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Prologue

A unique aspect of the Shannon Lecture is the daunting fact that
the lecturer has a year to prepare for (obsess over?) a single lec-
ture. The experience begins with the comfort of a seemingly infi-
nite time horizon and ends with a relativity-like speedup of time
as the date approaches. | early on adopted a few guidelines: |
had (1) a great excuse to review my more than four decades of
information theoretic activity and historical threads extending
even further back, (2) a strong desire to avoid repeating the top-
ics and content | had worn thin during 2006-07 as an interconti-
nental itinerant lecturer for the Signal Processing Society, (3) an
equally strong desire to revive some of my favorite topics from
the mid 1970s—my most active and focused period doing
unadulterated information theory, and (4) a strong wish to add
something new taking advantage of hindsight and experience,
preferably a new twist on some old ideas that had not been pre-
viously fully exploited. The result was a new look at an old
problem—the connections between classic Shannon source cod-
ing subject to a fidelity criterion and the “simulation problem”
formulated as part of a proof of the source coding theorem for
trellis encoding using a time-invariant trellis.

The problem and several questions are naturally motivated by
the contiguous diagrams of the two systems in Figure 1, and
the discussion provides a tour of operational distortion-rate
functions, block and sliding-block coding, process distortion
and distance measures, and some fundamental shared ideas
of information theory and ergodic theory.

Source Coding and Simulation

Both systems shown in Figure 1 concern an information
source X = {Xp; n € Z}, a discrete-time stationary ergodic
random process described by a process distribution n. The
random variables X, take values in an alphabet Ax, which
might be discrete, continuous, or mixed. The focus here is on
stationary and ergodic, but many of the results generalize to
nonergodic sources (using the ergodic decomposition) and to
asymptotically mean stationary sources (sources for which
sample averages converge).

Robert M. Gray
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Figure 1: Source coding and simulation.

The goal of source coding [1] is to communicate or transmit
the source through a constrained, discrete, noiseless com-
munication or storage channel to a receiver, whose job is to
reconstruct or reproduce the original source as accurately as
possible given constraints on the channel. As is common, we
will focus on the situation where the channel sends binary
symbols or bits of information, say R bits per input symbol.
For simplicity the special case of R =1 will be emphasized
here. The goal of simulation [2] is to simulate the source
using a system of a particular structure, for example using a
sequence of independent fair coin flips to drive a time-
invariant or stationary coder to produce a random process
with distribution closely matching that of the original source
X in some precise sense. There are several reasons for con-
sidering a stationary operation on the input bits rather than
some form of block coding:

= A stationary mapping of coin flips (or any iid source)
will produce a process that is stationary and ergodic, as
is the target source X we are trying to emulate. A block
mapping will not be stationary or ergodic; it will be
block stationary, but not necessarily block ergodic. Even
if “stationarized” by a random start, the resulting
process will retain in general periodicities not present in
the original source.

continued on page 5
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From the Editor

Dear IT society members,

| trust you all had a good start of the fall
semester. By the time this issue arrives on
your desk, you will already be preparing
finals and planning winter vacation.
Although summer may appear long gone,
this issue will bring back warm memories of
ISIT 2008 in Toronto, Canada. | would like to
express our thanks to co-chairs Frank R.
Kschischang and En-hui Yang, and their
team, for the organization of a great ISIT.
Before | give you a taste of what you will find
in this issue, |1 would also like to thank our
president Dave Forney, whose term will end
in December 2008, and welcome our new
president, Andrea Goldsmith, whose term
will start in January 2009. Please join me in
congratulating Dave and welcoming Andrea.

This issue opens with asummary of Robert M.
Gray's Shannon Lecture “Source Coding and
Simulation.” Then our regular columns by our
president Dave Forney, our historian Anthony
Ephremides, and our creative puzzle maker
Sol Golomb will follow. You will then read first
hand from Frank R. Kschischang and En-hui
Yang about the major ISIT 2008 events.

You will find the reflections on the paper
award announced at the Award Luncheon in
Toronto. The winners of the 2008 IT Paper
Award are two 2006 IT Transactions papers on
Compressed Sensing by David Donoho, and
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by Emmanuel Candes and Terence Tao. The winner of the 2008 Joint
IT/ComSoc Paper Award is a Communications Transactions paper
on Accumulate-Repeat-Accumulate Codes by Aliazam Abbasfar,
Dariush Divsalar and Kung Yao. Congratulations to all the authors
on their paper award. The summaries of the paper awards will be
followed by the summaries of the plenary talks: “Golay, Heisenberg
and Weyl” by A. Robert Calderbank, “Building Quantum
Computers” by Emanuel H. Knill, and “Randomness - A
Computational Complexity View” by Avi Wigderson.

You will also enjoy an update on the activities of the student committee chaired by Aylin
Yener, on the newly formed outreach committee chaired by Muriel Medard, and an account
of the International Symposium on Advances in Communications on the occasion of Vijay K.
Bhargava's 60th birthday. Congratulations Vijay on your birthday and all your achievements.

Last but not the least, you will find our NSF guest column by Program Manager Sirin
Tekinay. This will be Sirin's last column as her term at NSF ended in September 2008. She
did a terrific job as champion for our community.

Please help to make the Newsletter as interesting and informative as possible by offer-
ing suggestions and contributing news. The deadlines for the next few issues of the
Newsletter are as follows:

Issue Deadline
March 2009 January 10, 2009
June 2009 April 10, 2009

Electronic submission in Ascii, LaTeX and Word formats is encouraged. Potential authors
should not worry about layout and fonts of their contributions. Our IEEE professionals take
care of formatting the source files according to the IEEE Newsletter style. Electronic photos and
graphs should be in high resolution and sent in as separate file.

I may be reached at the following email address: danielat@uic.edu.

| wish everyone happy winter holidays and all the best for the New Year,
Daniela Tuninetti
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President’s Column

It has been a great honor and privilege to be
President of the IEEE Information Theory Society |
during 2008. It is a classy and successful organi-
zation, full of enjoyable colleagues, which always
aims for the highest standards.

In January 1973, when | was Editor of the IEEE
Transactions on Information Theory, | published
the Editorial below in connection with a series of
25th-anniversary review articles. As a test of its
claim of timelessness, on the occasion of the 60th
anniversary of information theory, | take the liber-
ty of publishing it again.

One of the Editor’s few perquisites is the prerogative of publishing his
own opinions from time to time, uninvited. | have been exposed to the cry
that information theory is dead from the time | first entered graduate
school at M.I.T., in 1961. Yet | think it will be evident from this series of
papers, if not already from the reader’s own experience, that a lot has
happened in our field since 1961, perhaps more than happened before
then (excluding Shannon). We are sometimes led astray by the unique
history of information theory: created almost full grown from the brow of
Zeus, it was one of the first disciplines to achieve the status of a fad, the
passage of which era we can hardly regret. Now, as an increasingly
mature field, it is not exempt (if it ever was) from the laws that govern
the evolution of all sciences. New and basic ideas are always rare. The
research frontier becomes ever more esoteric. Much work is done that

David Forney

does not speak to today’s real needs, or the future’s. Yet
work proceeds that will have the cumulative effect over
the course of time of completely changing the outlines
of the field, its practice, and our understanding of it.
Which work falls in which category is not always
immediately clear.

Without great daring, one can make a few predictions,
valid now or any time.

1) The field will not die, but it will change. It has the
good fortune after all to be an engineering field, linked
to technologies that are expanding with great vigor, and
that yearly make feasible and economic ever more
sophisticated kinds of information processing. It also has an intellectual
beauty that will continue to attract some of the very best students.

2) Ten years from now the subjects of papers in this Transactions will be
largely different from (and more abstruse than) today’s; today’s contribu-
tors will be complaining that the Transactions has become unintelligible
and irrelevant.

3) Twenty-five years from now the present will be seen as a rather igno-
rant and uninformed time, full of misguided, naive, and trivial work; yet
at the same time our successors will perceive in this era the laying of the
foundations for the “information theory” of that day, and will envy us for
working at a time when so much was fresh and new.

Call for Nominations

IEEE Information Theory Society Claude E.
Shannon Award

This Shannon Award Committee decided to issue an open call for
nominations for next year. The IEEE Information Theory Society

Claude E. Shannon Award is given annually or consistent and pro-
found contributions to the field of information theory.

Award winners are expected to deliver the Shannon Lecture at the
annual IEEE International Symposium on Information Theory
held in the year of the award.

NOMINATION PROCEDURE: Nominations and letters of
endorsement must be submitted by March 1 to the current
President of the IEEE Information Theory Society. (In 2009 the
President will be Prof. Andrea Goldsmith, Packard 371, Stanford
CA 94305, andrea@wsl.stanford.edu.) Please include:

Nominee:
1. Full name

2. Address, e-mail and telephone
3. Professional affiliation

4. Academic degrees (awarding institutions and dates)

December 2008

5. Employment history
6. Principal publications (not more than ten).
7. Principal honors and awards

8. Optional. The nominee’s CV may be submitted as an adden-
dum to the nomination.

Nominator:

1. Full name
2. Address, Email and telephone
3. Optional. Endorser(s), names and addresses, e-mail addresses.

(Letters of endorsement are not required. At most three may be
submitted.)

Rational:

Discussion of how the nominee has made consistent and profound
contributions to the field of information theory (not more than two

pages).

continued on page 49
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The Historian’s Column

This column was written before the November election in the
United States and amidst a gathering financial crisis that started
enveloping the world. So, the urge to align my comments to the
prevailing zeitgeist was too strong to resist. Thus, by the time you
read this, either my predictions will have been confirmed or | will
have missed the mark. In the latter case, because of the nature of
my thoughts, nobody would care (including myself).

So, the bottom line of my prediction is that the storm that started
during late September and went on through the month of October
will subside by the time this column appears. This does not mean
that there will not be serious lingering problems. It simply means
that the global boat will have survived another (giant) wave. This
prompts me to reminisce about similar events of the past from the
perspective, of course, of our profession and our field.

