Lattice Index Coding
Part III - Constructing Codes

Emanuele Viterbo

European School of Information Theory
4 April 2016, Gothenburg
Recap: Channel Model

Broadcast \((w_1, \ldots, w_K)\) to multiple receivers \(\{(\text{SNR}, S')\}\) where
\(S \subset \{1, \ldots, K\}\) denotes the available side information

Transmitter

\[
\begin{align*}
 w_1 & \in \mathcal{W}_1 \\
 \vdots & \\
 \vdots & \\
 w_K & \in \mathcal{W}_K \\
\end{align*}
\]

Rate \(R_k = \frac{1}{n} \log_2 |\mathcal{W}_k|\)

A receiver \((\text{SNR}, S')\)

\[
\begin{align*}
 x & \quad + \quad y \\
 z & \quad \downarrow \quad \uparrow \\
 \hat{w}_1, \ldots, \hat{w}_K & \quad \text{Decoder}
\end{align*}
\]

Variance \(\frac{1}{\text{SNR}} \cdot \frac{\mathbb{E} \|x\|^2}{n}\)

Side information rate \(R_S = \sum_{k \in S} R_k\)
Recap: Decoding and Side Information Gain

Side Information Gain $\Gamma(\mathcal{X}) = \min_{S \subset \{1, \ldots, K\}} \frac{10 \log_{10} \left(\frac{d_S^2}{d_0^2} \right)}{R_S} \text{dB/b/dim}$

Design Objective: maximize d_0 and $\Gamma(\mathcal{X})$
Algebraic Construction: Main Idea

- Label 30-PAM with elements of the ring $\mathbb{Z}_{30} = \{0, 1, \ldots, 29\}$.
 - Addition and multiplication in \mathbb{Z}_{30} are performed modulo 30.
- Encode messages to $\mathcal{X} = \mathbb{Z}_{30}$ using
 \[x = \rho(w_1, w_2, w_3) = 15w_1 + 10w_2 + 6w_3 \mod 30. \]
- Chinese remainder theorem $\Rightarrow \rho$ is bijective.
- Dimension of the codebook is $n = 1$.
- $R_1 = 1, \; R_2 = \log_2 3, \; R_3 = \log_2 5 \; \text{b/dim.}$
\[x = 15w_1 + 10w_2 + 6w_3 \mod 30 \]

\[S = \{1, 2\} \]
\[\mathcal{X}_{a_S} = 6w_3 + \text{constant} \]

\[S = \{1, 3\} \]
\[\mathcal{X}_{a_S} = 10w_2 + \text{constant} \]

\[S = \{2, 3\} \]
\[\mathcal{X}_{a_S} = 15w_1 + \text{constant} \]

\[S = \{1\} \]
\[\mathcal{X}_{a_S} = 10w_2 + 6w_3 + \text{constant} \]

\[S = \{2\} \]
\[\mathcal{X}_{a_S} = 15w_1 + 6w_3 + \text{constant} \]

\[S = \{3\} \]
\[\mathcal{X}_{a_S} = 15w_1 + 10w_2 + \text{constant} \]

\[S = \emptyset \]
\[\mathcal{X}_{a_S} = \mathcal{X} = \{0, 1, \ldots, 29\} \]

\[d_S = 2R_S \]
Side information gain

- The code guarantees: \(d_S = 2^{R_S} \) for all \(\emptyset \subsetneq S \subsetneq \{1, 2, 3\} \)
 - Min distance improves with the amount of available side information

- Side information gain

\[
\Gamma(X) = \min_S 10 \log_{10} \left(\frac{d_S^2}{d_0^2} \right) = \min_S 10 \log_{10} \left(\frac{d_S^2}{\log_2 d_S} \right) = 20 \log_{10} 2
\]

\[\approx 6 \text{ dB/b/dim.}\]

- **Uniform Side Information Gain:**
 Identical normalized distance gain for all receivers

\[
10 \log_{10} \left(\frac{d_S^2}{d_0^2} \right) = 20 \log_{10} 2 \approx 6 \text{ for all } S \subset \{1, 2, 3\}
\]
SNR gain over $S = \emptyset$ at $P_e = 10^{-4}$

