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Recap: Channel Model

Broadcast (wi, ..., wx) to multiple receivers {(SNR, S)} where

S C {1,..., K} denotes the available side information

Transmitter

wlewl\
: p ——» zc X CR"

/'

wr € WK

Rate Ry = Llogy Wil

A receiver (SNR, S)

T ——»@i> Decoder — Wi,..., WK
z

ws = (wk,k S S)

s 1 Elz|?
Variance g -

Side information rate Rg = Ekes Ry
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Recap: Decoding and Side Information Gain

Code: X
Minimum distance: dg

smallest min distance among the 275 codebooks

d2
10log;, (dg)
Side Information Gain I'(X) = < {r{lin <) 7 92 dB/b/dim
c_41,..., S

Design Objective: maximize dy and T'(X) ‘
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Algebraic Construction: Main Idea

w € W = {0, 1}j‘

w2€W22{0,1,2}_> p _>£L'€X={O,l.,...729}

w3 € Wi = {0, 172,3,4}—/

Label 30-PAM with elements of the ring Z3o = {0, 1,...,29}.

» Addition and multiplication in Z3o are performed modulo 30.

Encode messages to X' = Z3( using

x = p(wy, wa, ws) = 15wy + 10ws + 6ws mod 30.
Chinese remainder theorem = p is bijective.
Dimension of the codebook is n = 1.

Ry =1, Ry =logy 3, R3 =log, 5 b/dim.
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r = 15wy + 10w + 6ws mod 30

S ={1,2}
Xas = 6ws + constant
0 6 12 18 24

B

S ={1,3}
X“S = 10w2 + constant
0 10 20

@@ @+

S ={23}

Xas = 15w; + constant
0 15

.,29}

s={1}

Xﬂs = 10wz + 6wz + constant
024

WW
5 ={2)

X“S = 15w, + 6ws + constant
o 3 6 - -

W
S = {3}

Xas = 15w + 10wz + constant

0 5 10 . . .
O+ @+—+—++@+—+++@—+++@++++

2fs

5/38



Side information gain

e The code guarantees: dg = 2% for all @ C S C {1,2,3}
» Min distance improves with the amount of available side information

e Side information gain

. 10log,, (d%/d3)
[ 10logyo (ds/d5)

101 d?
I'(X) =mi - inm

Rg S log, ds
~ 6 dB/b/dim.

= 20log;, 2

e Uniform Side Information Gain:
Identical normalized distance gain for all receivers

10log,, (d%/d3)
Rg

=20log;,2 ~ 6 for all S C {1,2,3}
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Probability of error

N S=0g \ \
. \
1071 S = {1} \\ 8
--os={12p }
107° . '
0 5 10 15 20 25 30 35

SNR in dB

SNR gain over S =@ at P, = 107*

S Actual gain | Predicted
I'x Rs dB
{1} 6 6
{1,2} 15.6 15.5

40
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Algebraic Construction over Z

In order to encode K messages:

e Choose K relatively prime integers: My, ..., Mg € Z.

e The message alphabets are Wy = Z/MZ, ... Wk =Z/MkZ.

Encode messages to M-PAM, where M = Hle My,

M
p(wl,...,wK):Ew1+~~+M—KwK mod M.

This map corresponds to the Chinese remainder theorem:
Z/M\Z X -+ X ZL/MKZ — Z/MZ.

Rate Ry = logy, M} b/dim.
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Algebraic Construction over Z

Distance with no side information

e dy = min distance of M-PAM Z/MZ =1

Distance with side information configuration S

e Receiver knows wy, = ay, k€ S

e Expurgated codebook consists of the points

M M
T = ,;5. Eak + l; ﬁwk mod M, where wy, are unknown integers

M
e Difference between codewords Ax = g — Awy, mod M
M,
k¢S
e Minimum distance dg

Z EAwk

min |Az| = min —gcd( k¢S> = HMk

kes
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Algebraic Construction over Z

Side Information Gain

e Distance with side information
dS = H Mk = H 2R’c = QZkESRk = QRS
kes kes
e Side information gain

10log (§>
10 \ a2
Rg

I' = min
S

~ 6 dB/b/dim
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Construction over Z[i] and Z[w]