Well, let us start with 1970-71. This is the year during which | was
finishing my Ph.D. Dissertation and was actively looking for a job.
The Dow-Jones Industrial index was hovering around 700 points.
And there was gloom all around. The corridors where the graduate
students unleashed their anxieties on each other were awash with
rumors that there were no more academic jobs to be found. The
economy was faltering under Richard Nixon's first term while an
unpopular war was eroding the image of America in the rest of the
world. The good old times were over. | was looking at my senior
fellow students (like Stamatis Cambanis and Elias Masry) who had
obtained academic job offers and | was thinking with envy that the
door to academia had been shut behind them. You, lucky you!
What would be our professional future? I still vividly recall talking
to John Thomas (my advisor) and expressing my worries to him.
And | remember his calm face and soft voice as he was reassuring
me. “This is just one of those ups-and-downs,” he had said.

After sleepless nights and several job applications it came as a
pleasant surprise that there were invitations for interviews and
subsequent job offers to several Universities. With a sigh of relief |
sat down and luxuriated in deciding which of the four job offers to
accept. I chose the University of Maryland (where | just completed
37 years).

My first few years saw additional ups-and-downs. Price controls
were imposed by a Republican President. Those who viewed the
measure as a step toward socialism had their weapons defused by
the fact that the commander-in-chief was beyond suspicion of
being a crypto-communist. There were rumors that promotions
and tenure would be impossible from then on. The research dollars
from the National Science Foundation were dwindling. The war
was still going on. And then another big crisis erupted in the
Middle East in 1973. And the first major gasoline crisis followed.
We had to wait in line for as long as 30 minutes to fill up the tanks
of our automobiles. The price of gasoline was pushing $1 per gal-
lon (which at today's prices would be about $10 per gallon). The
future did not look so good.
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And then the war ended. The price
controls were lifted. The gas lines dis-
appeared. New research programs
were launched. There were openings
in academia. Industry was hiring.
Coding Theory started being used
out there. A wave of deregulation
was introduced as Ronald Reagan
was proclaiming “This is an energy-
rich country”. The notion of a “yup-
pie” emerged. A yuppie had oiled hairdos, thin-rim glasses, and
donned yellow ties. The Wall Street wizards started proliferating.
World Airways was the first low-cost airline that led the industry in
destroying the notion of service to the passenger. But it lowered the
ticket prices too. So the world started humming again. Cellular
phones were born. There was euphoria in the stock market.

And then the first Iraq war erupted after Saddam Hussein's inva-
sion of Kuwait. The economy started spiraling down after a brief
up turn. Bush senior lost in 1992 to a little-known governor from
Arkansas. The slogan of the times was: “It's the economy, stupid!”
Bright Ph.D. graduates could not find academic jobs again.
Students were worried. It was getting tougher to obtain permits to
work and live in the United States. Once again there was gloom in
the corridors where the graduate students roamed. Now it was my
turn to tell my anxious students “This is just one of those ups-and-
downs”.

Sure enough, despite growing unrest and transformational crack-
ing sounds around the world, the Iron Curtain had been torn, the
Berlin wall was down, and China started sending lots of inexpen-
sive goods to the world. More openings in academia, more hiring
in industry, more new research programs. The golden jubilee of
Information Theory was celebrated amidst a new euphoria. Many
people were getting rich. You could borrow money with zero inter-
est. The Wall Street wizards were now sporting pink ties.

And then the bust of the telecom industry bubble occurred, fol-
lowed soon by the infamous attack of 9/11. The budget surpluses
started nose-diving. The cracks around the world continued in the
manner of pine trees bending under hot dry winds under a blazing
sun. The second lIraq war was launched after the incursion into
Afghanistan. Almost all countries became members of either
NATO or the European Union. Technology continued to boom.
Gasoline prices started going up, followed by shortages, global
warming, and unrest.

Thus, we arrived to where we are today. The students again are in
agony. Enrollments are down. The stock market is catapulting
downward. | did not have the nerve to tell my students: “This is
just one of those ups-and-downs”. But | wanted to believe it. We
have to go on. A new era of exuberance should dawn soon.
Perhaps!
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Source Coding and Simulation continued from page 1

= Stationary mappings of iid processes form the arguably most
important class of random processes in ergodic theory, as will
be discussed. As described in Ornstein’s classic exposition [3]
of the revolution in ergodic theory that he led in the late 1960s
and early 1970s, a fundamental question in the study of ran-
dom processes is the generality of the class he named B-
processes (B for Bernoulli)—the class of processes which can
be modeled as stationary codings of roulette wheels, that is,
stationary mappings of iid processes.!

Although the focus of ergodic theory was originally on processes
with discrete alphabets, the notion of B-processes and their prin-
cipal properties (to be considered shortly) were extended to con-
tinuous alphabets [4], so for example linear models formed by sta-
ble time-invariant linear filtering of white Gaussian noise are B-
processes [5]. Hence allowing simulators to include the case of a
continuous alphabet iid process driving a stable time-invariant fil-
ter, effectively allowing an infinite number of bits per symbol, per-
mits the class of simulator output processes to include the
Gaussian autoregressive models popular in speech processing
and more general linear models. Our primary interest here, how-
ever, is generating simulations with a finite bit rate constraint.

The two systems have an obvious and suggestive similarity,
the source coding system from the encoder output through the
reproduction looks like a simulation system, random bits are
coded to form a process that “resembles” the original source.
The notion of “resembles” differs in that in the source coding
case the final process should match the original source
sequence in some sense, while in the simulation system there
is no waveform matching, we need only produce something
with similar statistical characteristics. This difference parallels
the difference in speech coding between waveform coding,
such as ADPCM, which tries to match the input sampled
speech waveform, and LPC, which effectively synthesizes or
simulates a process at the decoder which has second order sta-
tistics (correlation or spectra) which match those of the origi-
nal speech. This simulation problem was first introduced in
1977 [2] where it was observed that a simulation system yields
a source coding system by using the simulator to “color” a trel-
lis which could be searched by a minimum distortion search
such as a Viterbi algorithm in order to produce a trellis encod-
ed source coding system. Quantifying the optimal perform-
ance of the two systems demonstrated that the optimal simu-
lation performance provided an upper bound to the optimal
source coding performance. It was further shown that if the
original source was a B-process, this bound actually yields the
optimal source coding performance as given by the Shannon
distortion rate function.

Isuch processes are also referred to as simply Bernoulli in the ergodic theory litera-
ture, but we avoid this usage because of the potential confusion of the term with the
engineering literature, where it means coin flips.

2We assume that input blocks are mapped into output blocks of the same dimension
for simplicity, which means that the discrete time symbols correspond to the same
quantity of continuous time. Different block sizes can be handled with more cluttered
notation.
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An obvious difference between the two systems is that the simu-
lation system assumes an iid input, but the bit stream resulting
from encoding a stationary and ergodic source is in general not
iid. There is, however, a “folk theorem” to the effect that if the
overall source coding system has performance near the Shannon
optimum, then the bit stream should be “nearly iid.” Results
along this line have been proved for block almost lossless coding
of iid sources (e.g., [6]), but it turns out that the bits produced by
nearly optimally encoding a source are close to coin flips in a very
precise sense: Ornstein’s d-distance between the two binary
processes is small. The remainder of this paper is devoted to
detailing these results and some of the issues involved and pro-
viding some thoughts on the implications and possible future
paths for investigation.

Preliminaries

Random vectors produced by a source X will be denoted by
XN = (Xg, X1, -+, Xn—1), with distribution xN. The Shannon
entropy of a random vector is given as usual by

HX™) = H(u™)

= NNy log N (xN) - A discrete
T oo otherwise

Both notations, one emphasizing the random vector and the other
its distribution, will be useful. The Shannon entropy (rate) of the
stationary random process X is given by

H(X) = H(u) = ime(XN)/N = Jim HXN)/N.

Other information measures and information rates, such as aver-
age mutual information, will also be considered, but we leave their
definitions to the literature.

Block and Sliding-Block Coding

The formulation of both source coding and simulation is in terms of
codes, and the nature of the results and their interpretation differs
according to what kind of codes are considered. Two basic coding
structures for coding a process X with alphabet Ax into a process Y
with alphabet Ay are of interest here. Block coding, the standard
approach in information theory, maps each nonoverlapping block of
source symbols into an index or block of encoded symbols (e.g., bits).
Sliding-block coding, the standard coding method in ergodic theory,
maps overlapping blocks of source symbols into single encoded sym-
bol (e.g., a single bit). A block code is described by a vector mapping
&1 A — Al (or other index set), where N is the block length2 A
sequence is encoded by applying the vector mapping to a sequence
of nonoverlapping input vectors. A sliding-block code is described by
a vector-to-scalar mapping f : A)'\(l — Ay, and a sequence is encoded
by “sliding” the coding window a single symbol at a time in order to
produce a single output symbol at each time; that is, overlapping
input blocks are mapped into individual output symbols. A sliding-
block code has a total length of N = Nj + N2 + 1, where the coding

I[EEE Information Theory Society Newsletter



Block code
Yy XN X Nty X1, XosX1se s XN-1, XN, X1, Xon-1,
‘s 1 & 1 & 1 &
Y Yoo YoNits Y1, Yo, Yo, Yo, YaYi,..., Yon-od,
Sliding-block code
s Xn-Np Xn-Ni+ s Xy X ts o XNy, XNyt
slide window — i f f
Yy = AXn-nys - s X o s Xty

Yie1 = f(Xn-ny415 - -+

k) Xn+1’ ceey Xn+N2+l)

Shift-register representation of a sliding-block code

(X} 4’Xn+N2

Figure 2: Block and sliding-block coding.

window views N; past symbols and Ny future symbols along with
the current symbol. These operations are depicted in Figure 2 along
with a representation of a sliding-block code as an operation of on
the contents of a shift register filled with input symbols.

There are constructions in information theory and ergodic theory
for constructing block codes from sliding-block codes and vice-
versa (see, e.g., [7], [8]).

Block codes dominate theory and practice and far more is
known about their design, but unfortunately they lack several
properties useful for theory. Block coding a stationary and
ergodic process produces a coded process that is in general nei-
ther stationary nor ergodic. The encoded process will be block
stationary (N-stationary if the blocklength is N), but it will not
be N-ergodic. This loss of stationary and ergodicity compli-
cates proofs and in both source coding and simulation it means
the final reproduction process will lack the stationarity and
ergodicity of the original source. Block coding can introduce
periodicities at the block length. The resulting processes can be
“stationarized” by introducing a uniform random startup time,
but this simply results in a mixture of block stationary process-
es and hence the periodicities will remain in the sample paths.