<table>
<thead>
<tr>
<th>S</th>
<th>Actual gain</th>
<th>Predicted $\Gamma \times R_S$ dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>15.6</td>
<td>15.5</td>
</tr>
</tbody>
</table>
Algebraic Construction over \mathbb{Z}

In order to encode K messages:

- Choose K relatively prime integers: $M_1, \ldots, M_K \in \mathbb{Z}$.
- The message alphabets are $\mathcal{W}_1 = \mathbb{Z}/M_1\mathbb{Z}$, \ldots, $\mathcal{W}_K = \mathbb{Z}/M_K\mathbb{Z}$.
- Encode messages to M-PAM, where $M = \prod_{k=1}^{K} M_k$:

$$\rho(w_1, \ldots, w_K) = \frac{M}{M_1} w_1 + \cdots + \frac{M}{M_K} w_K \mod M.$$

- This map corresponds to the Chinese remainder theorem:

$$\mathbb{Z}/M_1\mathbb{Z} \times \cdots \times \mathbb{Z}/M_K\mathbb{Z} \rightarrow \mathbb{Z}/M\mathbb{Z}.$$

- Rate $R_k = \log_2 M_k$ b/dim.
Algebraic Construction over \mathbb{Z}

Distance with no side information
- $d_0 = \min$ distance of M-PAM $\mathbb{Z}/M\mathbb{Z} = 1$

Distance with side information configuration S
- Receiver knows $w_k = a_k$, $k \in S$
- Expurgated codebook consists of the points
 \[x = \sum_{k \in S} \frac{M}{M_k} a_k + \sum_{k \not\in S} \frac{M}{M_k} w_k \mod M, \text{ where } w_k \text{ are unknown integers} \]

- Difference between codewords $\Delta x = \sum_{k \not\in S} \frac{M}{M_k} \Delta w_k \mod M$
- Minimum distance d_S
 \[
 \min |\Delta x| = \min \left| \sum_{k \not\in S} \frac{M}{M_k} \Delta w_k \right| = \gcd \left(\frac{M}{M_k}, k \not\in S \right) = \prod_{k \in S} M_k
 \]
Algebraic Construction over \mathbb{Z}

Side Information Gain

- Distance with side information

$$d_S = \prod_{k \in S} M_k = \prod_{k \in S} 2^{R_k} = 2^\sum_{k \in S} R_k = 2^{R_S}$$

- Side information gain

$$\Gamma = \min_S \frac{10 \log_{10} \left(\frac{d_S^2}{d_0^2} \right)}{R_S} \approx 6 \text{ dB/b/dim}$$
Construction over $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$

- Choose K relatively-prime numbers $M_1, \ldots, M_K \in \mathbb{D}$
- Message alphabets: $\mathcal{W}_1 = \mathbb{D}/M_1 \mathbb{D}, \ldots, \mathcal{W}_K = \mathbb{D}/M_K \mathbb{D}$
- Rate: $R_k = \log_2 |M_k| \ b/dim$
- Constellation: $\mathcal{X} = \mathbb{D}/M \mathbb{D}$, where $M = M_1 M_2 \cdots M_K$
- Encoding: Using Chinese remainder theorem

$$\rho(w_1, \ldots, w_K) = \frac{M}{M_1} w_1 + \cdots + \frac{M}{M_K} w_k \mod M \mathbb{D}$$

- Minimum distance:

$$d_0 = d_{\text{min}}(\mathbb{D}) = 1 \quad d_S = \left| \gcd \left(\frac{M}{M_k}, k \notin S \right) \right| = \left| \prod_{k \in S} M_k \right| = 2^{R_S}$$

