decoding and Side Information Gain

Side Information Gain Γ(X ) = min
S⊂{1,...,K}

10 log10

(
d2S
d20

)
RS

dB/b/dim

Design Objective: maximize d0 and Γ(X )
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Algebraic Construction: Main Idea

• Label 30-PAM with elements of the ring Z30 = {0, 1, . . . , 29}.
I Addition and multiplication in Z30 are performed modulo 30.

• Encode messages to X = Z30 using

x = ρ(w1, w2, w3) = 15w1 + 10w2 + 6w3 mod 30.

• Chinese remainder theorem ⇒ ρ is bijective.

• Dimension of the codebook is n = 1.

• R1 = 1, R2 = log2 3, R3 = log2 5 b/dim.
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x = 15w1 + 10w2 + 6w3 mod 30

S = {1, 2}

XaS
= 6w3 + constant
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Side information gain

• The code guarantees: dS = 2RS for all ∅ ( S ( {1, 2, 3}
I Min distance improves with the amount of available side information

• Side information gain

Γ(X ) = min
S

10 log10

(
d2S/d

2
0

)
RS

= min
S

10 log10

(
d2S
)

log2 dS
= 20 log10 2

≈ 6 dB/b/dim.

• Uniform Side Information Gain:
Identical normalized distance gain for all receivers

10 log10

(
d2S/d

2
0

)
RS

= 20 log10 2 ≈ 6 for all S ⊂ {1, 2, 3}
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SNR gain over S = ∅ at Pe = 10−4

S Actual gain Predicted

Γ×RS dB

{1} 6 6

{1, 2} 15.6 15.5
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Algebraic Construction over Z

In order to encode K messages:

• Choose K relatively prime integers: M1, . . . ,MK ∈ Z.

• The message alphabets are W1 = Z/M1Z, . . . ,WK = Z/MKZ.

• Encode messages to M -PAM, where M =
∏K

k=1Mk:

ρ(w1, . . . , wK) =
M

M1
w1 + · · ·+ M

MK
wK mod M.

• This map corresponds to the Chinese remainder theorem:

Z/M1Z× · · · × Z/MKZ→ Z/MZ.

• Rate Rk = log2Mk b/dim.

8 / 38



Algebraic Construction over Z
Distance with no side information

• d0 = min distance of M -PAM Z/MZ = 1

Distance with side information configuration S

• Receiver knows wk = ak, k ∈ S
• Expurgated codebook consists of the points

x =
∑
k∈S

M

Mk
ak +

∑
k/∈S

M

Mk
wk mod M, where wk are unknown integers

• Difference between codewords ∆x =
∑
k/∈S

M

Mk
∆wk mod M

• Minimum distance dS

min |∆x| = min

∣∣∣∣∣∑
k/∈S

M

Mk
∆wk

∣∣∣∣∣ = gcd

(
M

Mk
, k /∈ S

)
=
∏
k∈S

Mk
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Algebraic Construction over Z

Side Information Gain

• Distance with side information

dS =
∏
k∈S

Mk =
∏
k∈S

2Rk = 2
∑

k∈S Rk = 2RS

• Side information gain

Γ = min
S

10 log10

(
d2
S

d2
0

)
RS

≈ 6 dB/b/dim
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Construction over Z[i] and Z[ω]

• Choose K relatively-prime numbers M1, . . . ,MK ∈ D

• Message alphabets: W1 = D/M1D, . . . ,WK = D/MKD

• Rate: Rk = log2 |Mk| b/dim

• Constellation: X = D/MD, where M = M1M2 · · ·MK

• Encoding: Using Chinese remainder theorem

ρ(w1, . . . , wK) =
M

M1
w1 + · · ·+ M

MK
wk mod MD

• Minimum distance:

d0 = dmin(D) = 1 dS =

∣∣∣∣gcd

(
M

Mk
, k /∈ S

)∣∣∣∣ =

∣∣∣∣∣∏
k∈S

Mk

∣∣∣∣∣ = 2RS

• Side information gain: Γ = 20 log10 2 ≈ 6 dB/b/dim
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D = Z[i], K = 2, (M1,M2) = (1 + 2i, 1− 2i), M = 5
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SNR gain over S = ∅ at Pe = 10−5

S Actual gain Predicted

Γ×RS dB

{1} 6.9 6.9

{2} 6.9 6.9
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How to construct codes in higher dimensions?

Use a family of lattices

Lattice index code:
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Lattice index codes

Definition
A lattice index code consists of nested lattice codes Λ1/Λs, . . . ,ΛK/Λs

such that the encoding map ρ : Λ1/Λs × · · · × ΛK/Λs → Λ/Λs,

ρ(xxx1, . . . ,xxxK) = (xxx1 + · · ·+ xxxK) mod Λs,

is one-to-one.