Sliding-block codes are the standard approach in ergodic theory
partially because they retain the stationary properties of the orig-
inal process. Another difference is that the block coding theorems
of information theory imply a sequence of codes that yield
asymptotically optimal performance, but there is no “limiting”

IEEE Information Theory Society Newsletter

Xl’l Xn—N1
L>Yn = f(Xn—N]a v Xy e vXn+N2)

infinite code to which the finite block length codes converge—a
block code does not make sense for an infinite blocklength. On
the other hand, infinite-length sliding-block codes are well
defined and one can prove theorems by first demonstrating the
existence of an idealized infinite-length code, and then finding
arbitrarily good approximations by finite-window codes.

Sliding-block codes provide better models for some real-world
coding structures that do not have a block structure. For example,
time-invariant convolutional codes, predictive quantization, non-
linear and linear time-invariant filtering, and wavelet coefficient
evaluation are all naturally described as sliding-block operations.

The original importance of sliding-block codes derives from their
use in proving the fundamental result of modern ergodic theory,
the Kolmogorov-Sinai-Ornstein isomorphism theorem. Two
processes are isomorphic if there exists an invertible sliding-block
coding from either process to the other. Mathematically, isomor-
phic processes are the “same” in that one can code from one to the
other and back again. Although the focus of ergodic theory is on
processes with discrete alphabets, the definition and results also
hold for the case of continuous alphabets where stationary “cod-
ing” would be better described in engineering terms as time-
invariant filtering. In a sense, isomorphism can be viewed as a lim-
iting form of lossless coding for discrete processes and inverse fil-
tering for a continuous process.

In a series of papers in the early 1970s, Ornstein and his colleagues
showed that for a class of random processes called B-processes, a
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necessary and sufficient condition for two processes to be isomor-
phic is that they have equal entropy rate (see, e.g., [3], [4] for details
and references). One of many equivalent characterizations of the
class of B-processes is that they are processes which can be repre-
sented as a stationary coding (or filtering) of an iid process, exactly
the class of processes considered here for simulation systems.
Kolmogorov and Sinai had early demonstrated that equal entropy
rate was necessary for isomorphism, Ornstein showed sufficiency
for B-processes. It was also shown that entropy rate was not suffi-
cient for isomorphism in the next most general known class of sta-
tionary and ergodic processes, the so-called “purely nondetermin-
istic” processes which satisfy the 0-1 law of probability theory,
called K-automorphisms (K for Kolmogorov) in ergodic theory.

Source Coding

The classic (Shannon) formulation for source coding assumes
block codes. The setup is described by the following components:

Distortion measure dy (XN, yN) = & SNy (xi, yi)
Codebook/Decoder Cny = {Dn(D; i€ Z}, |Z] =M
Encoder &n:AY — 7

Distortion D(En, Dn) = E(dn(XN, Dn(En(XY))))

& logM fixed-rate

Rate R(&n) = { N=1HENXN))  variable-rate

The fixed-rate case is emphasized here for simplicity.

The optimal distortion-rate performance is described by the oper-
ational distortion-rate function (DRF) defined by?3

SO0(R) = _inf D(En, DN)

EN,DN:R(:‘:N)SR

inf sV im s
Sc(R) =infoge (R) = lim s5c(R).

The operational DRF is not in general directly computable from its
definition. Shannon introduced an information theoretic DRF (the
Shannon DRF) which can often be computed analytically or
numerically:

Dx(R) = Inf DnN(R) = Nlinoo Dn(R)

Dn(R) = Edn (XN, YN

inf
pN:pN =N N-LI(XN, YN) <R

where the infimum over all joint distributions for XN, YN with
marginal distribution N and N~11(XN, YN) < R. Shannon and his
successors proved that subject to suitable technical conditions, the
two DRFs are equal.

3Actuadly, Shannon introduced the dual function, the rate-distortion function.
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Block Source Coding Theorem: For a stationary and ergodic
source, 3gc(R) = Dx(R).

Similar results hold for sliding-codes:

. AN1+N2+1
L AN

Encoder fn,4+N,+1 — Au

Un = fng+Np+1Xn=Nps - -+ > XneNy)

Decoder gk, +k,+1 ALK,HKZJrl — Ax
Xn = Oky+Ko+1(Un—k; - - -+ Unik,)

Distortion D(f, g) = E(d1(Xo, Xo))

Rate R(f) =log|Auyl|

The sliding-block code operational DRF is defined by

dsec(R) = inf

D(f, 9
f,gR(f)<R

where the infimum is over all sliding-block codes, of finite or
infinite window length. Note here that unlike the block cod-
ing case, the optimal quantity can be defined as an optimum
over all codes rather than only as a limit of finite-dimension-
al optimizations.

The sliding-block source coding theorem (see, e.g., [7]) shows that
(subject to the usual technical conditions) for stationary and ergod-
ic sources the block and sliding-block operational DRFs equal each
other and hence also the Shannon DRF.

Sliding-block Source Coding Theorem: For a stationary and
ergodic source, gc(R) = 8spc(R) = Dx(R).

Figure 3 depicts the complete source coding system for each cod-
ing style and provides context for one of the previous questions.
Suppose that the code operates near to the Shannon limit, is it then
true that the encoded process U is “nearly iid”? One way of quan-
tifying the notion of “nearly iid” is to introduce a distortion or dis-
tance measure on random processes and to say that a process is
“nearly iid’ if it is close to an iid process in the sense of having a
small distance to an iid process.

Process Distance Measures

In his development of the proof of the isomorphism, Ornstein
introduced a distance on processes he called the d (d-bar) dis-
tance, a distance closely linked to the Kantorovich or trans-
portation distance intimately connected with the development
of linear programming. Consider two stationary random
processes: X with distribution p© and Y with distribution v,
and a vector distortion measure dy(XN,YN) defined for all
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dimensions N. Define

q N Ny _ H N N

dn(u™, v )_pN;Lr;P:‘,vN Epndn(XT, YT)

d(u, v) = supdn(u™, vN) = inf Epdi(Xo, Yo)
N p=pu,v

Thus d(u, v) quantifies the smallest achievable distortion between
two processes with given distributions (“marginal” distributions for
the separate processes) over all joint distributions consistent with
marginals. There are many equivalent definitions; e.g., if both
processes are ergodic, how much does a typical sequence of one have
to be changed to be confused for a typical sequence of the other?

Such distances have a long and interesting history of repeated
rediscovery and application to a variety of problems. Much of the
history can be found in [10], [11]. Briefly, Kantorovich in the early
1940s developed the vector distance on compact metric spaces as
an integral part of his contribution to the development of linear
programming (for which he shared the 1975 Nobel Prize in
Economics). Much of the early development focused on scalar
spaces and noted contributors included Dall’Aglio, Frechet,
Dobrushin, and Vasershtein (or Wasserstein) (see [10] for reference
details). These authors focused mostly on scalar spaces and ¢
norms. Ornstein focused on the Hamming distance and discrete
processes and extended the definition from vectors to processes,
proving many of the key theoretical properties of such distances
(see [3]). In [12] Ornstein’s d-distance was extended to continuous
alphabet processes with additive distortion measures, including
the ubiquitous squared error distortion. The name “p”-distance
was used to distinguish the continuous distortion from the dis-
crete Hamming case used by Ornstein, but the basic ideas held
even if the underlying vector distortion measures dy were not
metrics and hence p would be better called a “distortion” rather
than a “distance” as it might lack the triangle inequality. The vec-
tor case was subsequently considered as the “L-minimal metric”
in the literature, where the Kantorovich distance was applied to
vectors using the ¢, norm. Here the definitions become

AN, wN) = (N Ny 2 [Ndy (N, 0N

_ . N _ Nyt
—pN;ﬂ‘;,UN[E(”X Y]

The notation d is usually reserved for the Ornstein (Hamming)
case, p is used here for ¢]. The 5/Lr-minimal metric was rediscov-
ered in the computer science literature as the “earth mover’s dis-
tance” (where it was defined for possibly nonnormalized distribu-
tions) and used in clustering algorithms for pattern recognition,
taking advantage of its evaluation as a linear programming prob-
lem. It was subsequently renamed the “Mallows distance” after a
1972 rediscovery of the Kantorovich distance.

These process distances have several useful properties [3], [12]:

= Ornstein’s d distance and the L-minimal distance/, ;31/ " are metrics.
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e The infimum is actually a minimum.

= The class of all B-processes of a given alphabet is the closure
under Ornstein’s d of all kth order mixing Markov processes of
that alphabet.

= Entropy rate is continuous in d, Shannon’s DRF and the opera-
tional DRFs are continuous in p.

= The p distortion for the squared error case is known for iid
processes and for purely nondeterministic Gaussian processes
and for the output of a stable time-invariant linear filter driven
by a uniform iid process.

The process distance measure permits careful statements of the
source coding and simulation problems and highlights their con-
nections. We will use the word “distance” even when the measure
does not satisfy the triangle inequality (but note that, for example,
the square root of p with respect to the squared error distortion is
a true distance or metric).

Application 1: Geometric View of Source Coding

The p distance gives a geometric interpretation DRF as the closest
process in the p sense to the original source having constrained
entropy rate [14]:

d8c(R) = dsgc(R) = Dx(R) = U.Hi(rvlLRﬁ(M, v)

This can be viewed as a form of simulation, but it does not meet
the constraint imposed here since v need not be a B-process. The
geometric definition bears a strong resemblance to the process def-
inition of the distortion-rate function [13], [14]:

Dx(R) = inf

E[d{ (Xg, Y
op K Y) <R [d1(Xo. Yo)]

where the infimum is now subject to an average mutual informa-
tion rate constraint instead of an output entropy rate constraint.

Application 2: Quantization as Distribution
Approximation

Pollard [15] and Graf and Luschgy [16] argued that a (vector)
guantizer or block source code was equivalent to a probability dis-
tribution, that is, the codebook together with the probabilities
inherited by applying it to a source is a random vector described
by a distribution. This yields a geometric characterization of the
fixed dimension operational DRF as

s5c (R) = inf g (M, v,
v

where the minimum is over all discrete distributions vN with 2NR
atoms. This can be viewed as a simulation of a random vector. A
random process can be simulated by independent repetitions of
the random vector simulation. This does not quite fit the current
simulation problem because the resulting process is only block sta-
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Figure 3: Block and sliding-block source coding.

tionary, but it provides a similar mechanism connecting simula-
tion to source coding.

