Lattice Index Coding Part III - Constructing Codes

Emanuele Viterbo

European School of Information Theory
4 April 2016, Gothenburg

Recap: Channel Model

Broadcast $\left(w_{1}, \ldots, w_{K}\right)$ to multiple receivers $\{(\mathrm{SNR}, S)\}$ where $S \subset\{1, \ldots, K\}$ denotes the available side information

Transmitter

A receiver (SNR, S)

Variance $\frac{1}{\operatorname{SNR}} \cdot \frac{\mathbb{E}\|\boldsymbol{x}\|^{2}}{n} \quad$ Side information rate $R_{S}=\sum_{k \in S} R_{k}$

Recap: Decoding and Side Information Gain

smallest min distance among the $2^{n R_{S}}$ codebooks
Side Information Gain $\Gamma(\mathcal{X})=\min _{S \subset\{1, \ldots, K\}} \frac{10 \log _{10}\left(\frac{d_{S}^{2}}{d_{0}^{2}}\right)}{R_{S}} \mathrm{~dB} / \mathrm{b} / \mathrm{dim}$
Design Objective: maximize d_{0} and $\Gamma(\mathcal{X})$

Algebraic Construction: Main Idea

- Label 30-PAM with elements of the ring $\mathbb{Z}_{30}=\{0,1, \ldots, 29\}$.
- Addition and multiplication in \mathbb{Z}_{30} are performed modulo 30 .
- Encode messages to $\mathcal{X}=\mathbb{Z}_{30}$ using

$$
x=\rho\left(w_{1}, w_{2}, w_{3}\right)=15 w_{1}+10 w_{2}+6 w_{3} \bmod 30
$$

- Chinese remainder theorem $\Rightarrow \rho$ is bijective.
- Dimension of the codebook is $n=1$.
- $R_{1}=1, R_{2}=\log _{2} 3, R_{3}=\log _{2} 5 \mathrm{~b} / \mathrm{dim}$.

$$
x=15 w_{1}+10 w_{2}+6 w_{3} \bmod 30
$$

Side information gain

- The code guarantees: $d_{S}=2^{R_{S}}$ for all $\varnothing \subsetneq S \subsetneq\{1,2,3\}$
- Min distance improves with the amount of available side information
- Side information gain

$$
\begin{aligned}
\Gamma(\mathcal{X}) & =\min _{S} \frac{10 \log _{10}\left(d_{S}^{2} / d_{0}^{2}\right)}{R_{S}}=\min _{S} \frac{10 \log _{10}\left(d_{S}^{2}\right)}{\log _{2} d_{S}}=20 \log _{10} 2 \\
& \approx 6 \mathrm{~dB} / \mathrm{b} / \mathrm{dim} .
\end{aligned}
$$

- Uniform Side Information Gain:

Identical normalized distance gain for all receivers

$$
\frac{10 \log _{10}\left(d_{S}^{2} / d_{0}^{2}\right)}{R_{S}}=20 \log _{10} 2 \approx 6 \text { for all } S \subset\{1,2,3\}
$$

SNR gain over $S=\varnothing$ at $\mathrm{P}_{e}=10^{-4}$

S	Actual gain	Predicted $\Gamma \times R_{S} \mathrm{~dB}$
$\{1\}$	6	6
$\{1,2\}$	15.6	15.5

Algebraic Construction over \mathbb{Z}

In order to encode K messages:

- Choose K relatively prime integers: $M_{1}, \ldots, M_{K} \in \mathbb{Z}$.
- The message alphabets are $\mathcal{W}_{1}=\mathbb{Z} / M_{1} \mathbb{Z}, \ldots, \mathcal{W}_{K}=\mathbb{Z} / M_{K} \mathbb{Z}$.
- Encode messages to M-PAM, where $M=\prod_{k=1}^{K} M_{k}$:

$$
\rho\left(w_{1}, \ldots, w_{K}\right)=\frac{M}{M_{1}} w_{1}+\cdots+\frac{M}{M_{K}} w_{K} \bmod M .
$$

- This map corresponds to the Chinese remainder theorem:

$$
\mathbb{Z} / M_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / M_{K} \mathbb{Z} \rightarrow \mathbb{Z} / M \mathbb{Z}
$$

- Rate $R_{k}=\log _{2} M_{k} \mathrm{~b} / \operatorname{dim}$.

