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Introduction
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cooperative adaptive cruise
control, platooning

real-time traffic
infotainment
cloud services

@ Future high-mobility networks must ensure both connectivity and
real-time adaptation.

@ A key-enabler is the ability to continuously track the dynamically
changing environment, “state”, and react accordingly by exchanging
information.
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Example: Joint Radar and Vehicular Communication

state estimation data

encoding decoding

feedback (reflection)

—C

D))

data-carrying signal

transmitter receiver

@ The spectrum crunch encourages to use sensing and communication in
the same frequency bands (e.g. IEEE S band shared between LTE and
radar).

@ One vehicle wishes to track the “state” (velocity, range) and
simultaneously convey a message (safety/traffic-related).
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Outline of my talk

@ Part I: Preliminaries

» Introduction
» Channels with feedback

o Part Il: Joint state sensing and communication

> A single-user case
» A two-user multiple access channel

@ Part Ill: Vehicular applications

» Joint radar and V2X communication
» Performance analysis with multi-carrier modulation
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Part I: Preliminaries
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Feedback in our daily life

reference

—>()—| Control

system
input

measured
output

System

Sensor

system
output

o Feedback enables a system to improve its capability by taking benefits

from the response of actions and incorporating it into the design.

@ Closed-loop control, rather than open-loop control without feedback.
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Example 1: Thermostat

@ Invented by Albert Butz in 1886, giving a birth to “Honeywell".
@ Objective: keep the temperature constant in a room.

> Reference: desired temperature
» Control: switch on/off of boiler
> Sensor: measures the temperature
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Example 2: Cruise control of a car
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@ Invented by Peerless and first commercialized for “Chrysler Imperial” in
1958.

@ Objective: maintain speed whether up hill or down
» Reference: desired speed
» Control: accelerate or not

» System: a channel with some disturbance (wind, hill).
» Sensor: measures the speed.
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Examples in communication standards

@ Hybrid Automatic Request Control (HARQ)
» included in High Speed Downlink/Uplink Packet Access (HSD/UPA)
and LTE.
» based on ACK/NACK feedback from users.
» enables to improve error probability.
@ Closed-loop MIMO
» included in LTE
» based on channel estimated at users.
> A base station choose appropriate directions (precoder) to enhance data
rate.
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Feedback in communications

X Y .
W ——| Encoder |——{ Channel Decoder — 1/
A processing/
channel

o Feedback enables a communication system to improve capacity,
reliability or simplify encoding.
@ Types of feedback.

» Qutput feedback: Z =Y.
» State feedback: estimated channel state given Y (processing).
» Geralized feedback: Z is any causal function of Y (no processing).

@ In information theory, feedback can be noise-free and even non-causal.
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Feedback doesn't increase capacity of a memoryless
channel !

Y1

LI Enc |ﬁ> p(y|z) YZI Dec |ﬁ>

The capacity of a memoryless channel with and without feedback is

C=maxI(X;Y)
Px

achieved by

@ Random encoding: to convey a message w € [1 : 2"%], choose 2" (w)
from randomly and independently generated 2" sequences.

e Joint typicality decoding: choose @ such that (z"(w),y™) are jointly
typical.

1C. Shannon, “The zero error capacity of a noisy channel,” IRE Trans. Information Theory, vol. 2, no. 3, 1956.
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Converse: prove that we cannot transmit at R > C.

nR=H(W)
=I(W;Y")+ HWI|Y™)
<I(W;Y") + nep,
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Error probability for the channel w/o feedback
@ A decoder makes an error if one of the following events occurs.
€ ={(X"(1),Y") ¢T}, & ={X"(w),Y") €T, Vw+#1}
@ Union bound
P(€)=P(&1U&) < P(&1) + P(E2)

where by law of large number lim,,_,o, P(€1) = 0 and we have

gnR
2) < ) P((X"(w),Y") €7)
w=2

2nR
< Z 2~ U(XY) =) igint typicality lemma

e (CR)
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Well-known results on output feedback °

@ Feedback improves reliability of a memoryless channel

@ The capacity of a two-user Gaussian multiple access channel (MAC)
with feedback

@ The capacity of a two-user erasure MAC
@ An achievable rate region of a two-user Gaussian broadcast channel
(BC)

@ An achievable rate region of a Gaussian network with more than two
users 2 3

e Tight bounds for a two-user Gaussian interference channel #

@ Upper bounds of the K-user Gaussian MAC using dependence balance

bounds °

2G. Kramer, “Feedback strategies for white Gaussian interference networks,” IEEE Trans. Inf. Theory, vol. 48, no. 6, 2002.

Ardestanizadeh et al., “Linear-feedback sum-capacity for Gaussian multiple access channels”, IEEE Trans. Inf. Theory, vol.
58, no.1 2012

4C. Suh and D. Tse, “Feedback capacity of the Gaussian interference channel to within 2 bits”, IEEE Trans. Inf. Theory,
2011

SE.Sula, “Sum-Rate Capacity for Symmetric Gaussian Multiple Access Channels with Feedback”, ISIT'2018
A. El Gamal and Y.-H. Kim, Network Information Theory, Cambridge University Press, 2011.
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A Gaussian channel: Schalkwijik and Kailath

@ A Gaussian channel Y; = X; + B; with B; ~ N(0, 1) and the input
subject to = 37 | E[|X;|?] < P.

@ Recursively send an estimation error seen by receiver.

