
1 Hello

• Hi! My name is Ido, and we are going to talk about polar codes

• As you may know, polar codes were invented in 2009 by Erdal Arıkan.

• When presenting them, I’m going to try and strike a good balance
between a simple explanation that you can follow, on the one hand,
and a presentation that is general enough so as that you will be in a
good position to carry out your own research.

• So, when presenting, I’m going to be mixing in results and outlooks
from several papers. Whoever is interested, please come and talk to
me after the talk, and I’ll tell you from where I took what.

• I do have a very important request. We’re going to be spending 3 hours
together. So, this talk is going to very very boring if you lose me. So,
if you do, please don’t be shy, and ask me to explain again. Really,
don’t be shy: if you missed something, chances are you’re not the only
person. So, ask! OK?

2 Introduction

• Polar codes started life as a family of error correcting codes. This is
the way we’re going to be thinking about them in this talk, but just so
you know: they are much more general than this.

• Now, you might expect that since I’m gong to talk about an error
correcting code, I’ll start by defining it, say by a generator matrix, or
a parity check matrix.

• But if you think about it, what I’ve implicitly talked about just now is
a linear code. Linear codes are fine for a symmetric channel, like a BSC
or a BEC. But what if our channel is not symmetric for some reason?

• For example, what if our channel is a Z channel: 0 →1−p 0, 0 →p 1,
1 →1 1. Take, say, p = 0.1, just to be concrete. Then, the capacity
achieving input distribution is not symmetric:

C = max
PX

I(X;Y) .

1

Since 1 is not as error prone, we’ll have PX(0) < 1/2 < PX(1). Not
something a linear error correcting code handles well.

• So, we’ll have to use something fancier than a linear code.

• Also, you’ll need a bit of patience: we’ll get an error correcting scheme
eventually, but we’ll start by defining concepts that will seem a bit
abstract at first. You’ll have to trust me that everything will be useful
in the end.

• Let’s begin by defining the pair of random variables X and Y : X is a
random variable having the input distribution we now fix, and Y is the
random variable with a distribution corresponding to the output. So,
think of X and Y as one input to the channel, and one corresponding
output, respectively.

• So, if X ∼ Ber(τ) then,

PX,Y (X = x, Y = y) = PX(x) ·W (y|x), where W is the channel
law and

PX(1) = 1− PX(0) = τ

is our input distribution.

I’ve written this in a different color since it is key concept that you
should keep in mind, and I want to keep it on the board.

• The previous step is important, so I should emphasize it: we are go-
ing to build our polar code for a specific channel and a specific input
distribution to the channel. You’d usually pick the capacity achieving
input distribution to the channel, but you don’t have to.

• The rate of our code is going to approach I(X;Y) and the probability
of error is going to approach 0.

• Now, let’s define the pair of random vectors (XN , Y N) as N indepen-
dent realizations of X and Y . That is, XN = (X1, X2, . . . , XN) is input
to the channel, and Y N = (Y1, Y2, . . . , YN) is the corresponding output.

• OK, so (XN , Y N) is the first — for now abstract — concept that you
need to remember. Let’s write it here, in a different color.

2

•
(XN , Y N)

• Eventually, XN is going to be the input to the channel — the codeword,
and Y N is going to be the channel output. However, we’re not there
yet: for now, these are just mathematical definitions.

• For simplicity, I’m going to assume a channel with binary input. So,
X is going to be a binary random variable and XN is going to be a
binary vector of length N . (write on board).

• The second concept I need to tell you about is the Arıkan transform.
It takes a vector xN of length N and transforms it into the vector

uN = A(xN) .

• The Arıkan transform is simple to define. However, I don’t want to
burden you with the details just yet. Here is what I want you to know:

– The Arıkan transform is one-to-one and onto.

– Thus, there is also an inverse transform xN = A−1(uN).

• Remember our pair of vectors, XN and Y N? Let’s define

UN = A(XN).

• Our first result on polar codes is called slow polarization. Here it is

Theorem 1: For every ε > 0, we have

lim
N→∞

∣∣{i : H(Ui|Y N , U i−1) < ε
}∣∣

N
= 1−H(X|Y)

and

lim
N→∞

∣∣{i : H(Ui|Y N , U i−1) > ε
}∣∣

N
= H(X|Y) .