Algebraic Construction over \mathbb{Z}

Distance with no side information

- $d_{0}=\min$ distance of M-PAM $\mathbb{Z} / M \mathbb{Z}=1$

Distance with side information configuration S

- Receiver knows $w_{k}=a_{k}, k \in S$
- Expurgated codebook consists of the points
$x=\sum_{k \in S} \frac{M}{M_{k}} a_{k}+\sum_{k \notin S} \frac{M}{M_{k}} w_{k} \bmod M$, where w_{k} are unknown integers
- Difference between codewords $\Delta x=\sum_{k \notin S} \frac{M}{M_{k}} \Delta w_{k} \bmod M$
- Minimum distance d_{S}

$$
\min |\Delta x|=\min \left|\sum_{k \notin S} \frac{M}{M_{k}} \Delta w_{k}\right|=\operatorname{gcd}\left(\frac{M}{M_{k}}, k \notin S\right)=\prod_{k \in S} M_{k}
$$

Algebraic Construction over \mathbb{Z}

Side Information Gain

- Distance with side information

$$
d_{S}=\prod_{k \in S} M_{k}=\prod_{k \in S} 2^{R_{k}}=2^{\sum_{k \in S} R_{k}}=2^{R_{S}}
$$

- Side information gain

$$
\Gamma=\min _{S} \frac{10 \log _{10}\left(\frac{d_{S}^{2}}{d_{0}^{2}}\right)}{R_{S}} \approx 6 \mathrm{~dB} / \mathrm{b} / \mathrm{dim}
$$

Construction over $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$

- Choose K relatively-prime numbers $M_{1}, \ldots, M_{K} \in \mathbb{D}$
- Message alphabets: $\mathcal{W}_{1}=\mathbb{D} / M_{1} \mathbb{D}, \ldots, \mathcal{W}_{K}=\mathbb{D} / M_{K} \mathbb{D}$
- Rate: $R_{k}=\log _{2}\left|M_{k}\right| \mathrm{b} / \operatorname{dim}$
- Constellation: $\mathcal{X}=\mathbb{D} / M \mathbb{D}$, where $M=M_{1} M_{2} \cdots M_{K}$
- Encoding: Using Chinese remainder theorem

$$
\rho\left(w_{1}, \ldots, w_{K}\right)=\frac{M}{M_{1}} w_{1}+\cdots+\frac{M}{M_{K}} w_{k} \bmod M \mathbb{D}
$$

- Minimum distance:

$$
d_{0}=\mathrm{d}_{\min }(\mathbb{D})=1 \quad d_{S}=\left|\operatorname{gcd}\left(\frac{M}{M_{k}}, k \notin S\right)\right|=\left|\prod_{k \in S} M_{k}\right|=2^{R_{S}}
$$

- Side information gain: $\Gamma=20 \log _{10} 2 \approx 6 \mathrm{~dB} / \mathrm{b} / \mathrm{dim}$

$$
\mathbb{D}=\mathbb{Z}[i], K=2,\left(M_{1}, M_{2}\right)=(1+2 i, 1-2 i), M=5
$$

$$
x=w_{1}(1-2 i)+w_{2}(1+2 i) \bmod 5 \mathbb{Z}[i]
$$

$$
\begin{array}{cc}
S=\{1\} & S=\{2\} \\
x=\left(w_{2}(1+2 i)+\text { constant }\right) \bmod 5 \mathbb{Z}[i] & x=\left(w_{1}(1-2 i)+\text { constant }\right) \bmod 5 \mathbb{Z}[i] \\
\circ & \circ
\end{array}
$$

$$
\Gamma=\min _{S=\{1\},\{2\}} \frac{10 \log _{10}\left(d_{S}^{2} / d_{0}^{2}\right)}{R_{S}}=\frac{10 \log _{10} 5}{\frac{1}{2} \log _{2} 5} \approx 6 \mathrm{~dB} / \mathrm{b} / \mathrm{dim}
$$

SNR gain over $S=\varnothing$ at $\mathrm{P}_{e}=10^{-5}$

S	Actual gain	Predicted $\Gamma \times R_{S} \mathrm{~dB}$
$\{1\}$	6.9	6.9
$\{2\}$	6.9	6.9

How to construct codes in higher dimensions?