A =2vPp2i
—
| | 'I | | | | | |
VAR 7P
L 0 .
. —'m
Xo Yo
X1 =mBo Y1 =X+ B
X5 = 72(By — E[By|Y1]) Yo =Xo+ Bs

X = n(Bo — E[Bo|Y" 1)) Y, =X,+ B,

@ Receiver estimates

A~

0(w) = Yo — E[Bo[Y"] = 6(w) + Bo — E[Bo[Y™"]
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Error probability of Schalkwijik-Kailath 's scheme

e Orthogonality property implies that error By — E[By|Y] is
independent of Y for each i. The output sequence is i.i.d. Gaussian
Y; ~N(0,1+ P).

o Write mutual information in two ways (exercise!):

I(Bo;Y™) =Y I(By; Y|V =...

NE

1
log(1+ P) 2 C(P).

IS T
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Error probability of Schalkwijik-Kailath 's scheme

—2nC( P))

The estimate at receiver 6 ~ ), 2
O(w)| > 2 = 27"R\/P for any

(w

N
The decoder makes an error if |§ —
w € [1;2"5F].
@ The error probability is bounded by

P =Pr (19— 0(1)| > 27"AVP)
=2Q(2"C~RVP)  with Q(z) = / h

_ \F 22n(C-R) p ey

For R < C(P), the error probability decays doubly exponentially !

[t

et /2qt

§
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Multiple Access Channel (MAC) without feedback

. Encoder 2 e

Y; A PN
Py|x, x, Receiver ¥, W,

@ Two transmitters wish to convey messages W71, Ws to the receiver,
respectively.

@ The capacity region of MAC w/o feedback is the convex hull of the
union of ’

Ri < I(X1;Y|X2)
Ry < I(X2;Y|X1)
Ry + Ry < I(X;,X2;Y)

"An alternative expression is to use a time-sharing random variable Q.
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Multiple Access Channel (MAC) without feedback

I(X2Y|X1)

I(X2;Y)

I(X;;Y) I(X1;Y]Xz)

@ Random encoding: to convey a message wy, € [1 : 2"%*], choose
x}(wy) from randomly and independently generated 2"k sequences.
@ Successive interference decoding

» Find the unique message w; such that (a7 (1),y™) €
» Then, find the unique message Wy such that (a7 (), 25 (wg) y") e T.
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MAC with output feedback

Yia

Encoder2 [

Yioq

Y; : L

@ Encoder 1 sends Xy; = f1;,(WWy, Yf_l). Thanks to the feedback, two
symbols (X1;, Xo;) can be correlated.
@ Correlation enables to reduce the multiuser interference and increase

the sum rate.
> Successive refinement of error seen by receivers.
» A common message to be decoded by both encoders.
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Gaussian MAC with feedback

@ Consider the two-user Gaussian MAC

Y=X+X2+B

with average power constraints %
@ The capacity region with feedback is given by

1
Ry < 5 log(1+ Pi(1 - p%)
1
Ry < S log(1+ Py(1 = p%)
1
Ri+ Ry < 3 —log(14+ P+ Py + 2p\/ P P»)

for some p € [0, 1].
@ The sum capacity is given by p*, solution of

2
maxmln{H + Py(1—p ),1-|-P1+P2—|-2p\/P1P2}
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Ozarow's encoding P, = P, = P

A =2V/p2F
| |
| | | | | L | |
/P 0 VP
B_; . . Bg .
—.=._
X Y, Yo Xo
X_1 = (01(w1),0) Y 1 =61(w1) + B4
Xo = (0, 02(w2)) Yo = 62(w2) + By
X1 =m(B-1,Bo) Yi=Xu+ X+ B

X; =7(Bo1 —E[B1[Y'™'], (=1)"""(Bo — E[B_1[Y*'])) Y; = X1 + Xo; + B;

X = y(B-1 = E[BolY" 1], (=1)"""(Bo — E[Bo|Y""])) Y, = Xin + Xon + By

@ As for a single-user case, both encoders iteratively refine the receiver's
error.
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Ozarow: decoding and error analysis

@ The decoder estimates

91(1111) = B_1 — ]E[B_1|Yn] = 01(71)1) + Bl — ]E[B_1|Yn]

02(w2) = Bo — E[Bo|Y™"] = 02(w2) + Bo — E[Bo|Y™"]

@ It can be proved that the correlation E[X1; X9;] = p* for any i.

@ Following similar steps as a single user case, we can prove:
0}, — 0, ~ N(0,272nC=p PNy | — 1 9

@ The error probability decays doubly exponentially as n — oo.
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Gaussian MAC: two-user region
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Binary erasure MAC

@ Consider a binary erasure MAC
Y =X+ X>

where X1, X5 € {0,1} and Y € {0,1,2}.
o “Erasure” events occur when receivingY =04+1=140= 1.

@ The capacity of binary erasure MAC without feedback is (exercise)
3
Ri<l, Bpsl, Bi+Ry<3

@ How much can we increase the sum rate via feedback ?
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Two-phase schemes

© 2 bit/channel use

» Phase 1: each user sends k uncoded bits
— roughly k/2 bits are in “erasure”.
» Phase 2: only user 1 retransmits the erased bits.

k 2

Ruser = m == g

@ 0.7602 bit/channel use 8

» Phase 1: each user sends k uncoded bits
» Phase 2: two users “cooperatively” retransmit the erased bits by using 3
input-pairs (0,0), (0,1), (1,1).

k

Ruser == —k/2 = 0.7602

log,(3)

Gaarder, Wolf, “The capacity region of a multiple-access discrete memoryless channel can increase with feedback”, IEEE
Trans. Inf. Theory, vol.21, no.1, 1975.
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Optimal scheme: Cover-Leung

@ An achievable region over a memoryless MAC:

Ry < I(X1;Y[X,U)
R2 S I(XQ,Y’X17U)
Ry + Ry < I(X3,X2:Y)

for some PUPX1|UPX2|U'

@ The scheme yields the sum capacity over erasure MAC (exercise!)