Choose K relatively-prime numbers My,..., Mg € D
Message alphabets: W) =D/MD,... Wk =D/MgD
Rate: Ry = log, |Mj| b/dim

Constellation: X = D/MD, where M = My My --- Mg

Encoding: Using Chinese remainder theorem

M M
plwy, ..., wg) = Ewl—i— —l—M—Kwk mod MD

wa(frs3)

Side information gain: I' = 20log;, 2 ~ 6 dB/b/dim

Minimum distance:

do = dpin(D) = 1 dg = = 2Rs

[

kesS
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D=2Z[i], K=2, (M, M) = (1+2i,1—2i), M =5

wy € Z[i] /(1 + 2i)Z[i] = Fs

o o o o
o o o o
o o o o
o o o o

5= (1+ 2i)(1 — 2i)
sed(1+2i,1—2i) =1

M

T =w— + wz£ mod MD

M,y

y

M,

ws € Z[i) /(1 - 2%)Z[i) = Fs

o o o o
o o o o
o o o o
o o o o

@ = wi (1 —2i) + wa(1 +2i) mod 5Z[i]

° ° ° ° o o
o e e e o o
o e e o« o °
o e e ¢ o °
o e e ¢ o °
° ° ° ° ° °

X = Z[i]/52Z[i]

do = dmin (Z[i]) =1
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= wi(1 — 2i) + wa(1 + 2¢) mod 5Z[i]

S = {1} S ={2}
x = (wz(l + 2i) + constant) mod 5Zi] = (wl(l —2i) + constant) mod 5Z][i]
ds =[1+2i| =5 ds=1|1-2i| =5
Rg = 1log,5 Rs = 1log,5
2 72
r— 10log,o(d5/dg) _ 1(1)10g105 ~ 6 dB/b/dim
s={1}.{2} Rs 7 logy 5
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Probability of error

e

[l —e— s5={2}

No side inf. {111

§={1}

SNR in dB

SNR gain over S = @ at P, = 107°

S | Actual gain | Predicted
I'x Rg dB

{1} 6.9 6.9

{2} 6.9 6.9

22
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How to construct codes in higher dimensions?

Use a family of lattices

A=A+ +Ax

AN

V4

Lattice index code:

= A1/As X = Ag/As

P
T —
(Direct sum)

X =A/As
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Lattice index codes

Definition

A lattice index code consists of nested lattice codes Ay /A, ..., Ax/As

such that the encoding map p: Aj/As X -+ - X Ag/As = A/A,
p(&1,...,xx) = (1 + - +xx) mod As,

is one-to-one.

Ay/As, ..., Ak /As are subgroups of A/Ag (under addition mod As)

One-to-one map ensures unique decodability and implies
Ay/Ag x - x A /As =2 A/A (as groups)

1 Vol(As)
R = =1
ate Ry n 082 Vol(Ay)

Minimum distance

dO = dmin(A) dS = dmin <Z Ak)

k¢S
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Properties

Effective codebook with side information configuration S C {1,..., K}

o .is a translate of the lattice code (35,25 Ak) /As
e Coding gain is the center density of the coding lattice Zk¢s Ag

5 (Z A’“) _ (1o (D ) )"

k¢S Vol (ZkQSAk)

e When S = &, i.e., no side information, coding gain = 6(A)

Distance gain due to side information

1

ds _ oRs o [MZkgsAk) ] !

dy 5(A)

Lemma
If A is a densest lattice in R™ then T'(A/As) < 20log,, 2 ~ 6 dB/b/dim
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Construction using Chinese Remainder Theorem

o Let D =Z, Z[i] or Z]w] and A be any D-lattice
» A can be a known lattice with large coding gain

o Let M;y,..., Mg € D be relatively prime, M = H,f:l M,

M M
e Scale A by M M to generate a family of lattices.