Lattice index code:

Lattice index codes

Definition

A lattice index code consists of nested lattice codes $\Lambda_{1} / \Lambda_{\mathrm{s}}, \ldots, \Lambda_{K} / \Lambda_{\mathrm{s}}$ such that the encoding map $\rho: \Lambda_{1} / \Lambda_{\mathrm{s}} \times \cdots \times \Lambda_{K} / \Lambda_{\mathrm{s}} \rightarrow \Lambda / \Lambda_{\mathrm{s}}$,

$$
\rho\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}\right)=\left(\boldsymbol{x}_{1}+\cdots+\boldsymbol{x}_{K}\right) \bmod \Lambda_{\mathrm{s}},
$$

is one-to-one.

- $\Lambda_{1} / \Lambda_{\mathrm{s}}, \ldots, \Lambda_{K} / \Lambda_{\mathrm{s}}$ are subgroups of $\Lambda / \Lambda_{\mathrm{s}}$ (under addition $\bmod \Lambda_{\mathrm{s}}$)
- One-to-one map ensures unique decodability and implies

$$
\Lambda_{1} / \Lambda_{\mathrm{s}} \times \cdots \times \Lambda_{K} / \Lambda_{\mathrm{s}} \cong \Lambda / \Lambda_{\mathrm{s}} \text { (as groups) }
$$

- Rate $R_{k}=\frac{1}{n} \log _{2} \frac{\operatorname{Vol}\left(\Lambda_{\mathbf{s}}\right)}{\operatorname{Vol}\left(\Lambda_{k}\right)}$
- Minimum distance

$$
d_{0}=\mathrm{d}_{\min }(\Lambda) \quad d_{S}=\mathrm{d}_{\min }\left(\sum_{k \notin S} \Lambda_{k}\right)
$$

Properties

$\underline{\text { Effective codebook with side information configuration } S \subset\{1, \ldots, K\}}$

- ..is a translate of the lattice code $\left(\sum_{k \notin S} \Lambda_{k}\right) / \Lambda_{s}$
- Coding gain is the center density of the coding lattice $\sum_{k \notin S} \Lambda_{k}$

$$
\delta\left(\sum_{k \notin S} \Lambda_{k}\right)=\frac{\left(r_{\text {pack }}\left(\sum_{k \notin S} \Lambda_{k}\right)\right)^{n}}{\operatorname{Vol}\left(\sum_{k \notin S} \Lambda_{k}\right)}
$$

- When $S=\varnothing$, i.e., no side information, coding gain $=\delta(\Lambda)$

Distance gain due to side information

$$
\frac{d_{S}}{d_{0}}=2^{R_{S}} \times\left[\frac{\delta\left(\sum_{k \notin S} \Lambda_{k}\right)}{\delta(\Lambda)}\right]^{\frac{1}{n}}
$$

Lemma
If Λ is a densest lattice in \mathbb{R}^{n} then $\Gamma\left(\Lambda / \Lambda_{\mathrm{s}}\right) \leq 20 \log _{10} 2 \approx 6 \mathrm{~dB} / \mathrm{b} / \mathrm{dim}$

Construction using Chinese Remainder Theorem

- Let $\mathbb{D}=\mathbb{Z}, \mathbb{Z}[i]$ or $\mathbb{Z}[\omega]$ and Λ be any \mathbb{D}-lattice
- Λ can be a known lattice with large coding gain
- Let $M_{1}, \ldots, M_{K} \in \mathbb{D}$ be relatively prime, $M=\prod_{k=1}^{K} M_{k}$
- Scale Λ by $\frac{M}{M_{1}}, \ldots, \frac{M}{M_{K}}$ to generate a family of lattices.

- Rate $R_{k}=\log _{2}\left|M_{k}\right| \mathrm{b} / \mathrm{dim}$.
- $\delta\left(\sum_{k \notin S} \Lambda_{k}\right)=\delta(\Lambda)$ for any S
- $d_{0}=\mathrm{d}_{\text {min }}(\Lambda)$
- $\frac{d_{S}}{d_{0}}=2^{R_{S}}$ for any S
- $\Gamma \approx 6 \mathrm{~dB} / \mathrm{b} / \mathrm{dim}$

Further Algebraic Constructions

Over general algebraic number fields (Huang, ISIT' 15)