3

• That’s quite a mouth-full. Let’s try and understand what I’ve just
written.

– Imagine that we are on the decoder side. So, we get to see Y N .
So, having, Y N on the conditioning side makes sense.

– You usually think of the decoder as trying to figure out the code-
word, this is going to be XN , from the received word, which is
going to be Y N .

– However, since the polar transform is invertible, we might just as
well try to figure out UN for Y N . That is, we will guess ÛN , and
from this guess that the codeword was X̂N = A−1(ÛN)

– Suppose that our decoder is trying to figure out Ui, and, for some
reason that I will justify later, someone tells us the what U i−1 was.

– Then, forN large enough, for a fraction of 1−H(X|Y) indices, this
is going to be “easy”. That is, if ε is small and H(Ui|U i−1, Y N) < ε
, then the entropy of Ui given the above is very small: the decoder
has a very good chance of guessing it correctly.

– Conversely, if ε is very small and H(Ui|U i−1, Y N) > 1−ε, then the
decoder has an almost fifty-fifty chance of guessing Ui correctly,
given that it has seen Y N and has been told U i−1. So, in this case,
we don’t want to risk the decoder making the wrong guess, and
we will “help” it. How, we’ll see. . .

• In order to show that the probability of misdecoding goes down to 0
with N , we will need a stronger theorem.

Theorem 2: For every 0 < β < 1/2, we have

lim
N→∞

∣∣∣{i : H(Ui|Y N , U i−1) < 2−N
β
}∣∣∣

N
= 1−H(X|Y)

and

lim
N→∞

∣∣∣{i : H(Ui|Y N , U i−1) > 1− 2−N
β
}∣∣∣

N
= H(X|Y) .

4

• The above already gives us a capacity achieving coding scheme for any
symmetric channel. Namely, for any channel for which the capacity
achieving input distribution is PX(0) = PX(1) = 1/2.

• Assume that W is such a channel, and take PX(0) = PX(1) = 1/2.

– So, all realizations xN ∈ {0, 1}N of XN are equally likely.

– That is, for all xN ∈ {0, 1}N , we have P (XN = xN) = 1/2N .

– That means that for all uN ∈ {0, 1}N , we have P (UN = uN) =
1/2N .

– Fix β < 1/2. Say, β = 0.4. Take

F =
{
i : Perr(Ui|Y N , U i−1) ≥ 2−N

β
}
,

F c =
{
i : Perr(Ui|Y N , U i−1) < 2−N

β
}
, |F c| = k

– Just to be clear, for a binary random variable A,

Perr(A|B) =
∑
(a,b)

P (A = a,B = b)

·
(
[P (A = a|B = b) < P (A = 1− a|B = b)]

+
1

2
[P (A = a|B = b) = P (A = 1− a|B = b)]

)
– That is, the probability of misdecoding A by an optimal (ML)

decoder seeing B.

– Theorem 2 continues to hold if H(. . .) is replaced by 2Perr(. . .).

– The first set is called “Frozen”, since it will be frozen to some
known value before transmission. That analogy won’t be great
when we move to a non-systematic setting, so don’t get too at-
tached to it.

– We are going to transmit k information bits.

– The rate R = k/N will approach 1−H(X|Y), by Theorem 1 (with
2Perr in place of H, and fiddling with β).

5

– In our case 1−H(X|Y) = I(X;Y), the capacity.

– Let’s “build” UN using our information bits, and then make sure
that our UN indeed has the right distribution.

– We will put k information bits into the Ui for which

Perr(Ui|Y N , U i−1) < 2−N
β

.

– Assumption: the information bits are i.i.d. Ber(1/2). This is a fair
assumption: otherwise, we have not fully compressed the source.

– Anyway, we can always make this assumption valid by XORing
our input bits with an i.i.d. Ber(1/2) vector, and then undoing
this operation in the end.

– In the remaining N − k entries, Ui will contain i.i.d. Ber(1/2)
bits, chosen in advance and known to both the encoder and the
decoder.