Application 3: Optimal Simulation and Source
Coding

The process distortion yields a definition of optimal simulation of
process X ~ u using asliding-block coding of an iid process Z [2]:

AX|2) = igfﬁ(ﬂs )

where the infimum is over all processes & formed as the output of
a sliding-block code driven by Z.# Since sliding-block coding
reduces entropy rate, H(Z) > H(x) and hence

A(X|Z) =

_ inf A, 1) = Dx(H2). (D)
stationary ergodic f:H(2)<H(Z)

Thus the best simulation performance provides a bound to the best
source coding performance. It is shown in [2] that if X is a B-
process, then the converse is true. The proof is easy to sketch in the
case where the encoded alphabet is binary and the Z,, are equiprob-
able coin flips. From the sliding-block source coding theorem we
can find an encoder f and decoder g such that the overall distortion
from the input X to the reproduction X is approximately Dx(1).
Since X is a B-process, it is a sliding-block coding of an iid process
and hence the reproduction X is also a B-process since it is pro-
duced by sliding-block decoding the sliding-block encoding of X,
so it is itself a sliding-block coding of an iid process. The entropy
rate of the reproduction H(X) must be less than the entropy rate of
the encoded process, which in turn is less than 1. If the distribution
of X is 1, this implies that Dx (1) < p(u, t) for a B-process 4 with
H(1) < 1, which implies Dx (1) > A(X|Z).

40ther notions of optimal simulation have since been introduced which also use
process distance measures in their formulation. See in particular Steinberg and Verdu
[17].
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Thus if the source is a B-process, then the source coding and sim-
ulation problems are equivalent in the sense that the following
theorem holds.

Source coding and simulation theorem: Given an iid process Z,
if X isa B-process then A(X|Z) = Dx(H(2)) = §sgc(H(2)).

Bit Behavior for Nearly Optimal Codes

The results of the previous section are over three decades old.
The preparations for the Shannon Lecture and conversations
with Taméas Linder led to a reevaluation of the folk theorem
regarding encoded bit behavior for nearly optimal codes and to
the result described in this section. Again considering Figure 3
and armed with the notion of the d distance, we return to the
question of whether indeed the U process constructed by encod-
ing the original source is nearly iid when the source code is near-
ly optimal, where now the source is stationary and ergodic, but
not necessarily a B-process.

First consider the block coding case with a block code Cy and the
induced probability mass function (pmf) on the codewords or
indexes 7. What can be said about z if the code performance is
near Shannon optimal? In particular, is it approximately uniform,
like 2N coin flips? The answer is “yes” in a highly qualified way.
A more complete answer will result shortly in the sliding-block
case. The block source coding theorem implies that there is an
asymptotically optimal sequence of block codes C™N) for which
Dy = Edy(XN, XN) | Dx(1). Since Rx(D) is a continuous func-
tion, standard inequalities imply that

1=N"tlog, 2N > NTHHEXN) = NTHHEXN)
> N~HxXN; XN) > Ry(Dn) = Rx(Dn) — 1
N— o0
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As the block length grows, the indexes have maximal per symbol
entropy and hence can be thought of as approximately uniformly
distributed. Unfortunately, however, the U processes so construct-
ed are not in general stationary or ergodic and we have only a
theorem for the behavior of vectors, albeit large dimensional vec-
tors. The processes U cannot be said to converge in d to
equiprobable coin flips. Stationarizing the code by a uniform ran-
dom start does not help.

Using sliding-block codes instead of block codes, however, easily
yields a rigorous process version of the theorem. Choose a
sequence of sliding-block source codes N gN) so that
Dn = D(fN), g™y | Dx(1). Let UN XN denote the resulting
encoded and reproduction processes (necessarily stationary and
ergodic). Then a similar string of inequalities to that used in the
block coding case for finite-order entropies now yields results for
entropy rates:

1> HUMN) > HXN) > 1x, xN)
>RMDyN) — 1
N— o0

Linder observed that Marton’s inequality for relative entropy and
d [19] implies that if the entropy rate of a sequence of binary
processes converges to 1, then the sequence converges to fair coin
flips in a d sense,

lim du®™, z)=o.
N — o0

This provides a rigorous formulation and proof of the folk theo-
rem that as the average distortion nears the Shannon limit for a sta-
tionary ergodic source, the induced binary channel processes approach a
process of equiprobable coin flips in d.

Recap

An old problem regarding the equivalence of source coding and
simulation has been described, including some old results and one
new one. Long known is the fact that if a source is a stationary fil-
tering of an iid process (a B-process, discrete or continuous alpha-
bet), then the source coding problem and the simulation problem
have the same solution (and the optimal simulator and decoder
are equivalent). The new result is a precise formulation of the fact
that if source coding a stationary ergodic source approaches the
Shannon optimum, then the encoded process is close to iid in d.
This result reinforces the intuitive connection of source coding and
simulation—if the source coding is nearly optimal, then the system
from bits to reproduction is nearly an optimal simulation (only
“nearly” because the bits are only d close to iid, not actually iid).
This suggests that source code design may profit from the study of
simulating stationary and ergodic sources, and that good source
codes yield good simulators (by using an actual iid driver instead
of the approximately iid driver, as is done in LPC speech coding,
for example). This tour has also provided a thinly disguised excuse
to present ideas of modeling, coding, and process distance meas-
ures common to ergodic theory and information theory.
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Final Thoughts and Questions

- The dclose to iid property is nice for intuition, but is it actually
useful? For example, B-processes have many special proper-
ties. Are there weak versions of those properties for processes
that can be represented as a stationary coding of a process d-
close to iid? Which of the properties are “continuous” with
respect to d distance and which are not?

= Does the equivalence of source coding and simulation hold for
the more general case of stationary and ergodic sources? The
results of Steinberg and Verdu [17] hold more generally, but in
ergodic theory it is known that there are stationary, ergodic,
mixing, purely nondeterministic processes which are not d
close to a B-process.

= Source coding can be interpreted as an “almost isomorphism”
between the source and the encoded binary process; it avoids
the hard part (invertibility) in ergodic theory and simply set-
tles for an approximate reconstruction of the source. Is this
idea useful pedagogically? A suitably stated “almost isomor-
phism” theorem might show that if two processes have the
same rate distortion function, then one can be coded approxi-
mately into the other, which in turn can be decoded to recon-
struct approxately the original source. This weak version of
isomorphism should hold more generally and be much
simpler to prove.

= How does fitting a model using p compare to the Itakura-
Saito distortion used in speech processing to fit autoregressive
speech models to real speech? Variations of Marton’s d
inequalities in terms of relative entropy rate have been devel-
oped by Talagrand [20] for p-type distortions, but these
results hold only when one of the sources is either iid or a very
structured Markov source. Can these inequalities be extended
to cover the Gaussian autoregressive models popular in
speech?®

= B-processes have a significant shortcoming in the real-world
signal coding and processing example of speech. They well
model unvoiced sounds, but voiced sounds are better modeled
by a periodic input to some filter type, that is, by a 0-entropy
process rather than a B-process. Is there a useful theory for
composite (switched or mixture) models which produce a
process by concatenating long segments of B-processes and
0-entropy processes? For example, to simulate proper sound-
ing speech one would need to change both the filters and the
drivers, sometimes producing B-processes and sometimes
producing 0 entropy processes.

= Finally, are there good design algorithms for simulators? For
example, how do you design a 1 bit per sample fake Gaussian
process that is stationary and ergodic? One idea is the follow-
ing: Suppose that the input process is an iid sequence of
equally probable +£1s. Consider a very long shift register with
a sparse collection of taps chosen at irregular times feeding

5Steinberg and Verdu [17] considered relative entropy rates in their simulation prob-
lem formulation.
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into a summation whose output is scaled. The central limit
theorem implies that the output will be approximately
Gaussian, and choosing the taps properly should yield a
small output correlation for nonzero lags. Intuitively this
should be close in p to an iid Gaussian process. Now put this
process into a filter with transfer function determined by the
power spectral density of the target Gaussian process. This
will produce a process of approximately the correct spec-
trum. With suitable choices is this near optimal for a one bit
per sample process?
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A Citations Tornado

Conference Report: The 2008 IEEE International Symposium on Information Theory,

Toronto Canada

Frank R. Kschischang and En-hui Yang

The 2008 IEEE International Symposium on Information Theory
took place at the Sheraton Centre Toronto hotel in Toronto,
Canada, from July 6-11, 2008. There were 856 registrants from 39
countries, distributed as follows:

Country Attendees| Country  Attendees| Country  Attendees
Argentina 1| Greece 3| Norway 7
Australia 4| Hong Kong 12 | Portugal 3
Austria 2| Hungary 2| Qatar 1
Belgium 1| India 17| Russia 2
Brazil 2| Iran 1| Saudi Arabia 1
Canada 130 Ireland 1| Singapore 3
China 7| Israel 34| South Africa 1
Cyprus 1] Italy 9| Spain 9
Denmark 3| Japan 44| Sweden 11
Finland 4| Korea 57| Switzerland 40
France 27| Lebanon 1| Taiwan 15
Germany 25| Netherlands 10 | Turkey 2
Great Britain 11| New Zealand 1] United States 341

Among the 856 registrants, 333—or 39%—were students.

The highlight of ISIT was the 2008 Claude E. Shannon Award
Lecture given on Wednesday by Professor Robert M. Gray of
Stanford University on “Source Coding and Simulation.”

The four Sunday tutorials drew 306 attendees. The tutorial pre-
senters and titles were:

= J. Barros and S. W. McLaughlin, Information Theoretic Security:
Theory and Practice;

= K. Ramchandran and S. Pradhan, Distributed Source Coding:
Foundations, Constructions and Applications;

= N. Jojic, Information Exchange in Viral Infections: Applications
to Vaccine Design;

A. R. Calderbank.
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= A. Ozdaglar, Networks’ Challenge: Where Game Theory Meets
Network Optimization.

The Symposium opened on Sunday evening with a Welcome
Reception that featured live music performed by the Skule Jazz
Combo, a group consisting entirely of University of Toronto engi-
neering students.