Csum = max min{H(X1|U) + H(X2|U),H(Y)}
Py, x,,x,

= max min{2H>(q), H2(2qq) + 1 — 2qq}

=0.799
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Sum rate capacity of binary erasure MAC

Sum capacity of erasure MAC
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Binary erasure MAC: two-user region

o feedback
Cover-Leung
08 .

04 .
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Cover-Leung: block Markov encoding/backward decoding

@ Two encoders send (wyp, wap) in block b of N channel uses for
be[l, Bl

@ At the end of block b, encoder 1 “estimates” w9, from a feedback YbN.

(UN(wa—l)ax{\](wlb’w%—l)axév(w%‘w%—l):yév) S

@ In block b + 1, both encoders send:

» refinement information on wop by u™ (way):

» fresh messages wipi1, Wapt1 by oV (w1 py1|Wap), 2 (w2 pr1|wap)
@ Backward decoding

in block b, the decoder outputs wyp, wop_1 using the information from
block b+ 1.
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Block markov encoding and backward decoding

Block 1 2 B-1 B
Xy | ad (wnl1) | 2 (waalwa) | ... | @) (wep_1lwap2) | ' (lwap1)
Xi | e (wnl) | @ (wizl@a) | . | @ (w,p-1|@2,5-2) | ) (wip|d2,5-1)
(X1,Y) | @ — Wy — W, -1 — 0
Y w1y  (12,Wa1) | ... | ¢ (W1,B-1,W2,B-2) | + (W1B,W2,B-1)

@ W9y user 2's message decoded by user 1 at the end of block b.

@ wip: a private message of user 1 at block b.
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Well-known results on state feedback
Si—1

X; g
1| Enc '—I_§|p(y|xs)}i| Dec |1>

Si

@ The sum capacity scaling M loglog K in the MISO-BC with M
transmit antennas and K users®

@ The capacity region of an erasure BC (EBC) for K < 3 and for a
symmetric EBC K > 3 1011

@ The DoF region of the MISO BC 12.

@ many others...

gSharif and Hassibi, “On the capacity of MIMO broadcast channels with partial side information”, IEEE Trans. on info.
Th., 2005

10 . . . L .
C. C. Wang “The capacity region of two-receiver multiple-input broadcast packet erasure channels with channel output

feedback”, IEEE Trans. on Info. Th., 2014.

M. Gatzianas et al., “Multiuser Broadcast Erasure Channel With Feedback-Capacity and Algorithms”, IEEE Trans. on Inf.
Th, 2013

12
M. A. Maddah-Ali and D. N. C. Tse, “Completely Stale Transmitter Channel State Information is Still Very Useful,” IEEE
Trans. on Inf. Th, vol. 58, no. 7, 2012.
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MISO and erasure BC

Erasure BC MISO BC
The ¢ cpacuy region of /{-user symmetrical The DoF region of K-user MISO-BC with
erasure BC is given by [WanglIT12, GatzianasIT13] M > K antennas is given by [MAT-IT12]

Rmc <1, Vn ZiOF”k sl Vo .
- (&7 EDoF: lim i

= O

@ Both regions have a polyhedron structure characterized by
, keX
Rk = dk) e Z‘kxll Ozlk
0, kE¢X

for K C{1,...,K}.
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Two-user erasure/MISO-BC regions

Ry

with feedback ~ DoFg
--- w/o feedback 1

15 15
367 36

3/4

3/4 1 DoF4
EBC with § = 1 MISO-BC with M > 2
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Unified view on the schemes for EBC/MISO-BC

@ Opportunistic multicasting can be repeated for a subset J of users for

Jgc{1,....,K}.
o Algorithms for erasure BC and MISO-BC consist of K phases.
» Phase 1: broadcast V1, ..., Vg, each of dimension N.

» Phases 2-K: generate V5 simultaneously useful for J and send
sequentially for all J.

@ We can interpret phases 2 to K as multicasting phase of overheard
symbols.

o Feedback enables to successively refine the multiuser interference
(spatial /code dimension)
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Well-known results on generalized feedback

Zi 1
w b ] Y; W
4>| Enc 'F)Ip(yz|xs)}—>| Dec }—>
Si
@ Generalized feedback refers to an additional causal channel output.
@ An achievable rate region of a DM-MAC!314
@ An achievable rate region of a DM-BC 15 16
@ An achievable region and outer bounds of DM interference channels 7
1

3A. Carleial, “Multiple-access channels with different generalized feedback signals”, IEEE Trans. on Inf. Th, 1982

4
F. Willems, “Information Theoretical Results for the Discrete Memoryless Multiple Access Channel”, Ph. D. thesis,
Katholieke Universiteit Leuven, Belgium, 1989.
15
O. Shayevitz, and M. Wigger, “On the capacity of the discrete memoryless broadcast channel with feedback”, IEEE Trans.
on Inf. Th, 2013
6R.Venkataramanan and S. Pradhan, “An achievable rate region for the broadcast channel with feedback”, IEEE Trans. on
Inf. Th, 2013