– The resulting vector UN has the correct probability distribution:
all values are equally likely.

– Since we’ve built UN , we’ve also built XN = A−1(UN). That is
what the encoder transmits over the channel.

– Now, let’s talk about decoding.

– Let uN , xN , yN denote the realizations of UN , XN , Y N .

– The decoder sees yN , and has to guess uN . Denote that guess by
ûN .

– We will decode sequentially, first û1, then guess û2, . . . , and finally
ûN .

– At stage i, when decoding ûi, there are two possibilities:

∗ ûi does not contain one of the k information bits.

∗ ûi contains one of the k information bits.

– The first case is easy: everybody, including the decoder, knows
the value of ui. So, simply set ûi = ui.

– In the second case, we set

6

ûi = Di(y
N , ûi−1) =

0 P (Ui = 0|Y N = yn, U i−1 = ûi−1)

≥ P (Ui = 1|Y N = yn, U i−1 = ûi−1)

1 otherwise

– Note that when decoding, we are calculating assuming that we
have decoded correctly all previous ûi−1. This might not be true,
but that is the calculation we carry out nevertheless.

– This decoder is not optimal. That is, it is not ML. However, it
can run in O(N · logN) time. It is also “good enough”.

– Let ÛN be the corresponding random variable.

–

Claim: the probability of misdecoding our data is at most

P (ÛN 6= UN) ≤ k · 2−Nβ ≤ N · 2−Nβ

.

– Proof, the second inequality is obvious, since k ≤ N .

– Denote by ÛN the vector we have decoded. The probability of
error is

P (ÛN 6= UN) =
∑
i∈Fc

P (Ûi 6= Ui, Û
i−1 = U i−1)

=
∑
i∈Fc

P (Di(Y
N , Û i−1) 6= Ui, Û

i−1 = U i−1)

=
∑
i∈Fc

P (Di(Y
N , U i−1) 6= Ui, Û

i−1 = U i−1)

≤
∑
i∈Fc

P (Di(Y
N , U i−1) 6= Ui)

≤
∑
i∈Fc

2−N
β

= k · 2−Nβ

• Summary: the rate of our scheme approaches 1 − H(X|Y) = C(W)
and the probability of error is bounded by N · 2−Nβ

, which goes down
to 0 as N increases.

7

• What do we do when PX is not symmetric?

• Now XN is not uniformly distributed. So, UN is not uniformly dis-
tributed as well.

• Let’s do a mental exercise.

– The encoder will produce uN successively.

– It won’t actually bother encoding information just yet, this is why
it’s a mental exercise.

– It will set u1 = 0 with probability P (U1 = 0) by flipping a biased
coin.

– Then, it will set u2 = 0 with probability

P (U2 = 0|U1 = u1) .

– Then, it will set u3 = 0 with probability

P (U3 = 0|U1 = u1, U2 = u2) .

– Generally, at stage i it will set ui = 0 with probability

P (Ui = 0|U i−1 = ui−1) , i = 1, 2, . . . , N .

• Now, suppose that on the decoder side, we are told the value of ui for
all i ∈ F , and our aim, as before, is to decode correctly the ui for
which i ∈ F . Exactly the same proof gives us that our probability of
misdecoding is at most k · 2−Nβ

.

• Of course, this would also hold if F c were a subset of what it was
defined as above — we would only be making the life of the decoder
easier by having it make fewer guesses.

• Now, how do we make the encoder actually encode data?

• To do this, we first specialize Theorem 2 to the case of a stupid channel.
Namely, a channel whose output Y is always 0. We use the same
input distribution as before. We get something strange, but valid.
Specializing Theorem 2 to this case gives.

8

Theorem 2’: For every 0 < β < 1/2, we have

lim
N→∞

∣∣∣{i : H(Ui|U i−1) < 2−N
β
}∣∣∣

N
= 1−H(X)

and

lim
N→∞

∣∣∣{i : H(Ui|U i−1) > 1− 2−N
β
}∣∣∣

N
= H(X) .

• So, in that mental exercise, for about N · H(X) indices, the encoder
was flipping an “almost fair” coin!