Four excellent plenary lectures were presented:
= A. R. Calderbank: “Golay, Heisenberg and Weyl”;

= A. Orlitsky: “From Two to Infinity: Information Theory and
Statistics for Large Alphabets”;

< E. H. Knill: “Building Quantum Computers”; and

= A. Wigderson: “Randomness—A Computational Complexity
View”.

A special session in memory of Sergio Servetto was organized by
Toby Berger. A recent results poster session with 21 poster pre-
sentations took place immediately following the Shannon
Lecture. As described in the previous Newsletter, the annual
Awards Luncheon took place on Tuesday, with IEEE Information
Theory Society president Dave Forney presiding.

Wednesday afternoon/evening excursions included a Niagara
Falls tour (with 144 attendees) and a Toronto Blue Jays Baseball
game (with 24 attendees). Many attendees took the afternoon off
to explore Toronto.

The panel session on “Balancing Career and Personal Life”
held at lunchtime on Wednesday (with panelists Andrea
Goldsmith, Robert M. Gray, Ubli Mitra and Lalitha Sankar,
and organized by Muriel Médard) was very well attended (by
women and men). The student committee, under the leader-
ship of Aylin Yener, organized two lunchtime events: a

R. M. Gray.
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“Roundtable Research Discussion” and a “Panel Discussion
and Meeting.”

The conference banquet took place on Thursday evening, the
highlight of which was the announcement of Jorma Rissanen as
the recipient of the 2009 Claude E. Shannon Award.

The dedication and hard work of many people resulted in a
Symposium that ran very smoothly. Besides the Organizing
Committee, Technical Program Committee, speakers and atten-
dees, we wish to thank the staff at the Sheraton Centre Toronto
for providing helpful and friendly service. Like at ISIT 2004

and ISIT 2006, Conference Management Services (CMS) pro-
vided superb logistical support (conference web site, paper-
handling system, registration, publications, etc.). CMS staffer
Lance Cotton, in particular, went beyond the call of duty in his
efforts on behalf of the Symposium. In addition, the
Symposium also received generous support from Research In
Motion, the Ontario Centers of Excellence, IBM Research,
Microsoft Research, and the U.S. National Science Foundation,
which in turn helped many students attend the Symposium.

Some readers may be wondering about the strange choice of title
for this article. It’s an anagram: of “ISIT, Toronto, Canada!”

R. Urbanke (right) introduces A. Orlitsky. E. H. Knill.

A. Wigderson.

David Neuhoff, Robert Gray and Anthony Ephremides.
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Robert Gallager and Edmund Yeh.
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The 2008 Information Theory society paper award has been jointly won by two 2006 IT Transactions papers:

"Near-optimal signal recovery from random projections: universal encoding strategies?”, by Emmanuel J. Candés and Terence Tao and
"Compressed Sensing" by David Donoho.

The Information Theory society awards committee viewed these two ground-breaking papers as independently introducing the new area of com-
pressed sensing, which holds great promise for processing massive amounts of data, and has already had a broad impact on a diverse set of fields,
including signal processing, information theory, function approximation, MRI, radar design, and sigma-delta conversion. Given the parallel nature
of the work and the inspiration each research group had on the other, the committee recognized both papers jointly for pioneering this important
research area. The committee also acknowledged the role of the paper “Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information” by Emmanuel Candeés, Justin Romberg, and Terence Tao, IEEE Trans. Inform. Theory, Feb. 2006, in develop-

ing some of the preliminary ideas that sparked the field of compressed sensing.

Information Theory Society Paper
Award: Reflections on Compressed

Sensing

Emmanuel J. Candés and Terence Tao

What is Compressed Sensing?

Current data acquisition methods are often extremely wasteful.
Indeed, many protocols acquire massive amounts of data which are
then—in large part—discarded without much information or percep-
tual loss, if any, by a subsequent compression stage, which is usually
necessary for storage and transmission purposes. The two papers
selected to receive the Information Theory Society Paper Award this
year challenged this state of affairs and proposed an alternative
acquisition paradigm perhaps best known as compressed sensing or
compressive sampling. This paradigm asserts that it is possible to
resolve signals from far fewer measurements or data bits than was
thought necessary. In practice, this means for example that high-reso-
lution imaging is possible with fewer sensors, or that one can speed
up signal acquisition time in biomedical applications by orders of
magnitude simply by taking far fewer specially coded samples.

Mathematically speaking, in a discrete-time setting, the setup for
compressed sensing may be formulated as follows. We wish to
acquire an object x € R", an n-pixel image for instance, and gath-
er information about this object by collecting m linear measure-
ments of the form
Vi=(a,x), i=1,...,m.
Using matrix notations, one can write this as y = Ax where A is an
m x n matrix with the vectors a;’s as rows. The situation of inter-
est corresponds to a heavy undersampling scenario in which the
number m of measurements or samples is far lower than the
dimension n of the object we wish to reconstruct. In general,
everybody would agree that reconstructing $x$ accurately from y
is impossible. But suppose now that x is compressible in the sense
that x is sparse or nearly sparse (the paper argues that most sig-
nals of interest are in this category). Then one can show that if the
sensing vectors are somehow spread out, one can reconstruct x by
solving the convenient optimization program
min||X|l, subjectto AX=y,

with optimization variable X € R". In plain English, among all the
objects consistent with the data, we simply pick that with mini-
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mum £¢1 norm. The surprise is that this strategy recovers x accu-
rately if x is approximately sparse, and even exactly when x is
sparse. This is surprising because the information matrix or sens-
ing protocol A is fixed in advance, and does not depend on the sig-
nal. That is, the sensing mechanism does not make any attempt to
understand what the signal x is made of. In short, compressed
sensing says that one can design nonadaptive measurement tech-
niques that condense the information in a compressible signal into
a small amount of data. The number of measurements necessary is
comparable with the signal’s sparsity level or the information rate
if you will, rather than its nominal length. After the acquisition
process, one solves an optimization program to “decompress” y
and recover (an approximate version of) the original object x.

There are two principles at work here. The first is that random-
ness or pseudo-randomness can be used as an effective sensing
mechanism; correlating a compressible signal against incoherent
waveforms—even random waveforms—is efficient as it captures
most of the information about x in just a few numbers. The second
is that ¢1 minimization is able to disentangle the components of x
from the compressed data. Taken separately, these facts were
known—at least to some degree.

Leading Up to Compressed Sensing:
High-Dimensional Geometry

At the theoretical level, compressed sensing is deeply connected with
the field of geometric functional analysis, a field concerned with geo-
metric and linear properties of convex bodies, and which has devel-
oped an astonishing array of deep geometric, probabilistic and com-
binatorial methods. In the seventies, for instance, Kashin studied the
following problem [22]: suppose we are interested in recovering ele-
ments from the ¢; ball {x € R": |x||¢, < 1}. How many and which
linear measurements of the form y = Ax do we need to take so that it
is in principle possible to recover x from y to within precision €? This
is a question in high dimensional geometry. After seeing y, we would
know that x lies in an affine space parallel to the nullspace of A. How
then should we select this nullspace so that its intersection with the £1
ball has minimal radius? Kashin, and later Garnaev and Gluskin [17],
answered this question very precisely. First, selecting the nullspace at
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random provides, with very large probability, an intersection with
nearly minimal radius. And second, the optimal number of measure-
ments needed to achieve a precision € is within a multiplicative con-
stant from what the compressed sensing theory actually supplies. The
fact that randomly selecting the nullspace of A (or equivalently the
row space of A) nearly gives the most precise information about the
object of interest shows, at least abstractly, that randomness leads to
efficient sensing mechanisms. In a related but different direction, the
theory of compressed sensing also connects with the deep probabilis-
tic techniques of Bourgain [3], Bourgain-Tzafiri [4]-[6], and Rudelson
[29]; in particular, the technique of generic chaining as developed by
Bourgain [3] and Talagrand [33] to control suprema of random
processes is a key technical tool to verify that certain measurement
ensembles (such as the random Fourier ensemble) are indeed well-
behaved for compressed sensing purposes.

51 Minimization

Another feature of compressed sensing is of course the role
played by the ¢1 norm as a sparsity-promoting functional, a fact
that was made clear as early as the 60’s. Suppose we observe

y(H) = (O +n(b), te R,
where f(t) is bandlimited, f € B(Q) :={f: fA(a)) =0 for || > @},
and n(t) is an impulsive noise term supported on a sparse set T. In

his Ph.D. thesis, Logan [23] observed the following phenomenon:
if we recover f by

min |ly— fll,®)),
feB(Q)

then the recovery is exact provided that |T||2| < /2! This holds
whatever f € B(Q2), whatever the size of the noise. The point here
is that f is sparse in the frequency domain and that under this
assumption, ¢1 minimization perhaps yields a rather unexpected
result. Another leading early application of ¢, minimization was
reflection seismology, in which a sparse reflection function (indi-
cating meaningful changes between subsurface layers) was sought
from bandlimited data. On the practical side, Taylor, Banks and
McCoy [34] and others proposed the use of ¢; to deconvolve seis-
mic traces. This idea was later refined to better handle observation
noise [31]. On the theoretical side, rigorous results began to appear
in the late-1980’s, with Donoho and Stark [14] and Donoho and
Logan [13] who extended Logan’s 1965 result and quantified the
ability to recover sparse reflectivity functions from bandlimited
data. The application areas for £; minimization began to broaden
in the mid-1990’s, as the LASSO algorithm [35] was proposed as a
method in statistics for sparse model selection, Basis Pursuit [10]
was proposed in computational harmonic analysis for extracting a
sparse signal representation from highly overcomplete dictionar-
ies, and a related technique known as total variation minimization
was proposed in image processing [18].

Other Works

There are other precedents in the literature. Compressed sensing is
related to coded aperture imaging, which also acquires informa-
tion about an image by using a random array of pinholes instead
of a single camera pinhole. It is also connected to a massive
amount of work concerned with super-resolution, i.e., the problem
of reconstructing high-frequency information from low-frequency
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content only. In coding theory, it is connected to Reed-Solomon
codes and the related Finite Rate of Innovation theory [37]. In the
literature of theoretical computer science algorithms, compressed
sensing is also related to the theory of heavy hitters [18].