- Use the ring of integers $\mathcal{O}_{\mathbb{K}}$ of an algebraic number field \mathbb{K}
- The elements of $\mathcal{O}_{\mathbb{K}}$ can be embedded into a lattice
- Construct lattice codes using Chinese remainder theorem in $\mathcal{O}_{\mathbb{K}}$
- All the K messages can be allowed to take values from the same finite field
- If \mathbb{K} is totally real: diversity gain in Rayleigh fading channel
- Both minimum Euclidean distance and minimum product distance improve with side information

Over Hurwitz quaternionic integers

- Non-commutative Euclidean domain that is geometrically equivalent to D_{4}^{*} lattice
- Corresponding lattice code has a larger coding gain than $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$ constructions and provides more options for encoding rates

Summary of algebraic construction

- Using nested lattice codes for physical-layer index coding
- Algebraic labelling of codewords using Chinese remainder theorem
- Side information gain of at least $6 \mathrm{~dB} / \mathrm{b} / \mathrm{dim}$
- Effective codebook at the receivers are also nested lattice codes
- Can employ lattice decoding at the receivers

However..

- Decoding complexity is high for large dimensions
- Message sizes are not powers of 2

In the next section..

- We design a concatenated scheme that can be decoded with low-complexity iterative detection
- The modulation scheme (inner code) will encode integer number of bits while ensuring side information gain

Index Coding using Multidimensional PAM

- Message alphabet:

$$
\mathcal{W}_{1}=\cdots=\mathcal{W}_{K}=\mathbb{Z} / M \mathbb{Z} \triangleq \mathbb{Z}_{M}
$$

- Codebook: K-tuples over \mathbb{Z}_{M}

$$
\mathcal{X}=\mathbb{Z}_{M} \times \cdots \times \mathbb{Z}_{M}=\mathbb{Z}_{M}^{K}
$$

- Embed \mathcal{X} into \mathbb{R}^{K} using natural map

- Use a linear encoder to map messages to codeword

$$
\begin{aligned}
\mathcal{W}_{1} \times \cdots \times \mathcal{W}_{K} & \rightarrow \mathcal{X} \\
\mathbb{Z}_{M}^{K} & \rightarrow \mathbb{Z}_{M}^{K}
\end{aligned}
$$

- Generate codeword \boldsymbol{x} as linear combination of $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{K} \in \mathbb{Z}_{M}^{K}$:

$$
\boldsymbol{x}=\rho\left(w_{1}, \ldots, w_{K}\right)=\sum_{k=1}^{K} w_{k} \boldsymbol{c}_{k} \bmod M
$$

Properties

- Code is fully characterized by the $K \times K$ generating matrix over \mathbb{Z}_{M}

$$
\boldsymbol{C}=\left[\begin{array}{llll}
\boldsymbol{c}_{1} & \boldsymbol{c}_{2} & \cdots & \boldsymbol{c}_{K}
\end{array}\right]
$$

- Code length $n=$ number of messages K.
- All messages are encoded at the same rate

$$
R_{1}=\cdots=R_{K}=\frac{1}{K} \log _{2} M \mathrm{~b} / \mathrm{dim} .
$$

- ρ is bijective $\Leftrightarrow \boldsymbol{C}$ is invertible, i.e., $\operatorname{det}(\boldsymbol{C})$ is a unit in \mathbb{Z}_{M}
- Minimum distance with no side information $d_{0}=d_{\min }\left(\mathbb{Z}_{M}^{K}\right)=1$

Properties

- Using linearity property, $d_{S}=d_{\text {min }}\left(\mathscr{C}_{S}\right)$, where

$$
\mathscr{C}_{S}=\left\{\sum_{k \notin S} w_{k} \boldsymbol{c}_{k} \mid w_{k} \in \mathbb{Z}_{M}, k \notin S\right\} \text { is a } \mathbb{Z}_{M} \text {-linear code }
$$

- d_{S} can be computed using shortest-vector algorithm for lattices
- Therefore $\Gamma=\min _{S} \frac{10 \log _{10}\left(d_{S}^{2} / d_{0}^{2}\right)}{R_{S}}$ can be efficiently computed using numerical techniques