• Let’s redefine F c to include indices for which the coin flip is “almost
fair”, and the decoder has an excellent chance of decoding.

F c =

{
i : Perr(Ui|Y N , U i−1) < 2−N

β

,Perr(Ui|U i−1) >
1

2
− 2−N

β

}
,

|F c| = k .

• Since the encoder we will soon define is going to be “cheating” a bit,
let’s denote the u vector it produces by ũN , and the corresponding
codeword as x̃N .

• The encoder will do as before, if i ∈ F . That is, set ũi = 0 with
probability P (Ui = 0|U i−1 = ũi−1). Otherwise, for i ∈ F c, set ũi to an
information bit (this is the cheating).

• Denote the corresponding random variable as ŨN , and the resulting
codeword as X̃N .

• The distribution of ŨN is “almost” that of UN , and the same goes for
X̃N versus XN .

9

•

Theorem 3: The total variational distance between UN and ŨN

is at most 2 · k · 2−Nβ
. That is,∑

uN

|P (UN = uN)− P (ŨN = uN)| < 2 · k · 2−Nβ

.

The same goes for XN and X̃N . That is,∑
xN

|P (XN = xN)− P (X̃N = xN)| < 2 · k · 2−Nβ

.

• I won’t prove the first part (in the appendix). However, if you believe
the first part, then the second follows since A−1 is one-to-one.

• We assume that the above coin flips are the result of a pseudo random
number generator common to both encoder and decoder. That is, both
the encoder and the decoder have access to a common random vector
αN , where each αi ∈ [0, 1] was chosen uniformly and randomly.

• At stage i, for i ∈ F , the encoder sets

ũi = 0 if αi ≤ P (Ui = 0|U i−1 = ûi−1) .

Otherwise, it sets ũi = 1.

• So, if ûi−1 = ũi−1, the decoder can emulate this. It sets

ûi = 0 if αi ≤ P (Ui = 0|U i−1 = ûi−1)

and ûi = 1 otherwise.

• That is, we have essentially, “told the decoder” the values of the ũi for
i ∈ F , assuming it has not made a mistake thus far.

• For i ∈ F c, the decoder sets

ûi = Di(y
N , ûi−1) =

0 P (Ui = 0|Y N = yn, U i−1 = ûi−1)

≥ P (Ui = 1|Y N = yn, U i−1 = ûi−1)

1 otherwise

10

• That is, the exact same rule as before. The encoder assumes that it
has decoded correctly up to this point, and calculates according to the
“none cheating” distribution of UN .

• Since ŨN and UN are close, the probability of error is not much affected,
asymptotically. That is, we now have a factor of 3 added in.

•

Claim: the probability of misdecoding our data is at most

P (ÛN 6= ŨN) ≤ 3 · k · 2−Nβ ≤ 3 ·N · 2−Nβ

.

(proof is in the appendix).

• How about the rate, R = k/N?

– We have to exclude indices i for which

Perr(Ui|U i−1) ≤ 1

2
− 2−N

β

The fraction of these indices tends to 1−H(X).

– Of the remaining indices, we further exclude those i for which

Perr(Ui|U i−1) >
1

2
− 2−N

β

and

Perr(Ui|U i−1, Y N) >
1

2
− 2−N

β

The second condition implies the first. The fraction of these tends
to H(X|Y).

– We’re not done. We also need to exclude those for which

Perr(Ui|U i−1) >
1

2
− 2−N

β

and

Perr(Ui|U i−1, Y N) ≤ 1

2
− 2−N

β

and
Perr(Ui|U i−1, Y N) ≥ 2−N

β

.

The fraction of these tends to 0.

11

– Thus, we have excluded a fraction of 1 − H(X) − H(X|Y), and
thus the rate tends to

1− (1−H(X))−H(X|Y)− 0 = H(X)−H(X|Y) = I(X;Y) .

• A few comments.

– We have talked about a memoryless channel, and defined XN as
N i.i.d. copies of X.

– However, this memorylessness of the channel and the source didn’t
seem to play too prominent a part.