• Λ1/Λs, . . . ,ΛK/Λs are subgroups of Λ/Λs (under addition mod Λs)

• One-to-one map ensures unique decodability and implies

Λ1/Λs × · · · × ΛK/Λs
∼= Λ/Λs (as groups)

• Rate Rk =
1

n
log2

Vol(Λs)

Vol(Λk)

• Minimum distance

d0 = dmin(Λ) dS = dmin

(∑
k/∈S

Λk

)
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Properties

Effective codebook with side information configuration S ⊂ {1, . . . ,K}

• ..is a translate of the lattice code
(∑

k/∈S Λk

)
/Λs

• Coding gain is the center density of the coding lattice
∑

k/∈S Λk

δ

(∑
k/∈S

Λk

)
=

(
rpack

(∑
k/∈S Λk

) )n
Vol

(∑
k/∈S Λk

)
• When S = ∅, i.e., no side information, coding gain = δ(Λ)

Distance gain due to side information

dS
d0

= 2RS ×

[
δ
(∑

k/∈S Λk

)
δ(Λ)

] 1
n

Lemma
If Λ is a densest lattice in Rn then Γ(Λ/Λs) ≤ 20 log10 2 ≈ 6 dB/b/dim
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Construction using Chinese Remainder Theorem

• Let D = Z, Z[i] or Z[ω] and Λ be any D-lattice

I Λ can be a known lattice with large coding gain

• Let M1, . . . ,MK ∈ D be relatively prime, M =
∏K

k=1Mk

• Scale Λ by
M

M1
, . . . ,

M

MK
to generate a family of lattices.

• Rate Rk = log2 |Mk| b/dim.

• δ
(∑

k/∈S Λk

)
= δ(Λ) for any S

• d0 = dmin(Λ)

•
dS
d0

= 2RS for any S

• Γ ≈ 6 dB/b/dim
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Further Algebraic Constructions

Over general algebraic number fields (Huang, ISIT’15)

• Use the ring of integers OK of an algebraic number field K
• The elements of OK can be embedded into a lattice

• Construct lattice codes using Chinese remainder theorem in OK

• All the K messages can be allowed to take values from the same
finite field

• If K is totally real: diversity gain in Rayleigh fading channel

• Both minimum Euclidean distance and minimum product distance
improve with side information

Over Hurwitz quaternionic integers

• Non-commutative Euclidean domain that is geometrically equivalent
to D∗4 lattice

• Corresponding lattice code has a larger coding gain than Z[i] and
Z[ω] constructions and provides more options for encoding rates
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Summary of algebraic construction

• Using nested lattice codes for physical-layer index coding

• Algebraic labelling of codewords using Chinese remainder theorem

• Side information gain of at least 6 dB/b/dim

• Effective codebook at the receivers are also nested lattice codes

I Can employ lattice decoding at the receivers

However..

• Decoding complexity is high for large dimensions

• Message sizes are not powers of 2

In the next section..

• We design a concatenated scheme that can be decoded with
low-complexity iterative detection

• The modulation scheme (inner code) will encode integer number of
bits while ensuring side information gain
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Index Coding using Multidimensional PAM

• Message alphabet:

W1 = · · · =WK = Z/MZ , ZM

• Codebook: K-tuples over ZM

X = ZM × · · · × ZM = ZK
M

• Embed X into RK using
natural map

• Use a linear encoder to map messages to codeword

W1 × · · · ×WK → X
ZK
M → ZK

M

• Generate codeword xxx as linear combination of ccc1, . . . , cccK ∈ ZK
M :

xxx = ρ(w1, . . . , wK) =
K∑

k=1

wkccck mod M.
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Properties

• Code is fully characterized by the K ×K generating matrix over ZM

CCC =
[
ccc1 ccc2 · · · cccK

]
• Code length n = number of messages K.

• All messages are encoded at the same rate

R1 = · · · = RK =
1

K
log2M b/dim.

• ρ is bijective ⇔ CCC is invertible, i.e., det(CCC) is a unit in ZM

• Minimum distance with no side information d0 = dmin(ZK
M ) = 1
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Properties

• Using linearity property, dS = dmin (CS), where

CS =

{∑
k/∈S

wkccck

∣∣∣wk ∈ ZM , k /∈ S

}
is a ZM–linear code

• dS can be computed using shortest-vector algorithm for lattices

• Therefore Γ = min
S

10 log10(d2
S/d2

0)

RS
can be efficiently computed using

numerical techniques
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Example: 16-QAM index code using Z4

• CCC =
(
ccc1 ccc2

)
=

(
1 2
2 1

)
.

• det(CCC) = −3 mod 4 = 1 ∈ U(Z4).

• S = {1}:

CS = {w2ccc2 |w2 ∈ Z4} ,
dS = 2.