Example: 16-QAM index code using \mathbb{Z}_{4}

- $\boldsymbol{C}=\left(\boldsymbol{c}_{1} \boldsymbol{c}_{2}\right)=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$.
- $\operatorname{det}(\boldsymbol{C})=-3 \bmod 4=1 \in U\left(\mathbb{Z}_{4}\right)$.
- $S=\{1\}$:

$$
\begin{aligned}
\mathscr{C}_{S} & =\left\{w_{2} \boldsymbol{c}_{2} \mid w_{2} \in \mathbb{Z}_{4}\right\}, \\
d_{S} & =2 .
\end{aligned}
$$

- $S=\{2\}:$

$$
\begin{aligned}
\mathscr{C}_{S} & =\left\{w_{1} \boldsymbol{c}_{1} \mid w_{1} \in \mathbb{Z}_{4}\right\}, \\
d_{S} & =2 .
\end{aligned}
$$

$\Gamma \approx 6 \mathrm{~dB} / \mathrm{b} / \mathrm{dim}$

Computer Search for Good Codes

- We restrict search space to codes with circulant C matrix.
- Table gives the first column of C and Γ for the best codes.

M	K			
	2	3	$4=n$	
4	$(1,2)^{\top}$	$(1,2,2)^{\top}$	$(1,1,3,0)^{\top}$	$(1,2,1,3,0)^{\top}$
	6.02	4.52	3.01	3.76
8	$(1,2)^{\top}$	$(1,2,0)^{\top}$	$(1,0,3,3)^{\top}$	$(1,7,2,2,5)^{\top}$
	4.65	3.49	4.01	4.70
16	$(1,12)^{\top}$	$(1,2,10)^{\top}$	$(1,4,10,8)^{\top}$	$(1,14,11,12,5)^{\top}$
	6.02	5.24	5.57	5.28
32	$(1,6)^{\top}$	$(1,22,14)^{\top}$	$(1,10,14,2)^{\top}$	$(1,24,27,15,26)^{\top}$
	5.85	5.73	5.80	5.77
64	$(1,36)^{\top}$	$(1,38,60)^{\top}$	$(1,38,20,30)^{\top}$	$(1,16,18,55,21)^{\top}$
	6.04	5.73	5.85	5.82

Modulation scheme ensures large side information gain

Further Modulation Schemes for Index Coding

 (Mahesh \& Rajan, arXiv:1603.03152)Multiple receivers with general message demands

- The binary index code reduces the codeword length N (hence, the constellation size) while meeting the demands of the receivers
- The bit labelling of QAM/PSK allows receivers with sufficient side information to achieve gains in minimum Euclidean distance

Coded Index Modulation

Convert side information into additional coding gain
More side information \Rightarrow larger minimum Euclidean distance

- concatenated scheme: coding gain + side information gain.
- converts the channel into a MAC with many receivers.
- can perform close to channel capacity.

Coded Index Modulation

- If minimum Hamming distance of channel codes is d_{H}, then minimum squared Euclidean distance at Rx_{S} is at least $d_{H} \times d_{S}^{2}$.
- Capacity of MAC with many receivers: Ulrey Inf.\& Cont.' 75

Achievable rate region

Notation:

- $2^{K}-1$ receivers indexed by S.
- $\mathrm{Rx}_{S}=\left(\mathrm{SNR}_{S}, S\right)$ observes Y_{S}.
- $\boldsymbol{X}_{S}=\left(X_{k}, k \in S\right), \boldsymbol{X}_{S^{c}}=\left(X_{k}, k \notin S\right)$.
- X_{1}, \ldots, X_{K} have distributions $p\left(x_{1}\right), \ldots, p\left(x_{K}\right)$.
- Inner code/modulation (ρ, \mathcal{X}) has dimension n.

Assumption:

- If $S \subset S^{\prime}$, then $\mathrm{SNR}_{S} \geq \mathrm{SNR}_{S^{\prime}}$

Theorem
(R_{1}, \ldots, R_{K}) achievable if and only if for every Rx_{S} :

$$
\frac{1}{n} I\left(\boldsymbol{X}_{S^{c}} ; Y_{S} \mid \boldsymbol{X}_{S}\right) \geq R-R_{S} .
$$