– It is important, as we will shortly see, by going “under the hood”.

– However, polar codes can be generalized to settings in which the
source, the channel, or both have memory.

– Then for a fixed input distribution, we can achieve the information
rate,

I = lim
N→∞

I(XN ;Y N)

N
.

– So, we can code for ISI channels, Gilbert-Elliot channels, (d, k)-
RLL constrained channel, (d, k)-RLL constrained channels with
noise, and the list goes on.

– In fact, we can even use polar codes to code for the deletion chan-
nel (shameless plug for my talk at ISIT).

3 The polar transform

• We now define the polar transform A = AN .

• First of all, N will have to be a power of 2, that is N = 2n.

• Here is a polar transform of a vector (X1, X2) to a vector (U1, U2).

• Draw length 4.

• Draw length 8.

12

• Generally, if UN
1 = A(XN

1) and V N
1 = A(X2N

N+1), then F 2N
1 = A(X2N

1)
is defined as follows:

F1 = U1 ⊕ V1 , F2 = V1 ,

F3 = U2 ⊕ V2 , F4 = V2 ,

. . .

F2i−1 = Ui ⊕ Vi , F2i = Vi ,

. . .

F2N−1 = UN ⊕ VN , F2N = VN ,

•
F2i−1 = Ui ⊕ Vi , F2i = Vi

• This recursive structure is what makes all the calculations so efficient.

• Define Ri = (U i−1, Y N).

• We want to first prove Theorem 1.

• The way we will do this is very interesting. Instead of counting indices
having a certain property, we will give each index a probability, 1/2N

for each 1 ≤ i ≤ N , and then ask what is the probability that an index
has a property.

• That is, let B1, B2 . . . , Bn be i.i.d. and Ber(1/2).

• Define i = i(B1, B2, . . . , Bn) as

i(B1, B2, . . . , Bn) = 1 +
n∑

i=1

Bi2
n−i .

Theorem 1: For every ε > 0, we have

lim
N→∞

P (H(Ui|Y N , U i−1) < ε) = 1−H(X|Y)

and
lim

N→∞
P (H(Ui|Y N , U i−1) > ε) = H(X|Y) .

13

• Proof sketch: DefineHn = H(Ui|Y N , U i−1), for the index i(B1, B2, . . . , Bn).

• Then, Hn is a martingale with respect to B1, B2, . . . , Bn. That is,

E(Hn+1|B1, B2, . . . , Bn) = Hn .

Indeed, for i = i(B1, B2, . . . , Bn),

E(Hn+1|B1, B2, . . . , Bn)

=
1

2
H(F2i−1|F 2i−2, Y 2N

1) (Bn+1 = 0)

+
1

2
H(F2i|F 2i−1, Y 2N

1) (Bn+1 = 1)

=
1

2
H(Ui ⊕ Vi|U1 ⊕ V1, V1, U2 ⊕ V2, V2, . . . , Ui−1 ⊕ Vi−1, Vi−1, Y 2N

1)

+
1

2
H(Vi|U1 ⊕ V1, V1, U2 ⊕ V2, V2, . . . , Ui−1 ⊕ Vi−1, Vi−1, Ui ⊕ Vi, Y 2N

1)

=
1

2
H(Ui ⊕ Vi|U i−1, V i−1, Y 2N

1)

+
1

2
H(Vi|U i−1, V i−1, Ui ⊕ Vi, Y 2N

1)

=
1

2
H(Ui ⊕ Vi, Vi|U i−1, V i−1, Y 2N

1)

=
1

2
H(Ui, Vi|U i−1, V i−1, Y 2N

1)

=
1

2

(
H(Ui|U i−1, V i−1, Y 2N

1) +H(Vi|U i−1, V i−1, Ui, Y
2N
1)

)
=

1

2

(
H(Ui|U i−1Y N

1) +H(Vi|V i−1, Y N
N+1)

)
=

1

2
(Hn +Hn)

= Hn

• Since the Martingale is bounded, it converges almost surely and in L1.
Namely, there exists a random variable H∞ such that

14

P (lim
n→∞

Hn = H∞) = 1

and
lim
n→∞

E(|Hn −H∞|) = 0 .