1
75. Yang and D. Tuninetti, “Interference channel with generalized feedback : Part I: Achievable region”, IEEE Trans. on
Inf. Th, 2011
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Generalized feedback for MAC: Willems

Z1i-1

Xl'
e
1 \

Y; o

I Y, Z|X1,X2
W —| Encoder 2 /
2 Xo;
2,i—1

@ Encoder k observes an output Z ;1 at time i.

o Feedback enables “transmitter cooperation”.
@ An achievable rate region is given by

Ry < I(X1;Y|Xo,V1,U) + I(V1; Z5| X2, U)
Ry < I(X2; Y| X1, Va,U) + 1(Va; Z1|X1,U)
Ry + Ry < min{I(Xy, Xo:Y), I(X1, Xo: Y |V, Vo, U)
+ I(V1; 29| X2, U) + I(Va; Z1|X1,U)}
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Willems' scheme

In each block b, user 1

© generates a private message w(;) and another message wyy() to be
decoded by user 2.

@ sends
21 (Wia(h—1)» W21 (b—1)s Wiz(h)> Wi1(b))

Waq(p—1) Was estimated from block b — 1.

@ then estimates oy ;) from its feedback 21" (b).
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Willems' block Markov encoding and backward decoding

Block 1 2 B-1 B
X1 (1, L wigay, win) | zi(wiagy, Wai)s Wia), win) | - | Zi(wixp-2), Wa1(B-2): Wia(B—1), Wi1(B-1)) | Z1(Wiz(B-1), W21(B-1)-1,1)
(X1.21) W1y = Wy (2) = Way(p-1) = 0
X (1, L, way (1), wan(1)) | Za(Wra(1)s Wai(1), War(2)s Waz(2)) | - | Za(Wia(B—2)s War(B-2) War(B—1)> Waa(B-1)) | La(Wia(B_1)s War(B-1): 1, 1)
(X2, Zo) Wya(1) —+ Wia() —* W1g(p-1) = 0
Y 1(1): Wan(1)  (Wrz1), W21(1)) D2y Wazqy | - | ¢ (Wiz(p-2) War-2))  Wi1(B-1) Waa(B-1) = Wyp(p-1), War(B-1)

® (Wia(h—1), Wai(p—1)): the common message from the previous block
b—1, carried by U.

@ wWyy(p): user 2's message decoded by user 1 at the end of block b,
carried by Vs.

@ wyy(p): a private message of user 1 at block b.

M. Kobayashi ESIT April 15, 2019 38 /85



Willems' scheme

@ By letting Ry; denote the rate of wy;(), we can prove that P, — 0 as
N — o0.

Rip <1

Roy <1

Ry <1

Roy <1

Ry +Rop <1

Rio+ Ro1 + Ri1 + Rop < 1

Vi; Zo| XoU)

Va; Z11X41U)

X1: Y[SXVU)
Xo: Y|SX1VaU)
X1 X2, Y[SViWRU)
X1X2;Y1S)

o~ o~ o~ o~ o~ o~
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Summary of Part |

@ Feedback enables a communication system to improve reliability,
simplify encoding, or increase capacity.
@ Achievable schemes build on successive refinement:

» Linear: MMSE-based approaches, interference alignment
» Non-linear: block-Markov encoding

@ The capacity of many channels with feedback remains open.
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Part Il: Joint State Sensing and Communications
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System Model

@ Transmitter sends a message W and estimates a state sequence S™ via
“generalized feedback”: strictly causal channel output Z; ;.

o Receiver decodes TV from its observation Y™ and S™ (known
perfectly).

@ A memoryless state-dependent channel:

n n

PWXnSnYnZn (’w,X, Sy, Z) = P(w) H PS(Sl) H P(Z’Z|w2171)Pyz|Xs(yzzl|xlSl)
i=1 i=1
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Separation-based Approach

Short Lon, . Optional
Preamble Pream%)le Signal Data g ‘ ‘ STF ‘ CEF ‘ Header Data Block g subfields
(a) IEEE 802.11p OFDM frame (b) IEEE 802.11ad frame

@ Resources are divided into either sensing or data communications.

LTS: Physical Downlink Control Channel.

IEEE 802.11p combined with Direct Short Range Communication.
3GPP-based Cellular Vehicle-to-Everything (C-V2X).

mmWave V2X based on IEEE 802.11ad.

o Limitations:

> they performs poorly in high mobility scenarios or for a large state
dimension.
> the data rate degrades by dedicating more resources to state sensing.

v vy VvYy

@ What is the optimal tradeoff between communication and sensing ?
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Related Works

© Capacity-distortion tradeoff with state only at transmitter
» full or non-causal state '8
» strictly causal and causal state 1°
> statistical state 2°

@ Channel with state available at transmitter or/and receiver 2!

18Sutivong et al., “Channel capacity and state estimation for state-dependent Gaussian channels”, TIT 2005, Choudhuri et
Mitra, “On Non-causal side information at the encoder”, Allerton 2012

19Choudhuri et al., “Causal state communication”, TIT 2013
Zhang et al., "Joint transmission and state estimation: a constrained channel coding approach”, TIT 2011

El Gamal and Kim, Chapter 7 “Network Information Theory”
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Some Definitions

e A (2"R,n) code consists of a message set, an encoder, a decoder, and
a state estimator.