• S = {2}:

CS = {w1ccc1 |w1 ∈ Z4} ,
dS = 2.

Γ ≈ 6 dB/b/dim
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Computer Search for Good Codes

• We restrict search space to codes with circulant CCC matrix.

• Table gives the first column of CCC and Γ for the best codes.

M
K = n

2 3 4 5

4
(1, 2)ᵀ (1, 2, 2)ᵀ (1, 1, 3, 0)ᵀ (1, 2, 1, 3, 0)ᵀ

6.02 4.52 3.01 3.76

8
(1, 2)ᵀ (1, 2, 0)ᵀ (1, 0, 3, 3)ᵀ (1, 7, 2, 2, 5)ᵀ

4.65 3.49 4.01 4.70

16
(1, 12)ᵀ (1, 2, 10)ᵀ (1, 4, 10, 8)ᵀ (1, 14, 11, 12, 5)ᵀ

6.02 5.24 5.57 5.28

32
(1, 6)ᵀ (1, 22, 14)ᵀ (1, 10, 14, 2)ᵀ (1, 24, 27, 15, 26)ᵀ

5.85 5.73 5.80 5.77

64
(1, 36)ᵀ (1, 38, 60)ᵀ (1, 38, 20, 30)ᵀ (1, 16, 18, 55, 21)ᵀ

6.04 5.73 5.85 5.82

Modulation scheme ensures large side information gain
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Further Modulation Schemes for Index Coding
(Mahesh & Rajan, arXiv:1603.03152)

Multiple receivers with general message demands

• The binary index code reduces the codeword length N (hence, the
constellation size) while meeting the demands of the receivers

• The bit labelling of QAM/PSK allows receivers with sufficient side
information to achieve gains in minimum Euclidean distance
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Coded Index Modulation

Channel Code 1

Channel Code K

Message 1

Message K

Index Modulation

• concatenated scheme: coding gain + side information gain.

• converts the channel into a MAC with many receivers.

• can perform close to channel capacity.
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Coded Index Modulation

Broadcast

MAC

• If minimum Hamming distance of channel codes is dH , then
minimum squared Euclidean distance at RxS is at least dH × d2S .

• Capacity of MAC with many receivers: Ulrey Inf.& Cont.’75
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Achievable rate region

Notation:

• 2K − 1 receivers indexed by S.

• RxS = (SNRS , S) observes YS .

• XXXS = (Xk, k ∈ S), XXXSc = (Xk, k /∈ S).

• X1, . . . , XK have distributions p(x1), . . . , p(xK).

• Inner code/modulation (ρ,X ) has dimension n.

Assumption:

• If S ⊂ S′, then SNRS ≥ SNRS′

Theorem
(R1, . . . , RK) achievable if and only if for every RxS :

1

n
I(XXXSc ;YS |XXXS) ≥ R−RS .
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K = 2, 64-QAM, Γ = 4.66 dB/b/dim

• Want R1 = R2 = 1 b/dim
• 2K − 1 = 3 receivers: S = ∅, {1}, {2}

1

n
I(XXXSc ;YS |XXXS) ≥


R1 +R2 = 2 if S = ∅
R2 = 1 if S = {1}
R1 = 1 if S = {2}
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Dependence on Γ

• Larger I(XXXSc ;YS |XXXS), for all S ⇒ larger rates.

• Fano’s inequality:

I(XXXSc ;YS |XXXS) ≥ (1− Pe(XXXSc |YS ,XXXS)) log2

∏
k∈Sc

|Xk| − 1

• Larger Γ⇒ larger dS for all S ⇒ smaller Pe simultaneously for all S

• We expect a modulation with larger Γ to perform better.
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Example: 64-QAM, K = 2 messages

SNR gain of 0.7 dB at 1
nI(XXXSc ;YS |XXXS) = 1.
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Encoder

• K = 2 messages, R1 = R2 = 1 b/dim.
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Decoder
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Simulation Result

Gap to capacity (with Gaussian input alphabet) at BER 10−4:

• 3.3 dB for S = {1}, {2}.
• 4.2 dB for S = ∅.
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Wireline Multicasting
(Koetter & Médard T-IT Mar’03)

Multicast network Linear network coding over Fq

A network coding solution exists iff max-flow ≥ K.

max-flow = maximum number of edge-disjoint paths from the source to
each of the receivers
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Broadcasting with Coded Side Information at the Receivers

(Natarajan, Hong, Viterbo arXiv:1509.01332)

• Suppose max-flow < K.

• A wireless signal can
supplement the wireline
network.

• Symbols from wireline network
serve as side information to
decode wireless signal:
linear combinations of source
messages

• ⇒ Broadcasting with coded
side information at the receivers

Theorem: Lattice codes achieve the capacity of a wireless broadcast
channel with coded side information at the receivers
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