We need to show that H∞ ∈ {0, 1} with probability 1.

• Assume to the contrary that this is not the case.

• The heart of the argument is that to show that if ε ≤ Hn ≤ 1− ε, then
|Hn−Hn+1| > δ(ε) > 0. Thus, we cannot have convergence in L1, since

E(|Hn−Hn+1|) = E(|Hn−H∞+H∞−Hn+1|) ≤ E(|Hn−H∞|)+E(|Hn+1−H∞|)

• The LHS is assumed to be bounded away from 0, even in the limit,
while the RHS converges to 0.

• The proof of that ε ≤ Hn ≤ 1 − ε implies |Hn − Hn+1| > δ(ε) > 0
follows by Mrs. Gerber’s lemma.

• A funny name for a useful result. Essentially, the smallest difference
|Hn −Hn+1| occures when we are in fact dealing with a BSC.

Theorem 2: For every 0 < β < 1/2, we have

lim
N→∞

P (H(Ui|Y N , U i−1) < 2−N
β

) = 1−H(X|Y)

and

lim
N→∞

P (H(Ui|Y N , U i−1) > 1− 2−N
β

) = H(X|Y) .

• Here, we take an indirect approach. Instead of tracking Hn, we track
two new random variables, Zn and Kn.

• For two random variables, A and B, where A is binary we define

Z(A|B) = 2
∑
b

√
P (A = 0, B = b) · P (A = 1, B = b)

15

and
K(A|B) =

∑
b

|P (A = 0, B = b)− P (A = 1, B = b)|

• Define, for i = i(B1, B2, . . . , Bn),

Zn = Z(Ui|U i−1, Y N)

and
Kn = K(Ui|U i−1, Y N) .

• It turns out that

Zn+1 ≤

{
2Zn if Bn+1 = 0

Z2
n if Bn+1 = 1

and

Kn+1 ≤

{
K2

n if Bn+1 = 0

2Kn if Bn+1 = 1

• For Z0 << 1, the squaring operation is much more dramatic that mul-
tiplying by 2.

• Assume for a moment that the multiplier 2 was changed to 1. Then, Z0

would be squared roughly n/2 times and K0 would be squared roughly
half of n/2 times.

• That is, if Zn ≈ (Z0)
2n/2 = (Z0)

√
N , and the same for K0.

• This is where the β < 1/2 comes from.

• We prove that a fraction H(X) of the Zn converge to 0 very fast, and
a fraction 1−H(X) converge to 0 very fast.

• These give us Theorem 2.

Proof of Theorem 3

• Set
αi = P (Ui = ui|U i−1 = ui−1)

and
βi = P (Ũi = ui|Ũ i−1 = ui−1) .

16

• Then, we are looking at

∑
uN

∣∣∣∣∣
N∏
i=1

αi −
N∏
i=1

βi

∣∣∣∣∣ .
• Write this as

∑
uN

∣∣∣∣∣
N∑
i=1

(α1α2 · · ·αi−1αiβi+1βi+2 · · · βN)− (α1α2 · · ·αi−1βiβi+1βi+2 · · · βN)

∣∣∣∣∣ .
• Now, note that

∑
uN

∣∣∣∣∣
N∑
i=1

(α1α2 · · ·αi−1αiβi+1βi+2 · · · βN)− (α1α2 · · ·αi−1βiβi+1βi+2 · · · βN)

∣∣∣∣∣
=
∑
uN

∣∣∣∣∣
N∑
i=1

(α1α2 · · ·αi−1) · (αi − βi) · (βi+1βi+2 · · · βN)

∣∣∣∣∣
≤
∑
uN

N∑
i=1

|(α1α2 · · ·αi−1) · (αi − βi) · (βi+1βi+2 · · · βN)|

=
∑
uN

N∑
i=1

(α1α2 · · ·αi−1) · |(αi − βi)| · (βi+1βi+2 · · · βN)

=
N∑
i=1

∑
uN

(α1α2 · · ·αi−1) · |(αi − βi)| · (βi+1βi+2 · · · βN)

=
N∑
i=1

∑
ui−1
1

(α1α2 · · ·αi−1) ·
∑
ui

|(αi − βi)| ·
∑
uNi+1

(βi+1βi+2 · · · βN)

=
N∑
i=1

∑
ui−1
1

(α1α2 · · ·αi−1) ·
∑
ui

|(αi − βi)|

• Two cases.