- Side information gain: $\Gamma = 20 \log_{10} 2 \approx 6 \text{ dB}/b/dim$
$\mathbb{D} = \mathbb{Z}[i], \ K = 2, \ (M_1, M_2) = (1 + 2i, 1 - 2i), \ M = 5$

\begin{align*}
 w_1 & \in \mathbb{Z}[i]/(1 + 2i)\mathbb{Z}[i] \cong \mathbb{F}_5 \\
 w_2 & \in \mathbb{Z}[i]/(1 - 2i)\mathbb{Z}[i] \cong \mathbb{F}_5 \\
 x & = w_1 \frac{M}{M_1} + w_2 \frac{M}{M_2} \mod M\mathbb{D} \\
 x & = w_1(1 - 2i) + w_2(1 + 2i) \mod 5\mathbb{Z}[i] \\
 5 & = (1 + 2i)(1 - 2i) \\
 \gcd(1 + 2i, 1 - 2i) & = 1 \\
 \mathcal{X} & = \mathbb{Z}[i]/5\mathbb{Z}[i] \\
 d_0 & = d_{\min}(\mathbb{Z}[i]) = 1
\end{align*}
\[x = w_1(1 - 2i) + w_2(1 + 2i) \mod 5\mathbb{Z}[i] \]

\[S = \{1\} \]

\[x = \left(w_2(1 + 2i) + \text{constant} \right) \mod 5\mathbb{Z}[i] \]

\[d_S = |1 + 2i| = \sqrt{5} \]
\[R_S = \frac{1}{2} \log_2 5 \]

\[S = \{2\} \]

\[x = \left(w_1(1 - 2i) + \text{constant} \right) \mod 5\mathbb{Z}[i] \]

\[d_S = |1 - 2i| = \sqrt{5} \]
\[R_S = \frac{1}{2} \log_2 5 \]

\[\Gamma = \min_{S=\{1\},\{2\}} \frac{10 \log_{10} \left(d_S^2 / d_0^2 \right)}{R_S} = \frac{10 \log_{10} 5}{\frac{1}{2} \log_2 5} \approx 6 \text{ dB/b/dim} \]
SNR gain over $S = \emptyset$ at $P_e = 10^{-5}$

<table>
<thead>
<tr>
<th>S</th>
<th>Actual gain</th>
<th>Predicted $\Gamma \times R_S$ dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>${1}$</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>${2}$</td>
<td>6.9</td>
<td>6.9</td>
</tr>
</tbody>
</table>
How to construct codes in higher dimensions?

Use a family of lattices

$$\Lambda = \Lambda_1 + \cdots + \Lambda_K$$

Lattice index code:

$$\chi_1 = \Lambda_1 / \Lambda_S$$

(Direct sum)

$$\chi_K = \Lambda_K / \Lambda_S$$

$$\chi = \Lambda / \Lambda_S$$
Lattice index codes

Definition

A **lattice index code** consists of nested lattice codes $\Lambda_1/\Lambda_s, \ldots, \Lambda_K/\Lambda_s$ such that the encoding map $\rho : \Lambda_1/\Lambda_s \times \cdots \times \Lambda_K/\Lambda_s \rightarrow \Lambda/\Lambda_s$,

$$\rho(x_1, \ldots, x_K) = (x_1 + \cdots + x_K) \mod \Lambda_s,$$

is one-to-one.

- $\Lambda_1/\Lambda_s, \ldots, \Lambda_K/\Lambda_s$ are subgroups of Λ/Λ_s (under addition mod Λ_s)
- One-to-one map ensures unique decodability and implies $\Lambda_1/\Lambda_s \times \cdots \times \Lambda_K/\Lambda_s \cong \Lambda/\Lambda_s$ (as groups)
- Rate $R_k = \frac{1}{n} \log_2 \frac{\text{Vol}(\Lambda_s)}{\text{Vol}(\Lambda_k)}$
- Minimum distance

$$d_0 = \text{d}_{\text{min}}(\Lambda) \quad d_S = \text{d}_{\text{min}}\left(\sum_{k \notin S} \Lambda_k\right)$$
Properties

Effective codebook with side information configuration \(S \subset \{1, \ldots, K\} \)