What Compressed Sensing has to Offer

A legitimate question is then what compressed sensing (a term only
introduced recently in [12]) has to offer. With respect to the work on
high-dimensional geometry, we see essentially three elements of
novelty. (1) The first is that compressed sensing comes with an
algorithm—¢; minimization—so that the results from Banach
space theory are not just existential but also practical since one can
recover those objects by linear programming. What is remarkable
here is that the same algorithm is nearly optimal simultaneously
over many classes of signals of interest to the signal processing
community, namely, such the widely used ¢ balls with p < 1. (2)
The second is that it brings a renewed understanding about the
geometry of Banach spaces. Kashin’s theorem was once considered
as extremely deep and the argument nearly impenetrable (his proof
is between 100 and 200 pages long). With the tools from com-
pressed sensing, Kashin’s theorem can be reduced to a maximum
of two pages which are accessible to an undergraduate student
with a basic knowledge of linear algebra and probability theory. (3)
Finally, these new tools and techniques allow to tackle other algo-
rithmic or information-theoretic questions such as the robustness of
the reconstruction vis a vis noise or quantization errors.

With respect to the prior art on £; minimization and from a more
philosophical perspective, compressed sensing offers a unified
organizational framework with which to view the previous scat-
tered and specialized results on signal recovery, and on how ran-
domness and the geometry of high-dimensional spaces can be
exploited to reconstruct signals efficiently and robustly. One par-
ticularly valuable insight emphasised by the compressed sensing
theory is that ¢;-based methods are well adapted to sparse or
compressible signals (in contrast to the more classical ¢,-based
methods, which are better suited for uniformly distributed signals).

A New Wave of Results

As just reviewed, this early work on compressed sensing may
have crystallized a series of ideas about £; minimization which
were already in the air. But this work also went one step further.
By combining the power of ¢; minimization and randomness
(leveraging the lessons from high-dimensional geometry), this
work enabled novel practical acquisition approaches which more
effectively apply system resources to find the useful information
content embedded in a complex environment and directly meas-
ure it in a far more concentrated form. Perhaps the greatest
surprise to us is seeing how much this has captured people’s imag-
ination, and how quickly these ideas have taken off. The number
of people who contribute to the field of compressed sensing nowa-
days is staggering. More interestingly, this community brings
together people with very different research interests: from pure
mathematicians to circuit designers, from statisticians to radiolo-
gists, from information and communications theorists to optical
systems designers, from theoretical computer scientists to numer-
ical optimization experts. All have exploited, refined, extended,
and pushed the theory and practice of compressed sensing in
exciting and totally new directions. It is impossible in this note to
report on all the amazing progress that have been made in the last
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few years. To get a sense of both the vitality and the current
breadth of the field, the reader may want to visit a few blogs on the
world wide web, or browse through the pages of various interna-
tional conference programs in the mathematical and statistical sci-
ences, in information theory and signal processing, in medical
imaging, in computational optics and so on. For instance, the blog
Nuit Blanche [1], edited by Igor Carron, has at least one entry per
day, each introducing two or three—sometimes even more—
papers in the field. This blog is widely read and Igor reports a few
thousand daily hits. In the academic community, the level of
excitement is also clearly perceptible in several special issues that
have been dedicated to this topic, see [2] for example.

Even though we cannot understandably survey all the many
accomplishments of the compressed sensing community, we
would nevertheless like to provide an idea of the range of the
body of knowledge that is available today and, of course, was not
when we wrote our paper.

= On the theoretical side, the theory has been considerably sim-
plified thanks to the role played by the restricted isometry prop-
erty or RIP (termed the uniform uncertainty principle in our
paper), and also perhaps by Rudelson’s selection theorem. We
have learned that compressed sensing is robust to noise, which is
a must for any real-world application [8], [9]. We have learned to
identify sharp transitions between exact recovery and failure
regions [15], [16]. We have learned that one could also obtain
strong results with other algorithms, e. g., with greedy algorithms
such as Orthogonal Matching Pursuit [36], Robust Orthogonal
Matching Pursuit [26], CoSamp [25]. We have learned that one
could get guaranteed instance optimality® [11].

= On the algorithmic side, there has been considerable effort in
developing efficient £; solvers and related algorithms in order to
solve large scale problems. We now know far more about meth-
ods for solving ¢; minimization problems than we did just four
years ago. (As an aside, we have often heard from the optimiza-
tion community its fondness for the flurry of activity around com-
pressed sensing for it gives a sense of being even more relevant,
as if such a thing were possible.) Other remarkable works in the-
oretical computer science have focused on the design of clever
sensing matrices by borrowing ideas from discrete mathematics
and more specifically from the literature on expander graphs,
which come with fast recovery procedures [20], [38].

= On the application side, progress have been made in speeding
up signal acquisition time in biomedical applications such as
Magnetic Resonance Imaging by taking fewer samples [24].
Compressed sensing is already changing the way engineers think
about signal acquisition in the area of analog-to-digital conver-
sion. There are ongoing efforts to design subNyquist analog-to-
digital receivers capable of sampling a wide radio-frequency
band at a rate much below the Nyquist without much information

1Roughly speaking, instance optimality asserts that the error (in
a suitable norm, such as ¢1) between the original signal and the
recovered signal in the given data class—in this case, sparse
signals—differs by at most a constant factor from the distance
between the original signal and the closest signal in the data
class.
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loss, see [19] and the grant program DARPA BAA 08-03 for more
information about these efforts. Compressive sensing is also
changing the way some people think about digital optics; we now
have single-pixel cameras [32], and it seems that new architec-
tures for implementing compressive imagers in CMOS come out
a rapid pace these days [21], [28]. Related works include those of
David Brady, of William Freeman, and of their many colleagues.

We are sorry for the many omissions in the nonexhaustive list
above. The reality is that we are humbled and happy at the same
time to see such a large and broad community of enthusiastic and
energetic researchers dramatically advancing this area of
research, and systematically exploiting the results of our paper.

The Future

Will this flourishing activity be short lived? It is of course difficult
to tell. Things seem to come and go at a much faster pace these
days than they used to. We are already seeing a shift as people,
inspired by compressed sensing, have realized that objects other
than vectors (e.g., matrices and information tables) could also be
recovered from what appear to be highly incomplete sets of sam-
pled entries [7], [27]. What is clear, however, is this: we and oth-
ers have learned about the amazing power of convex relaxations;
we and others have learned about the fruitful interactions
between analysis and probability theory; we and others have and
learned that it was easier than ever to integrate sensing and pro-
cessing, “to bring mathematics into the lens” to paraphrase
Dennis Healy. It is probably not too speculative to assume that
these will bear fruits for decades to come.
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Information Theory Society Paper Award:
Reflections on Compressed Sensing

1. Introduction

Compressed Sensing (CS) is one label for a very active area of
research currently attracting talented and energetic researchers
from applied mathematics, information theory, mathematical sta-
tistics and optimization theory.

CS is sometimes reduced to a slogan: “Many signals (e.g., images)
are naturally compressible; this can be exploited by developing
novel methods of data acquisition which, in comparison to tradi-
tional approaches, involve far less data collection time, but on the
other hand, require relatively far more processing effort in order
to obtain a reconstructed signal.”

The slogan is provocative, seeming to contradict both mountains of
serious modern engineering work and the Fundamental Theorem
of Linear Algebra (see below). Fortunately, some beautiful theory
provides a well-founded and rigorously valid foundation. It's a
pleasure to have this chance to point out a few of the very pretty
ideas that had crystallized by the time my paper ‘Compressed
Sensing’ [6] was submitted in 2004, and then briefly talk about the
avalanche of work taking place over the last few years.

2. Compressibility is Key

Consider the following idealization: we are interested in an image
or signal, conventionally represented by a vector f containing N
real values—think of these as N pixel values. How many meas-
urements are needed to obtain full knowledge of f? Group the
measurements in a vector y with n entries, and suppose that the
measurements are linear combinations of pixel values f obtained
by an n x N matrix M according to y = Mf. How big should n be
so that the measurements y determine f?

The fundamental theorem of linear algebra—*“as many equations
as unknowns”—gives the answer n = N: there should be as many
measurements as pixels. N is of course a sufficient number—sim-
ply choose M = Iy, the N x N identity matrix—this corresponds
to making one measurement for each pixel. And indeed, in many
fields, current practice follows closely the n = N prescription,
magnetic resonance imaging and magnetic resonance spec-
troscopy being standard examples.

In some interesting and apparently surprising situations, n < N
measurements suffice. Indeed, suppose that f is compressible by
some known transform coding scheme. Examples of such
schemes include JPEG and JPEG-2000. Such codecs, in use heavi-
ly by internet browsers, cell phones and other devices, represent
the signal in a basis different than the pixel basis, and rely on the
empirical fact that the typical signals have relatively sparse repre-
sentations in the transform basis. Thus, JPEG relies on the fact that
images have relatively sparse representations in the discrete
cosine basis, while JPEG-2000 relies on the fact that images have
relatively sparse representations in the wavelet basis.

At the core of CS research is the idea that such transform sparsity
allows fewer measurements. The next two sections give increas-
ingly sophisticated ways to make rigorous this basic slogan.
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3. Sparsity Measured by Number of

Nonzeros

To see why transform sparsity might be helpful, let’s push things
to an extreme, and suppose a particularly strong form of trans-
form sparsity. Suppose there is a fixed transform for the space of
N-pixel images with the property that every signal f of interest
has at most k nonzeros in that transform representation. Let &
denote the N x N matrix representing the corresponding basis, so
that f = ®x where the columns of ® are the basis elements and
the N-vector x contains the coefficients of f in that basis. Define
the n x N abstract measurement matrix A = M®; the problem of
recovering f from measurements y = Mf is equivalent to recov-
ering X from measurements y = Ax.

3.1. Unique Recovery

Our question becomes: x is known to be a vector with at most k
nonzeros, k < N. How many measurements do we need in order
to uniquely determine x?

Definition 3.1. The matrix A has property (Uniqueg(k)) if, for every
y € R representable as y = Ax for some k-sparse vector x € RN, this
representation is unique.

Lemma 3.2. [9], [10], [21]. If the n x N matrix A has its columns in
general position then A has property Uniqueg (k) for every k < n/2.

Here is a formal way to put things. Let ||x||o denote the number of
nonzero entries in x and consider the optimization problem

(Po) min ||X||p subject to y = Ax.