– If i ∈ F , then αi = βi, for both ui = 0 and ui = 1.

17

– If i ∈ F c, then βi = 1/2, for both ui = 0 and ui = 1. By the
definition of F c, we also have |αi − βi| < 2−N

β
, for both ui = 0

and ui = 1. Thus, in either case,∑
ui

|(αi − βi)| < 2 · 2−Nβ

.

• We continue the above chain of inequalities to get

N∑
i=1

∑
ui−1
1

(α1α2 · · ·αi−1) ·
∑
ui

|(αi − βi)|

=
∑
i∈Fc

∑
ui−1
1

(α1α2 · · ·αi−1) ·
∑
ui

|(αi − βi)|

<
∑
i∈Fc

∑
ui−1
1

(α1α2 · · ·αi−1) · 2 · 2−N
β

=
∑
i∈Fc

2 · 2−Nβ

= 2 · k · 2−Nβ

• Note that in the above, the inequality is due to the assumption that
k > 0. If k = 0, the claim trivially holds as well (all terms |αi − βi|
equal 0).

Proof of claim on probability of error

• Denote by ε(un) the probability of our decoder erring when the input
to the channel is A−1(uN).

• We have previously established that the probability of decoding error
corresponding to the “non-cheating” encoder is∑

uN

P (UN = uN) · ε(uN) < k · 2−Nβ

.

• The probability of error corresponding to the “cheating” encoder is
thus ∑

uN

P (ŨN = uN) · ε(uN) .

18

• The difference of the above two probabilities is bounded as∣∣∣∣∣∑
uN

(
P (UN = uN)− P (ŨN = uN)

)
· ε(uN)

∣∣∣∣∣
≤
∑
uN

∣∣∣P (UN = uN)− P (ŨN = uN)
∣∣∣ · ε(uN)

≤
∑
uN

∣∣∣P (UN = uN)− P (ŨN = uN)
∣∣∣

< 2 · k · 2−Nβ

.

The result follows.

References

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inform. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] E. Arıkan and E. Telatar, “On the rate of channel polarization,” in
Proc. IEEE Int’l Symp. Inform. Theory (ISIT’2009), Seoul, South Ko-
rea, 2009, pp. 1493–1495.

[3] E. Arıkan, “Source polarization,” in Proc. IEEE Int’l Symp. Inform.
Theory (ISIT’2010), Austin, Texas, 2010, pp. 899–903.

[4] S. B. Korada and R. Urbanke, “Polar codes are optimal for lossy source
coding,” IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1751–1768,
April 2010.

[5] J. Honda and H. Yamamoto, “Polar coding without alphabet extension
for asymmetric channels,” IEEE Trans. Inform. Theory, vol. 59, no. 12,
pp. 7829–7838, December 2012.

[6] I. Tal, “A simple proof of fast polarization,” IEEE Trans. Inform. The-
ory, vol. 63, no. 12, pp. 7617–7619, December 2017.

[7] R. Wang, J. Honda, H. Yamamoto, R. Liu, and Y. Hou, “Construction
of polar codes for channels with memory,” in Proc. IEEE Inform. Theory
Workshop (ITW’2015), Jeju Island, Korea, 2015, pp. 187–191.

19

[8] E. Şaşoğlu and I. Tal, “Polar coding for processes with memory,” IEEE
Trans. Inform. Theory, vol. 65, no. 4, pp. 1994–2003, April 2019.

[9] B. Shuval and I. Tal, “Fast polarization for processes with memory,”
IEEE Trans. Inform. Theory, vol. 65, no. 4, pp. 2004–2020, April 2019.

[10] I. Tal, H. D. Pfister, A. Fazeli, and A. Vardy, “Polar codes for the
deletion channel: weak and strong polarization,” To be presented in
ISIT’19.

20