-

Rate Ry, = log, |Mj| b/dim.
) (Zkes Ai) = 6(A) for any S

M . M ° dO = dmin(A)
MK ds

do
T ~ 6 dB/b/dim

N
N

=20 for any S
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Further Algebraic Constructions

Over general algebraic number fields (Huang, ISIT’15)

Use the ring of integers Ok of an algebraic number field K
The elements of Ok can be embedded into a lattice
Construct lattice codes using Chinese remainder theorem in Ok

All the K messages can be allowed to take values from the same
finite field

If K is totally real: diversity gain in Rayleigh fading channel

Both minimum Euclidean distance and minimum product distance
improve with side information

Over Hurwitz quaternionic integers

Non-commutative Euclidean domain that is geometrically equivalent
to Dj lattice

Corresponding lattice code has a larger coding gain than Z[i] and
Z[w] constructions and provides more options for encoding rates
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Summary of algebraic construction

e Using nested lattice codes for physical-layer index coding

o Algebraic labelling of codewords using Chinese remainder theorem

e Side information gain of at least 6 dB/b/dim

o Effective codebook at the receivers are also nested lattice codes
» Can employ lattice decoding at the receivers

However..

e Decoding complexity is high for large dimensions
e Message sizes are not powers of 2
In the next section..

e We design a concatenated scheme that can be decoded with
low-complexity iterative detection

e The modulation scheme (inner code) will encode integer number of
bits while ensuring side information gain
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Index Coding using Multidimensional PAM

e Message alphabet:

Wy = =Wk =7Z/MZ2 7y

e Codebook: K-tuples over Zj,

X =Ty x - X Ty =125

e Embed X into R¥ using
natural map

z = p(wr,...

0

Use a linear encoder to map messages to codeword
Wi X - xWg = &

VAN — 75

K

Generate codeword z as linear combination of ¢4, ..

z;
° °
° °
1 2

., Cx €EZ

JWE) = Zwkck mod M.

k=1

K.
M-
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Properties

Code is fully characterized by the K x K generating matrix over Z s
C=lcic - ck]
Code length n = number of messages K.

All messages are encoded at the same rate
1 .
Ri=---=Rkg= ?logZM b/dim.

p is bijective & C is invertible, i.e., det(C) is a unit in Zy,

Minimum distance with no side information dy = dyin(Z5) =1
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Properties

e Using linearity property, ds = dmin (€s), where

Cs = {Zwkck ‘wk €L,k ¢ S} is a Zps—linear code
k¢S

e dg can be computed using shortest-vector algorithm for lattices

101og; (95 /d3)

can be efficiently computed using
Rs

e Therefore I' = msin

numerical techniques
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Example: 16-QAM index code using Z,4

C=(c1e)= G ?)

x x o x o det(C) = -3 mod 4=1¢€c U(Zy).
o S={1}:
5
G5 = {waes |we € Zys},
ds = 2.
o S={2}:
) Cs = {wier |wy € Zy4},
0 1 2 3 ds = 2.

I ~ 6 dB/b/dim I
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Computer Search for Good Codes

o We restrict search space to codes with circulant C matrix.

e Table gives the first column of C and T for the best codes.

M K=mn
2 ] 3 1 4 5

L@t [ azyT (1,1,3,0)7 (1,2,1,3,0)7
6.02 4.52 3.01 3.76

8 (1,2)7 (1,2,0)7 (1,0,3,3)7 (1,7,2,2,5)7
4.65 3.49 4.01 4.70

6 |l @T [ 2107 (1,4,10,8)7 (1,14,11,12,5)T
6.02 5.24 5.57 5.28

5 || LOT [ (122,197 | (1,10,14,2)T [ (1,24,27,15,26)"
5.85 5.73 5.80 5.77

64 || (1:36)T | (1,38,60)T | (1,38,20,30)7 | (1,16,18,55,21)7
6.04 5.73 5.85 5.82

Modulation scheme ensures large side information gain
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Further Modulation Schemes for Index Coding
(Mahesh & Rajan, arXiv:1603.03152)

Multiple receivers with general message demands

wlL'
wo c=Lw

~— »| Binary Map to

Index Code 2N PSK/QAM

ceFY

e The binary index code reduces the codeword length N (hence, the
constellation size) while meeting the demands of the receivers

e The bit labelling of QAM/PSK allows receivers with sufficient side
information to achieve gains in minimum Euclidean distance
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Coded Index Modulation

F Coding gain against channel noise

Channel Code 1
Index Modulation
Channel Code K \

Convert side information into additional coding gain
More side information = larger minimum Euclidean distance

Message 1

Message K

e concatenated scheme: coding gain + side information gain.
e converts the channel into a MAC with many receivers.