(Po) expresses in a formal way the problem of finding the spars-
est solution to the system y= Ax. The results just mentioned
imply that, if A has property (Uniqueg(k)), then the n abstract
measurements provided by A followed by solution of (Pp) suffice
to reconstruct x exactly. Here is an (impractical) method to solve
(Po): simply enumerate the k-subsets of columns of A; for each
such k-subset I, say, form the matrix A; consisting of just the
columns from A with indices in I; check if it is possible to solve
y = Ajxy; if so, stop, announcing success. Of course, that strategy
is totally unrealistic for interesting values of k, n, and N: there are
() subsets to examine, each one requiring O(Nk?) operations to
decide if the corresponding system has a solution.

Surprisingly, there are practical methods that can efficiently find
the solution to (Pp) when A is sufficiently special.

Suppose first that we know x > 0, and consider the inequality-
constrained optimization problem

(LP) min1’x : subjecttoy = Ax,x > 0.

This is a linear programming problem in standard form and can
be solved using standard linear programming software. Such
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linear programs are now considered efficiently solveable. In many
cases, solving such problems will yield the unique k-sparse
solution, if one exists.

Definition 3.3. The matrix A has property (Unique (k)) if, for every
y € R representable as y = Axg for some nonnegative k-sparse vector
Xo € RN, that vector xg is the unique solution of (LP).

Lemma 3.4. [11], [14], [20]. The n by N matrix A, n < N, consisting
of the first n rows of the N by N real Fourier matrix, has property
(Uniques (k)) for every k < n/2.

(The same conclusion holds for a large family of matrices A, not
only the first n rows of the Fourier matrix).

The case x > 0 is restrictive, but suggests we are on to something.
The situation where x may have positive and negative entries is
far more applicable, and also more challenging to understand.
Consider the optimization problem

(Pp) min |x||1 : subjecttoy= Ax.

note that here, x may be of either sign. Such problems can be
solved by standard linear programming software and had previ-
ously been shown in [2] in 1998 to be efficiently solvable in some
very large problems, for example with n=8,192 and
N = 256, 000. Scott Chen’s thesis had shown empirically that in
some synthetic examples with very heavily underdetermined
problems and very sparse solutions, the numerical solution of (P1)
was exactly the same (up to computer arithmetic accuracy) as the
generating sparse solution.

Definition 3.5. The matrix A has property (Uniques(k)) if, for every
y € R representable as y = Axg for some k-sparse vector xg € RN, that
vector Xg is the unique solution of (P1)

Incremental steps in the understanding of (Uniquex(k)) were
made in the period 1999-2004, many of them appearing in IEEE
Trans. Inf. Thry. Reference [10] in 2001 showed that the n x 2n
matrix A = [IF] where F is the n by n Fourier matrix, has proper-
ty (Uniquex(k)) for k < 4/n/2, and various improvements soon
followed; [18], [19], [22], [29] are examples.

The thrust of all this work is that apparently, for special kinds of
matrices A, property (Unique+(k)) holds for every k=1,2,... up
to some threshold k*(A). Since k* < n/2 and the matrices A in
question are in general position, the property Uniqueg(k) also
holds for those same k. Hence there is equivalence between solu-
tions of (P1) and (Pp) for k below a certain breakdown point for the
equivalence [7]. It thus becomes natural to want to understand
more deeply what determines this breakdown point, and how
large it might be made.

3.2. Geometry of Unique Recovery

The properties (Unique) and (Uniques) are equivalent to a beau-
tiful geometric phenomenon concerning high-dimensional con-
vex sets.
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Suppose we have points a, ... , ay in the affine space R"; taking
their convex hull gives a polytope, P =conv(ai,...,an). The
polytope is called k-neighborly if every subset of k + 1-points
generates a k-face of the convex hull, fork=0,...,n/2 — 1 [23].

1-Neighborliness can seem a very paradoxical and surprising
property. It implies that every pair of points (a;, 8j) spans an edge
of P=conv(a,...,an): each line segment connecting some g;
with an a; does not intersect the interior of P! Our low-dimen-
sional intuition suggests, to the contrary, that such a line segment
will generally cross the interior. Neighborliness is a genuinely
high-dimensional phenomenon.

Lemma 3.6. [14] Let the matrix A have columns ay, ... , ay in gener-
al position in RN, If the polytope P = conv(ay, ... , an) is k-neighborly,
then A has property (Unique (k)).

The famous examples of neighborly polytopes [23] involve cyclic
polytopes; these correspond to partial Vandermonde matrices
and to partial Fourier matrices.

What about sparse vectors with negative and positive entries?
The phenomenon (Uniquey (k)) is likewise intimately related to a
standard notion in polytope theory.

Suppose we have points aj, ... , ay in the affine space R"; consider
the polytope generated by these points and the reflections
through the origin P =conv(+ay, ..., +aN, —ai,...,—an). The
polytope is symmetric about 0 and is called centrally k-neighborly
if every subset of ¢ + 1-points not containing an antipodal pair
generates a face of the convex hull, for =0, ..., k.

Central neighborliness is again a paradoxical property, one gen-
uinely not suggested by low-dimensional intuition.

Lemma 3.7. [5]. Let the matrix A have columns ag, ... , ay in gener-
al position in RN. The matrix has property (Unique(k)) if and only if
the polytope P = conv(ay,.. ,—an) is k-centrally
neighborly.

., aN, —a1, ...

In short, phenomena concerning sparse solutions of underdeter-
mined systems of linear equations which can be observed in sig-
nal processing correspond one-to-one with pre-existing questions
in pure mathematics. Translating back into CS language:

1. Letn > 2k+ 1. There are n x N matrices A with the proper-
ty that, for every nonnegative k-sparse vector x, the solution
of (LP) is the unique sparsest solution of y = Ax. It follows
that every signal f = ®x where x has at most k nonzeros can
be uniquely recovered by linear programming from the n
linear measurements generated by M = Ad—1.

2. Suppose there exist k-centrally neighborly polytopes with
2N vertices in n dimensions. Then there are n x N matrices
A with the property that, for every k-sparse vector X, the
solution of (Py) is the unique sparsest solution of y = Ax. It
follows that every signal f = ®x where x has at most k
nonzeros can be uniquely recovered by linear programming
from the n linear measurements generated by M = Ad—1,
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Since we know how to make the matrices A referred to in (1), the
case with nonnegative coefficients, the main open issue concerns
(2), the case with coefficients of either sign.

3.3. Random Matrices

Vershik and Sporyshev in the early 1990’s had proposed to make
polytopes that were so-called ‘weakly neighborly’ using random
matrices [30]. Jared Tanner and | showed that the approach actu-
ally yielded true highly neighborly polytopes [13] and developed
precise theory for the degree of neighborliness in case of large
N, n. Adapting this approach to the centrosymmetric case, we can
construct k-centrally neighborly polytopes [8]; this seems to be the
best known way to make centrally-neighborly polytopes with n
substantially less than N.

Let Abe an n x N matrix with entries chosen i.i.d. from the standard
normal N(O, 1) distribution. Then the centrosymmetric polytope
P =conv(as,...,aN, —ai1,...,—an) is likely to be highly centrally
neighborly. The exact degree of neighborliness is random, but for
large N approximates a certain threshold function p : [0, 1] — [0, 1]
derived and studied in [8], [16]. If k < n- p(n/N)(1 — €), where € is
small and N and n are large, then P is overwhelmingly likely to be k-
centrally neighborly, while ifk > n - p(n/N)(1 + ¢€), P is overwhelm-
ingly likely to not be k-centrally neighborly. Herep (1/2) ~ .09, while
p(1/10) = .05 [8, 16]. Informally, p(1/10) ~ .05 means that n needs to
be about 20 times the underlying ‘information content’ k, while tak-
ing a tenth the conventional number of samples N.

Translating back into the compressed sensing framework, we
could say that there is a sampling theorem for k-sparse signals: for
k < k*(A) ~ p(n/N) - n every k-sparse vector x can be recovered
from n random measurements y = Ax by £; minimization, while
for substantially larger k, £1 minimization fails to recover some k-
sparse vectors from those measurements. Here p(1/2) ~ .09,
while p(.1) ~ .05 [8], [16].

4. Sparsity Measured by El Norm

Sparsity can allow for accurate and efficient solution of underdeter-
mined systems—when sparsity is defined in a particularly strong way;,
by the number of nonzeros. Of course, “real” signals have transform
coefficients which are not strictly speaking k sparse for any k < N.

In this section, we consider vectors x which have ¢; norms
bounded by 1. Such a vector can be approximated in £, norm by
a k-sparse vector with error at most 1/+/k. How many measure-
ments do we need to reconstruct it approximately?

4.1. Information-Based Complexity

A general framework to approach related questions is called by
the names ‘Optimal Recovery’ or ‘Information-Based Complexity’
IBC has been actively developed since the late 1970’s. OR has its
roots even earlier, but appears to have been subsumed by IBC.

A central question in that literature: we have an unknown func-
tion f, known only to belong to some specific function class F of
interest to us. How many measurements n are really necessary so
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that the error of reconstructing f from those measurements is less
than a desired threshold ¢? More formally, suppose we let
Ih(f) = {(a, f),i=1,...,n) where a are some vectors and let R,
be a reconstruction operator, taking n numbers and returning a
function f. The optimal reconstruction error is defined by:

en(#) = Inf sup ||t —Rn(In(H))ll2:
o feF

here we are optimizing over all ways of collecting information I,
and over all ways of reconstructing based on that information.

This type of question has been intensively studied over the last
25 years, principally in the Journal of Complexity, and in other
papers and books associated with the IBC community. Each inter-
esting research project in that field involves choosing a class of
functions F, a class of information operators I, and some class of
reconstruction operators Ry, and studying the resulting ep,.

The IBC/OR framework immediately makes it clear that ¢; mini-
mization is close to optimal for recovering a signal which is sparse in
£1-norm. Let Fy denote the class of N-pixel images whose wavelet
coefficients have unit £1 norm. Define a reconstruction rule R}LN based
on ¢1 minimization as follows: For a given abstract measurement
matrix A, form the matrix M = A® 1. Take measurements y = Mf;
solving (P1) with said y and A, yields the solution x;. Put f; = ®x3.
(Thus f; = R%YN(Mf) actually depends on A and f.) Some general
facts in IBC imply that this reconstruction operator R n obeys

ip/lf S;f H f— erhN(Mf)H2 <2-en(Fn). Q)

Thus ¢1 minimization is within a factor 2 of optimal if we use the
most clever choice of measurement matrix.