@ The state estimate is measured by the expected distortion
A 1
Eld(S", 5™)] = - 3" Eld(S:, 50)]

@ A rate distortion pair (R, D) is achievable if

lim P(W # W) =0

n—oo

and
limsup E[d(S™, S™)] < D.

n—oo

@ The capacity-distortion tradeoff C'(D) is the supremum of R such that
(R, D) is achievable.
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Main Result

Theorem

The capacity-distortion tradeoff of the state-dependent memoryless channel
with the i.i.d. states is given by

C(D) =max I(X;Y]9)

where the maximum is over all Px satisfying E[d(S, S)] < D and the joint
distribution of SXY ZS is given by

Py (2)Ps(5) Py 215 (y725) Py 5 (52)
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Converse

Use Fano's inequality and usual steps:

1
R < ~I(W:Y"|S") + e,
AN i—1 n
gg (YilS:) — H(Y;X:, Y7L W, 5™) + e,
%Z (Xi;Y;|Si) + en Markov chain (W, yi-1 ASibizi) — (86, X0) = Vs
=1
= %; c (E[d(s’ia gz)D +€p,  definition of C(+)
<C (% Z;E[d(su S; )]) + €,  concavity of C()
< (D)
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Achievability

@ Encoder: random coding for fixed Px and reconstruction function
5(x, z) that achieve C(%e) given a target distortion D.

@ Decoder: jointly typicality decoding.
@ Expected distortion: by defining diax = max(, 3 d(s, 5) < oo,

lim sup E[d(S™, 5™)] < limsup Podmax + (1 — P.) (1 + )E[d(S, 5)]
n— 00 n— 00 N —— e’
typical average lemma

< limsup Pedmax + (1 — P.)(1 4+ €)D

n—oo

= (14¢D P, —0if R<I(X;Y|S)

This proves the achievability of (C’(%),D).

e From the continuity of C'(x) in z, the desired result follows as ¢ — 0. .
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Numerical Method for Optimization

@ Suppose that the input X™ has a cost constraint B.

e Consider a cost function b(X") = % ?_ 1 b(X;) such that
limsup,,_, E[b(X™)] < B.

@ The optimization problem can be stated as

maximize  I(X;Y]S)
subject to  E[d(S,5)] < D.
Eb(X)] < B

@ For the joint distribution PXPSPYZ|XSPg|XZv the estimator §(z, 2)
can be computed a priori.
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Numerical Method for Optimization
The problem can be rewritten in terms of Px 22
maximize  J(Px, Py|xg|Ps)
subject to Z b(x)Px(r) < B
Zc(w)PX(x) <D

xT

where we define the mutual information functional

vixs(ylzs)
I(Px, Py|xs|Ps) = ZPS ZZPX )Py xs(ylzs) logm-

and

z) = Z Py x(z]z) ZPS|XZ(5|xZ)d(57 8z, 2)).

ZEZ sES

*Px denotes a feasible input distribution s.t. Px(z) > 0,Vz € X and ) Px(z) =1
RS



A New Problem

@ Assume that a feasible set of Px satisfying cost and distortion
constraints is non-empty.

@ The solution does not necessarily satisfy both constraints with equality.

@ Consider a parametric form of the optimization problem.

J(Px, P Po) — P
Pxizzi?g)lgx(x)gB (Px, Pyixs|Ps) “%:C(l‘) x ()

where p > 0 is a fixed parameter.

@ We propose a modified Blahut-Arimoto.
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Example 1: Binary channel with multiplicative states

@ A binary channel Y = SX with a Bernoulli distributed state s.t.
Ps(1) 2 ps € [0,1/2].

@ Based on the Hamming distortion function d(s, §) = s @ §, characterize
the input distribution Px (0) = p € [0,1/2] that maximizes C(D).

e Two extreme points:

» If p =0 (by sending always X = 1), Dy, =0 but C(D) = 0.
» If p=1/2, then C(Dpax) = ps and Dyax = ps/2.
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C(D) of Binary Channel with p;, = 0.4
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Distortion

e For a given p,, we have

C(p) = psHz2(p), D(p) =psp
@ A separation-based approach achieves a time-sharing between
(D,C) = (0,0) and (ps, ps)-
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Example 2: a real Gaussian channel with Rayleigh fading

@ A real fading channel Y; = S; X; + N; where

» S;, N; are i.i.d. Gaussian distributed with zero mean and unit variance
» {X;} satisfies the average power constraint + 3= E[|X;[*] < P.

@ Quadratic distortion function: the expected distortion is E [m]

@ Two extreme points:

» Dy,in achieved by 2-ary pulse amplitude modulation (PAM).
» Cmax = Ellog(1 + |S|?P)] achieved by Gaussian input.
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C(D) of Gaussian channel with P = 10 dB
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Separation-based approach: a time-sharing between
® (Dmin,0) by dedicating full resources to state estimation

® (Dmax; Cimax) With Dypax El var[S] = 1, by ignoring feedback and
sending data with Gaussian distribution.
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Remarks

@ Joint sensing and communication potentially yields a large gain with
respect to a separation-based approach.

@ Even restricting to a memoryless case, this preliminary result presents a
first step towards a unified framework.