- is a translate of the lattice code \(\left(\sum_{k \notin S} \Lambda_k \right) / \Lambda_s \)
- Coding gain is the center density of the coding lattice \(\sum_{k \notin S} \Lambda_k \)

\[
\delta \left(\sum_{k \notin S} \Lambda_k \right) = \left(\frac{r_{\text{pack}} \left(\sum_{k \notin S} \Lambda_k \right)}{\text{Vol} \left(\sum_{k \notin S} \Lambda_k \right)} \right)^n
\]

- When \(S = \emptyset \), i.e., no side information, coding gain = \(\delta(\Lambda) \)

Distance gain due to side information

\[
\frac{d_S}{d_0} = 2^{R_S} \times \left[\frac{\delta \left(\sum_{k \notin S} \Lambda_k \right)}{\delta(\Lambda)} \right]^{\frac{1}{n}}
\]

Lemma
If \(\Lambda \) is a densest lattice in \(\mathbb{R}^n \) then \(\Gamma(\Lambda/\Lambda_s) \leq 20 \log_{10} 2 \approx 6 \text{ dB/b/dim} \)
Construction using Chinese Remainder Theorem

- Let $\mathbb{D} = \mathbb{Z}$, $\mathbb{Z}[i]$ or $\mathbb{Z}[\omega]$ and Λ be any \mathbb{D}-lattice
 - Λ can be a known lattice with large coding gain

- Let $M_1, \ldots, M_K \in \mathbb{D}$ be relatively prime, $M = \prod_{k=1}^{K} M_k$

- Scale Λ by $\frac{M}{M_1}, \ldots, \frac{M}{M_K}$ to generate a family of lattices.

- Rate $R_k = \log_2 |M_k| \frac{b}{\dim}$.

- $\delta \left(\sum_{k \not\in S} \Lambda_k \right) = \delta(\Lambda)$ for any S

- $d_0 = d_{\min}(\Lambda)$

- $\frac{d_S}{d_0} = 2^{R_S}$ for any S

- $\Gamma \approx 6$ dB/b/dim
Further Algebraic Constructions

Over general algebraic number fields (Huang, ISIT’15)

- Use the ring of integers \mathcal{O}_K of an algebraic number field K
- The elements of \mathcal{O}_K can be embedded into a lattice
- Construct lattice codes using Chinese remainder theorem in \mathcal{O}_K
- All the K messages can be allowed to take values from the same finite field
- If K is totally real: diversity gain in Rayleigh fading channel
- Both minimum Euclidean distance and minimum product distance improve with side information

Over Hurwitz quaternionic integers

- Non-commutative Euclidean domain that is geometrically equivalent to D_4^* lattice
- Corresponding lattice code has a larger coding gain than $\mathbb{Z}[i]$ and $\mathbb{Z}[^2 \omega]$ constructions and provides more options for encoding rates
Summary of algebraic construction

- Using nested lattice codes for physical-layer index coding
- Algebraic labelling of codewords using Chinese remainder theorem
- Side information gain of at least 6 dB/b/dim
- Effective codebook at the receivers are also nested lattice codes
 - Can employ lattice decoding at the receivers

However..

- Decoding complexity is high for large dimensions
- Message sizes are not powers of 2

In the next section..

- We design a concatenated scheme that can be decoded with low-complexity iterative detection
- The modulation scheme (inner code) will encode integer number of bits while ensuring side information gain
Index Coding using Multidimensional PAM

- **Message alphabet**:
 \[\mathcal{W}_1 = \cdots = \mathcal{W}_K = \mathbb{Z}/M\mathbb{Z} \cong \mathbb{Z}_M \]

- **Codebook**: \(K \)-tuples over \(\mathbb{Z}_M \)
 \[\mathcal{X} = \mathbb{Z}_M \times \cdots \times \mathbb{Z}_M = \mathbb{Z}_M^K \]

- **Embed** \(\mathcal{X} \) into \(\mathbb{R}^K \) using natural map

- **Use a linear encoder to map messages to codeword**
 \[\mathcal{W}_1 \times \cdots \times \mathcal{W}_K \rightarrow \mathcal{X} \]
 \[\mathbb{Z}_M^K \rightarrow \mathbb{Z}_M^K \]