$K=2,64-$ QAM, $\Gamma=4.66 \mathrm{~dB} / \mathrm{b} / \mathrm{dim}$

- Want $R_{1}=R_{2}=1 \mathrm{~b} / \mathrm{dim}$
- $2^{K}-1=3$ receivers: $S=\varnothing,\{1\},\{2\}$

$$
\frac{1}{n} I\left(\boldsymbol{X}_{S^{c}} ; Y_{S} \mid \boldsymbol{X}_{S}\right) \geq \begin{cases}R_{1}+R_{2}=2 & \text { if } S=\varnothing \\ R_{2}=1 & \text { if } S=\{1\} \\ R_{1}=1 & \text { if } S=\{2\}\end{cases}
$$

Dependence on Γ

- Larger $I\left(\boldsymbol{X}_{S^{c}} ; Y_{S} \mid \boldsymbol{X}_{S}\right)$, for all $S \Rightarrow$ larger rates.
- Fano's inequality:

$$
I\left(\boldsymbol{X}_{S^{c}} ; Y_{S} \mid \boldsymbol{X}_{S}\right) \geq\left(1-\mathrm{P}_{e}\left(\boldsymbol{X}_{S^{c}} \mid Y_{S}, \boldsymbol{X}_{S}\right)\right) \log _{2} \prod_{k \in S^{c}}\left|\mathcal{X}_{k}\right|-1
$$

- Larger $\Gamma \Rightarrow$ larger d_{S} for all $S \Rightarrow$ smaller P_{e} simultaneously for all S
- We expect a modulation with larger Γ to perform better.

Example: 64-QAM, $K=2$ messages

SNR gain of 0.7 dB at $\frac{1}{n} I\left(\boldsymbol{X}_{S^{c}} ; Y_{S} \mid \boldsymbol{X}_{S}\right)=1$.

Encoder

- $K=2$ messages, $R_{1}=R_{2}=1 \mathrm{~b} / \mathrm{dim}$.

Decoder

$$
\underline{S=\varnothing}
$$

$$
\underline{S=\{2\}}
$$

Simulation Result

Gap to capacity (with Gaussian input alphabet) at BER 10^{-4} :

- 3.3 dB for $S=\{1\},\{2\}$.
- 4.2 dB for $S=\varnothing$.

Wireline Multicasting

(Koetter \& Médard T-IT Mar'03)

Multicast network

$\underline{\text { Linear network coding over } \mathbb{F}_{q}}$

A network coding solution exists iff max-flow $\geq K$.
max-flow $=$ maximum number of edge-disjoint paths from the source to each of the receivers

Broadcasting with Coded Side Information at the Receivers

(Natarajan, Hong, Viterbo arXiv:1509.01332)

- Suppose max-flow $<K$.
- A wireless signal can supplement the wireline network.
- Symbols from wireline network serve as side information to decode wireless signal: linear combinations of source messages
- \Rightarrow Broadcasting with coded side information at the receivers

Theorem: Lattice codes achieve the capacity of a wireless broadcast channel with coded side information at the receivers

References

Wireline Multicasting

- R. Koetter and M. Médard, "An algebraic approach to network coding," IEEE/ACM Trans. Netw. vol. 11, no. 5, pp. 782-795, Oct. 2003.
Index Codes for the Gaussian broadcast channel
- L. Natarajan, Y. Hong, and E. Viterbo, "Lattice index coding," IEEE Trans. Inf. Theory, pp. 6505-6525, Dec. 2015.
- -_, "Lattice Index Coding for the Broadcast Channel," in Proc. IEEE Inf. Theory Workshop (ITW), Apr. 2015.
- Y.-C. Huang, "Lattice index codes from algebraic number fields," in Proc. IEEE Int. Symp. Information Theory (ISIT), Jun. 2015, pp. 2485-2489.
- L. Natarajan, Y. Hong, and E. Viterbo, "Index codes for the Gaussian broadcast channel using quadrature amplitude modulation," IEEE Commun. Lett., pp. 1291-1294, Aug. 2015.
- A. A. Mahesh and B. S. Rajan, "Noisy index coding with PSK and QAM," arXiv:1603.03152, Mar. 2016.
- L. Natarajan, Y. Hong, and E. Viterbo, "Capacity of coded index modulation," in Proc. IEEE Int. Symp. Information Theory (ISIT), Jun. 2015, pp. 596-600.
- -_, "Lattice codes achieve the capacity of Gaussian broadcast channels with coded side information," Submitted to IEEE Trans. Inf. Theory, arxiv:1509.01332, Sep. 2015.