@ Yet, feedback is only useful for state estimation for the single-user
memoryless channel.

o Can feedback enhance joint sensing and communication over a
multiuser channel ?
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M. Kobayashi ESIT

Multiple Access Channel Model

& ' Estimator !
m <1 | |
St rl |

Wi —s| Encoder

: Y
Pyzxs —1>
Wy .l Encoder

J 51:52i

Sg <—F Estimator
|

Wi, W,

@ Encoder k wishes to convey a message W, and simultaneously
estimate the state Sj.

@ A memoryless MAC:

[Ii=1 Ps(8i) Py 2, 2, X5 (i 21, 226 10, 24, 4)
P(aylat™", 271 Plagilah ™ 257 h).
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Some Definitions

o (R1, Ra, D1, D5) is achievable if
PW,#Wi) <e, k=12

and
n

1 ~
E lﬁ de(Ski,Ski)] <Dp+e k=12
i—1

e C(D1, Dg) is the closure of achievable (Ry, Ry) for specified Dy, Ds.

o ldealized estimator ] (z1, x2, 21, 22) that knows also (x2, z2).
c1(z1, z2) = Eldi(s1, 97 (21, T2, 21, 22))| X1 = 71, X2 = 2]
@ Achievable estimator yi‘(xl,vg, z1) that uses knowledge of v

c1(z1,v2) = Eldi(s1, 9] (21,02, 21))| X1 = 31, Vo = 09

M. Kobayashi ESIT April 15, 2019 58 / 85



Contributions

@ Outer bound: extension of the Tandon-Ulukus bounds?3 to the
state-dependent MAC with distortion constraints.

@ Achievability: extension of Willems' scheme 2* to the same context.

3 R. Tandon and S. Ulukus, “Dependence balance based outer bounds for Gaussian networks with cooperation and

feedback”, IEEE Trans. Info. Theory, vol. 57, no. 7, 2011.

4F. Willems, “Information Theoretical Results for the Discrete Memoryless Multiple Access Channel”, Ph. D. thesis,
Katholieke Universiteit Leuven, Belgium, 1989.

M. Kobayashi ESIT April 15, 2019 59 / 85



Achievability

Theorem

An achievable rate region of the state-dependent memoryless MAC with
i.i.d. states is given by

Ry < I(X1; Y[ X2WWUS) + I(Vh; Z2| X2U)
Ry < I(Xo; Y| X1V2US) + I(Va; Z11X1U)
R; 4+ Ry < min{I(X1X2;Y|S), (X1 Xo; Y|SV1VLU)
+ 1(Va; Z2| X2U) + I(Va; Z1| X1 U)}

where V1 X1 — U — Vo X5 and UV Vo — X1 Xy — Y Z1 Z5 form Markov
chains, and where

M. Kobayashi ESIT
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Our proposed scheme: encoding

Block 1 2 B-1 B
X1 z(1, 1wy, wiy) 2y (Wia(1ys War(1)s Win(2)s Win2) | - | T1(WiaB-2)s War(B—2), Wi(B-1)> Wi1(B-1)) | T1(WiaB-1), War(s—1): 1,1)
(X1.21) Way (1) =+ Wai(z) — Way(p-1) = 0
X 2o(1, L, war(1y, waz(r)) | Za(Wia(ry, wai(1)s Warz), Waz(2) | - | Za(Wiz(B-2), War(B-2) War(B—1), Wa(B-1)) | Za(Wiz(B-1), war(B-1)-1,1)
(X2, Zo) wWia(1) — Wyg(z) = Wig(B-1) — 0
(v, 5) Wri(1)s Waz(1) = (W1201)s Wa1(1))  Wr1(2)s Wan(2) | - | ¢ (Dra(B-2)s War(B-2)) W11(B-1), Waa(B—1) = Wig(p-1): Wa1(B-1)

@ Same block-markov encoding/backward decoding as Willems except
that the receiver now observes the states S
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State estimation and distortion analysis

o User 1 estimates the state sequence si¥(b) as

51(0) = ¥; (a7 (0), 03 (0), 21 (b))

o The distortion for a fixed message pair (w1, w2) with wg = {wly, why}.

d(n)(wl,wg)
(a)
< P(")(wl Wo)dmax + (1 — P (wy,w2)) (1 + €)
- ZE [ [d1(S1i, ¥] (21,02, Z14)) | X1i = @1, Vo = Uz]]

@ P (w, w2)dmax + (1 — P (w1, w2)) (1 + €)E [¢; (X1, V2)] -

@ Averaging over all message pairs, we obtain the desired result.

limsup d\" < Elc, (X1, V3)] < Dy.

n—oo
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State-dependent erasure MAC

@ An erasure MAC with binary states
Y = 51X + S2Xs

S1, S5 are i.i.d. Bernoulli with ps.

@ The sum capacity without feedback is

o - I(X, XY
Rsum—no—fb(00) PQP§Z§X2|Q (X1, X2;Y|SQ)

= max 2psP Ho(a) + p>Hs(a?, 2aa,a>)

3 2
=2psﬁs+%
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An achievable sum rate with output feedback

@ Focus on the symmetric rate R; = Ry and let
X, =V, =UXr®6,, k=12

where U, X, Oy are Bernoulli distributed with p, g, r.

@ An achievable sum rate can be computed.
Rsym—p(00) = glg}min{I(Xng;Y|S),I(X1X2;Y|SV1V2U)
+I(Vi; Y[ XoU) 4+ I(Va; YIX1U)}
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Unconstrained sum rate
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useful only when p; gets closed to 1.
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Minimum distortion

e Distortion is smaller if X, = V}, (no private message).
@ Two simple estimators
@ the state is perfectly known:

@ the state is erased.