- **Generate codeword** \(\mathbf{x} \) as linear combination of \(\mathbf{c}_1, \ldots, \mathbf{c}_K \in \mathbb{Z}_M^K \):
 \[\mathbf{x} = \rho(w_1, \ldots, w_K) = \sum_{k=1}^{K} w_k \mathbf{c}_k \mod M. \]
Properties

- Code is fully characterized by the $K \times K$ generating matrix over \mathbb{Z}_M
 \[
 \mathcal{C} = \begin{bmatrix}
 c_1 & c_2 & \cdots & c_K
 \end{bmatrix}
 \]
- Code length $n = \text{number of messages } K$.
- All messages are encoded at the same rate
 \[
 R_1 = \cdots = R_K = \frac{1}{K} \log_2 M \text{ b/dim.}
 \]
- ρ is bijective $\iff \mathcal{C}$ is invertible, i.e., $\det(\mathcal{C})$ is a unit in \mathbb{Z}_M
- Minimum distance with no side information $d_0 = d_{\text{min}}(\mathbb{Z}_M^K) = 1$
Properties

• Using linearity property, $d_S = d_{\text{min}}(C_S)$, where

$$C_S = \left\{ \sum_{k \notin S} w_k c_k \mid w_k \in \mathbb{Z}_M, k \notin S \right\}$$

is a \mathbb{Z}_M–linear code

• d_S can be computed using shortest-vector algorithm for lattices

• Therefore $\Gamma = \min_S \frac{10 \log_{10}(d_S^2/d_0^2)}{R_S}$ can be efficiently computed using numerical techniques
Example: 16-QAM index code using \mathbb{Z}_4

- $C = (c_1, c_2) = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.
- $\text{det}(C) = -3 \mod 4 = 1 \in U(\mathbb{Z}_4)$.
- $S = \{1\}$:
 \[C_S = \{ w_2c_2 \mid w_2 \in \mathbb{Z}_4 \}, \]
 \[d_S = 2. \]
- $S = \{2\}$:
 \[C_S = \{ w_1c_1 \mid w_1 \in \mathbb{Z}_4 \}, \]
 \[d_S = 2. \]

\[\Gamma \approx 6 \text{ dB/b/dim} \]
Computer Search for Good Codes

- We restrict search space to codes with circulant C matrix.
- Table gives the first column of C and Γ for the best codes.

<table>
<thead>
<tr>
<th>M</th>
<th>$K = n$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>$(1, 2)^T$</td>
</tr>
<tr>
<td></td>
<td>6.02</td>
</tr>
<tr>
<td>8</td>
<td>$(1, 2)^T$</td>
</tr>
<tr>
<td></td>
<td>4.65</td>
</tr>
<tr>
<td>16</td>
<td>$(1, 12)^T$</td>
</tr>
<tr>
<td></td>
<td>6.02</td>
</tr>
<tr>
<td>32</td>
<td>$(1, 6)^T$</td>
</tr>
<tr>
<td></td>
<td>5.85</td>
</tr>
<tr>
<td>64</td>
<td>$(1, 36)^T$</td>
</tr>
<tr>
<td></td>
<td>6.04</td>
</tr>
</tbody>
</table>

Modulation scheme ensures large side information gain
Multiple receivers with general message demands

- The binary index code reduces the codeword length N (hence, the constellation size) while meeting the demands of the receivers.
- The bit labelling of QAM/PSK allows receivers with sufficient side information to achieve gains in minimum Euclidean distance.
Coded Index Modulation

- concatenated scheme: coding gain + side information gain.
- converts the channel into a MAC with many receivers.
- can perform close to channel capacity.

Codings gain against channel noise

Convert side information into additional coding gain
More side information \(\Rightarrow\) larger minimum Euclidean distance
Coded Index Modulation

If minimum Hamming distance of channel codes is d_H, then minimum squared Euclidean distance at Rx$_S$ is at least $d_H \times d^2_S$.