e can perform close to channel capacity.
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Coded Index Modulation

2K _ 1 receivers,

one for each S C {1,..., K}

Channel code
over Zy

. Ys
P > Broadcast — » Rxg

Channel code
over Z M

S TN r

Ws = (Wk,k S S)

e If minimum Hamming distance of channel codes is dy, then
minimum squared Euclidean distance at Rxg is at least dy x d%.

o Capacity of MAC with many receivers: Ulrey Inf.& Cont.’75
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Achievable rate region

Notation:
e 2 _ 1 receivers indexed by S.
Rxs = (SNRg, S) observes Ys.
o Xs= (X keS) X = (Xp,k ¢ 5).
e Xi,..., X have distributions p(x1),...,p(xk).

e Inner code/modulation (p, X) has dimension n.
Assumption:

e If S C S, then SNRg > SNRg/

Theorem
(R1,...,Rk) achievable if and only if for every Rxg:

1
ZI(XSC§YS|XS) ZR—Rs.
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K =2, 64-QAM, T = 4.66 dB/b/dim
e Want Ry = Ry =1 b/dim
e 2K — 1 =23 receivers: S=g,{1},{2}

1 Ri+Ry=2 ifS=90
EI(XSC;YSLXS) >S Ry =1 if S = {1}
Ri=1 if 5 = {2}

1
3 log, (1 + SNR)

1
EI(XSGYS\XS)

in bits per dim ] S ={1},{2}

5.7 dB 12.6 dB

0 5 10 15 20
SNR in dB
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Dependence on T’

Larger I(X sc; Ys|X s), for all S = larger rates.
Fano's inequality:

I(Xs;Ys|Xs) > (1 Pe(Xse|Vs,Xg))logy [] 1| -1
keSe

Larger I = larger dg for all S = smaller P, simultaneously for all .S

We expect a modulation with larger T" to perform better.
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Example: 64-QAM, K = 2 messages

| T = 4.66 dB/b/dim |

1 -

1 ’
~I(X s Ys|Xs) o | T =4dB/b/dim |

S={1}or{2} e

SNR in dB
SNR gain of 0.7 dB at 1 1(Xs; Ys|Xg) = 1.
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Encoder

e K =2 messages, Ry = Ry =1 b/dim.

3996 bits —{ Conv. Code » 11, \ i /

,0
3996 bits —» Conv. Code I,
rate-2, 64-QAM
16 state I' = 4.66 dB/b/dim
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Decoder

]._.[1 -
S=0
A B e ;' BCJR
64-QAM
4 Demod
— L—»I;'—» BCJR
I, |-
S =42
{2} —.
Y
64-QAM - -1 »
y —»| 0 —»| 117! —» BCJR
A
L Side Information as LLR of coded bits
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Simulation Result

S ={1},{2} S=0
10 ) )
2N 5 |
o Il ;
= 0
10 Il g
195) 1 =
BER ‘g ?
- Q
_ ®
z L\ )
10 g ‘\ @]
8 R
‘078 4 6 8 10 1‘2 14 16
SNR in dB

Gap to capacity (with Gaussian input alphabet) at BER 10~
e 3.3dB for S = {1}, {2}.
e 42 dB for S =o.
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Wireline Multicasting
(Koetter & Médard T-IT Mar’03)

Multicast network Linear network coding over [,

B
g Wiy .. WK
]
d \4\ AN

Soour o U2 U|in|
" e \‘
oA /’
"/ LV \‘
‘
m ~ Noe |

. I\

\ ;
g N LT S

A network coding solution exists iff max-flow > K.

max-flow = maximum number of edge-disjoint paths from the source to
each of the receivers
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Broadcasting with Coded Side Information at the Receivers

(Natarajan, Hong, Viterbo arXiv:1509.01332)

e Suppose max-flow < K.

e A wireless signal can
supplement the wireline

network.
\/\ .o Symbols from wireline network
N | . . .
wired network 2/' ' serve as s-lde |nfo.rmat|on to
v . decode wireless signal:
. / linear combinations of source
messages

e = Broadcasting with coded
side information at the receivers

I
Um = Zkzl Cm k Wk
m=1,...,.M

Theorem: Lattice codes achieve the capacity of a wireless broadcast
channel with coded side information at the receivers
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