Y1 (z1, 2, y) = Hps > 1/2}
for (z1,2,9) € {(0,0,0),(0,1,0),(0,1,1),(1,1,1)}.

@ The minimum distortion is a solution of

I%iqn Z Px, x, (1, 2)c1 (21, 72)
" (w1,m2)

achieved by letting X1 = X9 = U (zero rate).
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Tradeoff between sum rate and distortion
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@ Our proposed scheme provides a significant gain
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Summary of Part Il

@ Feedback enables a joint sensing and communication system to improve
capacity-distortion tradeoff compared to a resource-sharing scheme.
@ Open problems include:
» A single user channel with memory
» MAC with spatially correlated states
» MAC with asymmetric states
» Broadcast channel

@ More details are available on arXiv 2526,

2
5M. Kobayashi, G. Caire, and G. Kramer, “Joint State Sensing and Communication: Optimal Tradeoff for a Memoryless
Case”, in 2018 IEEE Int. Symp. Inf. Theory, Vail, CO, June, 2018. arXiv:1805.05713

M. Kobayashi, H. Hamad, G. Kramer, G. Caire, “Joint State Sensing and Communication over Memoryless Multiple
Access Channels”, to be presented at 2019 IEEE Int. Symp. Inf. Theory, Paris, France, July, 2019. arXiv:1902.03775
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Part Ill: Joint Radar and Vehicular Communications

M. Kobayashi ESIT



System Model

‘ hcom(t7 ’7') —

Yeom ()

Rx vehicle

t>{Zn.m }

Tx vehicle

@ A total bandwidth of B Hz operating at the carrier frequency f. [Hz].

@ A transmit vehicle is equipped with a full-duplex monostatic radar.

@ The transmitter sends data {x,, , } while estimating range r and

velocity v.

2v f. 2r
v= T

)
C C
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Time-Frequency Selective Channel

o Consider P targets, each represented by a single LOS pathwith (7,,1,).

@ Radar channel

P-1
h(t,7) = Z hpd (T — Tp)ej%”Pt
p=0

@ Radar received signal without noise

P-1

y(t) = / Wt 7)s(t— T)dr = 3 hys(t — )T
p=0
@ Communication channel
hcom(taT) = gOejm/Ot(S <7‘ - %)
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Related Works

e Range and velocity estimation using OFDM 27, 28

e Range and velocity estimation using OTFS 2°

@ Joint radar and communication based on resource sharing 303!

2
7Strum et al., “Waveform design and Signal processing aspects for fusion of wireless communications and radar sensing”,
Proc. IEEE 2011
2
8D. H. Nguyen and R. W. Heath, “Delay and Doppler processing for multi-target detection with IEEE 802.11 OFDM
signaling”, ICASSP 2017
2
gP. Raviteja et al., “Orthogonal Time Frequency Space (OTFS) Modulation Based Radar System”, preprint on
arxiv.1901.09300
3OP. Kumari et al., “IEEE 802.11ad-Based Radar: An Approach to Joint Vehicular Communication-Radar System”, IEEE
Trans. Vehicular Technology, vol. 67, no. 4, 2018
1
3 P. Kumari et al., “Performance Trade-Off in an Adaptive IEEE 802.11 Waveform Design for a Joint Automotive Radar and
Communication System”, ICASSP’'2017.
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Transmission using M subcarriers and N time slots

V-1 000000000 L
B I S
? . . e
: 11000000000 -0
i 1000000000 [ J
T ‘re00000000 ., o
000000000 [ J
900000000 -0
0 1 2 3 4 5 6 7 8 N-1
n (time)

o Total bandwidth is divided in M subcarriers, i.e. B = MAf.
o T = Aif is one symbol duration, Tyame = NT.

o {xnm} satisfies average power constraint E[|z,, | < P.
@ The parameters are chosen such that

Vmax < Afa Tmax < T’
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OFDM and OTFS

delay-Doppler

—/ ISFFT -+ Pessi h(tﬂ') pro%%ssts-ing j SFFT F—

e Cyclic prefix OFDM uses Inverse DFT/DFT in time-frequency domain.

e OFTS is a modulation patented by Cohere 3 using the Zak
transform33.

@ Mapping from delay-Doppler to time-frequency domains:

N-1M-1

X[n,m| = \/_ Z Z kleﬂ” (5E-m)

k=0 =0

32

2017

33 . . - .
H. Bolcskei and F. Hlawatsch, “Discrete zak transforms, polyphase transforms, and applications,” IEEE Trans. Signal

Proc., vol. 45, no. 4, 1997.
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Cyclic Prefix OFDM

o Consider a cyclic prefix (CP) of length T¢, > Timax to avoid
inter-symbol-interference (ISI).