Capacity of MAC with many receivers: Ulrey Inf. & Cont. ’75
Achievable rate region

Notation:

- $2^K - 1$ receivers indexed by S.
- $\text{Rx}_S = (\text{SNR}_S, S)$ observes Y_S.
- $\mathbf{X}_S = (X_k, k \in S), \mathbf{X}_{S^c} = (X_k, k \notin S)$.
- X_1, \ldots, X_K have distributions $p(x_1), \ldots, p(x_K)$.
- Inner code/modulation (ρ, \mathcal{X}) has dimension n.

Assumption:

- If $S \subset S'$, then $\text{SNR}_S \geq \text{SNR}_{S'}$

Theorem

(R_1, \ldots, R_K) achievable if and only if for every Rx_S:

$$\frac{1}{n} I(\mathbf{X}_{S^c}; Y_S | \mathbf{X}_S) \geq R - R_S.$$
$K = 2$, 64-QAM, $\Gamma = 4.66 \text{ dB/b/dim}$

- Want $R_1 = R_2 = 1 \text{ b/dim}$
- $2^K - 1 = 3$ receivers: $S = \emptyset, \{1\}, \{2\}$

$$\frac{1}{n} I(X_{S^c}; Y_S | X_S) \geq \begin{cases}
R_1 + R_2 = 2 & \text{if } S = \emptyset \\
R_2 = 1 & \text{if } S = \{1\} \\
R_1 = 1 & \text{if } S = \{2\}
\end{cases}$$

![Graph showing the relationship between SNR and $\frac{1}{n} I(X_{S^c}; Y_S | X_S)$](image)
Dependence on Γ

- Larger $I(X_{S^c}; Y_S|X_S)$, for all $S \Rightarrow$ larger rates.

- Fano’s inequality:

$$I(X_{S^c}; Y_S|X_S) \geq (1 - P_e(X_{S^c}|Y_S, X_S)) \log_2 \prod_{k \in S^c} |\mathcal{X}_k| - 1$$

- Larger $\Gamma \Rightarrow$ larger d_S for all $S \Rightarrow$ smaller P_e simultaneously for all S

- We expect a modulation with larger Γ to perform better.
Example: 64-QAM, \(K = 2 \) messages

\[
\frac{1}{n} I(X_{S^c}; Y_S | X_S) = 1.
\]

\(S = \{1\} \) or \(\{2\} \)

\(\Gamma = 4.66 \text{ dB/b/dim} \)

\(\Gamma = 4 \text{ dB/b/dim} \)

SNR gain of 0.7 dB at \(\frac{1}{n} I(X_{S^c}; Y_S | X_S) = 1. \)
Encoder

- \(K = 2 \) messages, \(R_1 = R_2 = 1 \) b/dim.

![Diagram of Encoder Process]

- Rate \(\frac{2}{3} \), 16 state
- 64-QAM
- \(\Gamma = 4.66 \) dB/b/dim
$S = \emptyset$

$S = \{2\}$

Decoder

Side Information as LLR of coded bits
Simulation Result

Gap to capacity (with Gaussian input alphabet) at BER 10^{-4}:

- 3.3 dB for $S = \{1\}, \{2\}$.
- 4.2 dB for $S = \emptyset$.

![Graph showing the gap to capacity at BER 10^{-4} for different sets S.]
Wireline Multicasting
(Koetter & Médard T–IT Mar’03)

A network coding solution exists iff \(\text{max-flow} \geq K \).

\[\text{max-flow} = \text{maximum number of edge-disjoint paths from the source to each of the receivers} \]
Broadcasting with Coded Side Information at the Receivers
(Natarajan, Hong, Viterbo arXiv:1509.01332)

- Suppose $\text{max-flow} < K$.
- A wireless signal can supplement the wireline network.
- Symbols from wireline network serve as side information to decode wireless signal: linear combinations of source messages
- \Rightarrow Broadcasting with coded side information at the receivers

Theorem: Lattice codes achieve the capacity of a wireless broadcast channel with coded side information at the receivers
References

Wireline Multicasting

Index Codes for the Gaussian broadcast channel