@ An OFDM symbol is of duration T}, = Tc, + 1.
@ Pre-processing: CP and Inverse DFT

N-1M-1 '
s(t) = Z Z T mrect(t — nT,)es 2 mAf t=Tep=nTo)

n=0 m=0
@ Post-processing: sampling every % CP-removal, and DFT
P-1
Ynm A Z hp6j2ﬂ-nToypC_JQﬂmAprfL’mm

p=0

where we used the approximation vy < Af.
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Doppler signal estimation and CRLB3*

@ Problem: estimate 6 = (A, f, ¢) from a finite noisy samples:
Yp = AedPTIHE) Ly p=1,... N
| S ——
Sn

where w;, ~ N (0, No).

e Cramér Rao Lower Bound (CRLB) presents the lower bound of the
error variance for any unbiased estimator.

o2

K3

> [1(0) )i, i=1,2,3

where 3 x 3 Fisher information matrix I(89)

1(6)]:; =  Re {Z Bl Bﬂ } ey

34M. A. Richards, Fundamentals of radar signal processing. Tata McGraw-Hill Education, 2005.
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Doppler signal estimation and CRLB

@ Fischer information matrix

5 [V 0 0
1(0) = |0 @#/ﬁw TAZN(N —1)
%10  mAIN(N —1) N A2

@ The error variance of A, f, 0 denoted is lower bounded respectively by

=5

0'% >
ot > 0
I'= 4n2snrN(N2 - 1)
2N -1
sntN(N +1)

v

2
T¢
where we let snr = ﬁ—z denote the SNR.
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Maximum Likelihood estimator with OFDM (P = 1)
© Compute the DFT/IDFT output Z(v, 7).

M—-1N-1 ' ‘
Z(I/,T) A Z Z meAn,mef]Qﬂ'VnTo6]27rmAfT

m=0 n=0

where z, , is noisy output, Ay, = | m| is known.

2

@ Choose (7, 7) maximizing |Z (v, T)|” over I.

|
O Let the channel gain be h = Z(9,7)/ (Lm A2 ).

n,m “n,m

-150 -100 -50 0 50 100 150
Velocity / m/s
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CRLB for OFDM

Lemma
In the regime of large M and N, the CRLB of f =T,v andt = Aft are
given by

6
2

£ >
%t = IhPP@Er)2MN(NZ —1)’
) 6
U/\

o+

> .
= h2P(2r)2MN (M2 — 1)

@ The result covers a special case of constant-amplitude modulation3®.

35K. M. Braun,"OFDM Radar Algorithms in Mobile Communication Networks”, Ph.D. dissertation, Karlsruhe Institute of
Technology, 2014
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OTFS

@ Pre-processing:

N—-1M-1
X n m ix t—nT) €j27rmAf(t—nT)

n=0 m=0

@ Post-processing: matched filter and sampling at ¢t = nT, f = mAf.

Y (6 £) = Cra (6F) = [ 9 () g5 (¢ = ) e a

o After SFFT, the output of dimension N M in delay-Doppler domain :
y—Zh' Tp,ypx—i—'w
This holds for any transmit/receive pulse pair.
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ML estimator and CRLB for OTFS (P = 1)

@ Focus on a practical case of a rectangular pulse3.
e—Jmv(T+7)

7 sin (v (T — |71))

Cng7gtx (T’ V) =

limiting ISI between n and n — 1.
@ Following the similar steps as OFDM, the ML estimator is given by

2
21 (7,0)" y|
(7,0) = arg max

(rwel W (1, )" W (1,v) x

@ CRLB can be derived by computing the Fischer information matrix.

P. Raviteja et al., “Interference cancellation and iterative detection for orthogonal time frequency space modulation”,
IEEE Transactions on Wireless Communications, vol. 17, no. 10, 2018.

M. Kobayashi ESIT April 15, 2019 81 /85



Numerical example: setup

|EEE 802.11p%

f. = 5.89 GHz M =64
B =10 MHz N =50

Af = B/M =156.25 kHz | Tu, = 1T =1.6 s

T=1/Af =64pus To =Tep +T =8pus

rotfs < Te/2~960m | rofd < Ty /2 ~ 240 m
Ores = 1 m? G =100
r=20m v =80 km/h

37D. H. Nguyen and R. W. Heath, “Delay and Doppler processing for multi-target detection with IEEE 802.11 OFDM

signaling”, ICASSP 2017
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Numerical example: range estimation

SNRcon [dB]
5 10 15 20 25 30 35 40 45 50

10! / 10
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e Under a simplified scenario, OFDM/OTFS can yield a significant data
rate without compromising radar estimation.
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Numerical example: velocity estimation

SNReom [dB]
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10° ra 10

/ 14

10% /‘/ /z'/a/j 12
- / /z/’ 1

10! e 1

RMSE[¢] / [m/s]

100 A

/z’

Communication Rate / [bits/s/Hz]

4
10-1 A z/E/
ﬂf/ —e— OTFS -.-.. OTFS CRLB
—a— OFDM  -.-..OFDM CRLB -2
ﬁ —4— FMCW —e— OTFS Rate
—8— OFDM Rate
10-2 T T T T T 0
-40 =35 -30 -25 20 15 -—10 -5 0 5 10

SNRyaq [dB]

M. Kobayashi ESIT April 15, 2019 84 / 85



Summary of Part Il

o OFDM and OTFS achieve as accurate radar estimation as FMCW by
sending data “for free”.
@ The range estimation is limited by the CP length, i.e. rpax < cTcp/Q
yielding poor performance at mmWave bands.
@ OTFS performs better at a significant higher complexity.
e Future works include
» Joint beam alignment and target tracking
» Waveform design robust to ICl and ISI.
@ More details are found on arXiv 38

38L. Gaudio, M. Kobayashi, B. Bissinger, G. Caire, “Performance Analysis of Joint Radar and Communication using OFDM
and OTFS”, to be presented at ICC Workshop 2019, arXiv:1902.01184
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