It becomes of interest to know en(Fn) and the type of measure-
ment matrix which achieves it; this leads to deep and surprising
high-dimensional geometry.

4.2. Random Sections of the El ball

The field of “Geometry of finite-dimensional Banach Spaces” has
been intensively developed since the mid-1970’s. Some of the
major developers include Vitali Milman, Alain Pajor, Stan Szarek
and Nicole Tomczak-Jagerman. In that field, researchers study the
properties of norms on finite-dimensional Banach spaces (such as
the £1-norm) and properties of the unit ball in such norms when
we take sections or projections of them.

Here is a question which is completely natural in that theory. Take
the ¢1-ball B’l\I in N-dimensional space (N is large). Take an N — n
dimensional linear subspaceV and intersect it with Bi\‘—i.e., con-
sider the section BlN NV. What is its radius?

To measure the radius, let BQ‘ (0, r) denote the £,-ball of radius rin
RN and let N = m,Nn() be the smallest r > 0 such that

BN NV ¢ BY (0, r.n).
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Our low-dimensional Euclidean intuition suggests that since BlN
is a kind of ‘ball’ of radius 1, BlN NV will probably have a radius
about 1. Instead, Banach space ideas yield a surprise. There is
some subspaceV of codimension n obeying

rnV) < c-logd + N/m/2n=1/2, )

For large enough n and N, this radius r, n can be quite small—
something that could only be true in high dimensions and goes
against any low-dimensional pictures we can conjure up. In fact,
such exotic behavior is hard to exhibit explicitly; the strategy of
proof developed by the Banach spacers is to use random subspaces
of codimension n: most of them will work.

Another basic insight at the heart of IBC gives

en(FN) = i\r)f mNV), 1<n<N, 3

where the infimum is over subspaces of codimension n.
Combining (1)—(3) gives:

Theorem 4.1. Let Fy denote the class of N-pixel images whose wavelet
coefficients have an £1 norm bounded by 1. There is an n x N matrix M
so that the reconstruction error from £1-minimization obeys:

|- R#N(Mf)H2 <clog+N/mY2n Y2 viery. @

In this relationship, the dominant behavior involves n, and N
plays only a very weak role (appearing in the logarithm). If N
is large, there is a dramatic effect on the number of measure-
ments needed. Suppose we want to achieve a reconstruction
error en(F) < €. then we only need to sample n measurements,
where

(e/0)? = (log(1 + N/n)/n).

If ¢/c=./1/1000, and N is 10%, we need only about n = 2000
measurements to guarantee a reconstruction error <e. So we
have reduced from 10% measurements to 2 - 10°.

The fact that the radius rp N can be so small turns out to be
equivalent, by duality, to a phenomenon first discovered in the
mid-1970s by Boris Kashin [31,32]. Kashin was trying to com-
plete the program—inspired by Kolmogorov and pursued
almost to completion by many other researchers—of computing
the linear n-widths of Sobolev classes. In order to calculate the
Kolmogorov n-widths of the recalcitrant Sobolev classes, he was
forced into a novel kind of calculation involving random sub-
spaces. In retrospect, we can infer by duality that his calculation,
with later refinements by Garnaev and Gluskin [32], imply (2).

Erich Novak in the mid 1990’s pointed out that Kashin’s results
ought to be of significance for people working in IBC.
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The relations (1)—(3) were the starting point for the paper [6] | am
supposed to place in context here. Theorem 4.1 is a special case of
results in that paper; another set of results in that paper made
connections between results on the k-sparse notion of sparsity and
the ¢1 notion.

5. Recent Developments

So far, | have mentioned theoretical issues that were well-under-
stood by the end of 2004. Since then, many talented, energetic
researchers have expanded the picture enormously. Space
requirements make it impossible to even begin to describe it all;
for example, the paper “Compressed Sensing” has over 300 cita-
tions in Google Scholar. I'll just make a few observations, apolo-
gizing in advance to the very large number of authors whose
work | am unable to correctly cite here.

e Quantifying Breakdown: the breakdown point for k-sparse
solution is now very well-understood; Jared Tanner and |
derived the appealing asymptotic form k* ~ n/(2elog(N/n))
for n < N; [16].

= Typical Sparsity: statements can be made about recovering
almost all, rather than all k-sparse vectors; asymptotically,
the precise threshold ~ n/(21log(N/n)) for n <« N; [16].

= Finite-N Results: It is also possible to give results bounding
probability of breakdown at specific, finite N; see work by
Mark Rudelson, and Roman Vershynin, and also [15].

= Impacts of Noise and Stability: The ¢1 minimization approach
continues to work even with moderate noise, perhaps after
modifying the minimization objective to include the possi-
bility that y ~ Ax; [1], [17], [27].

= Other kinds of sparsity: in addition to |x|lg < k and ||x||1 < C,
one can measure sparsity in other ways, for example by the
£p ‘norm’, 0 < p < 1. [1], [6].

= Algorithms: A tribe of researchers have rushed to speed up ¢
minimization software, often with great success [4]. Joel
Tropp and others have shown that heuristic algorithms seem
to work well in theory and often in practice. [28], [29].

= Alternate Randomizations: The elegant theory concerns uni-
formly-distributed random subspaces V; or, equivalently,
Gaussian iid random matrices A. Empirical and theoretical
evidence suggests that many different ensembles of random
matrices work fairly well; see recent work by Anna Gilbert,
Jared Tanner, Alain Pajor and respective co-authors.

= Derandomization: There are also efforts to develop complete-
ly deterministic matrices A. In the case where the coeffi-
cients are nonnegative, this was solved by Lemma 3.4 above;
but much remains to be done in the case where coefficients
can be plus or minus.

Many teams are developing applications, in areas as diverse as
MRI imaging, NMR spectroscopy, and radar signal processing. |
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leave it to others to comment, mentioning only the fact that from
my first hand experience with serious MR imaging researchers |
believe the MR Imaging efforts are likely to have quite serious
impacts [24].

6. Personal Comments

There’s a very long personal story | could tell, spanning decades,
beginning with my first job after college. I’ll boil what | say down
to a few observations.

= Contributions of Industry: | became aware of the rather remark-
able sparsity-seeking properties of £; minimization while
working in the seismic oil exploration business many years
ago. Industrial research groups understood by the early
1980’s that one could use ¢1 minimization to seemingly solve
underdetermined systems of equations representing geo-
physical inverse problems where the low-frequency behavior
of an object was completely unobserved. Seemingly, industry
was almost thirty years ahead of today’s academic trends! To
be fair, serious mathematical contributions inspired by these
industry insights came in the next decade [3], [11], [12], [26],
but today’s academic surge only came decades later.

= Contributions of Theory: | wish I could say that this is a suc-
cess story of theory ‘showing the way to applications,’ like
Moses bringing down the law from the mountain. The theo-
ry has spurred today’s surge of interest, but there has been
applied research in related directions for decades.

My co-authors, NMR spectroscopists Jeff Hoch and Alan
Stern published the idea of undersampling in the Fourier
domain followed by maximum entropy reconstruction in the
early 1990’s [25]. By 2004 there were dozens of applied pub-
lications on undersampling and nonlinear reconstruction of
various kinds in NMR spectroscopy and MR imaging—too
many to cite here.

In array signal processing, Bhaskar Rao and Irina
Gorodnitsky were getting good results in the mid 1990’s on
the sparsity-seeking algorithm FOCUSS [21]. In the case of
nonnegative x and A the Partial Fourier Matrix, we have the
famous spectral extension problem. The utility of ¢; estima-
tion under sparsity was established already more than 15
years ago in [11]; Jean-Jacques Fuchs was publishing about
¢1 methods in spectral estimation in the mid 1990's.

The pioneers in the applied community who advocated
undersampling long ago frequently met resistance and dis-
belief among their peers; frequently they were told that
Nyquist, or Shannon, or the Fundamental Theorem of Linear
Algebra proved that undersampling was for fools. Solid the-
ory offers a scholarly way to respond to such criticism. It also
provides a morale boost; practitioners can now be more confi-
dent in their research programme than previously.

Theory has made decisive contributions; practitioners were not
very clear about the role that transform sparsity played in their
work, in how to effectively exploit it, or how much sparsity was
needed. Theory has shown the importance of sparsifying
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transforms such as wavelet transforms, the value of ¢; mini-
mization and related ideas and has proved rigorously that fail-
ure will occur beyond sharp, specific limits knowing the point
at which failure must occur seems important for credibility.

= Contributions of Frameworks: Many mathematical scientists are
suspicious of framework-building; | can recall as a young
researcher hearing skepticism about IBC, saying in effect that
such frameworks only repackage what was already known. CS
gives a counterexample to such skepticism. In fact attempts to
explain CS without carefully using this framework often lead
simply to confusion and seeming contradiction. Frameworks
do matter, and we should honor the framework builders who
give us ways to correctly frame and communicate new ideas.
I'd like to toast Joe Traub, Greg Wasilkowski, and Henryk
Wozniakowski for their leadership in developing IBC. I'd like
to also toast the major developers of OR: Charles Micchelli, and
even earlier, 1.J. Schoenberg and Hans Weinberger.

= Contributions of Russians: Two major figures in the above story,
Kashin and Vershik, are products of the Soviet/Russian math-
ematical tradition. The profound intellectual contributions of
this mathematical community are still not fully appreciated.

= Contributions of Students and Colleagues: | have worked over the
years with a series of collaborators who have authored with me
a series of papers involving sparsity, ¢1, and underdetermined
systems of equations; these include Phil Stark, Jeff Hoch, Alan
Stern, lain Johnstone, Ben Logan, Scott Chen, Xiaoming Huo,
Jean-Luc Starck, Michael Elad, Jared Tanner, and Michael
Lustig. A former student who eventually became interested in
this area, to notable effect, was Emmanuel Candes.

One of the pleasures of getting old(er) is the humbling
realization of the immense contributions of those who
came before and the overwhelming energy and talent of
the generation to come.

Of these, | toast my mentor Ben Logan, to me the greatest
harmonic analyst of the twentieth century, after Polya, Szego,
Beurling and Wiener. Already in his 1965 Ph.D. thesis (in
Electrical Engineering!) he proved the first ¢1-uncertainty
principle, the first reference | know of hinting at the remark-
able interaction between sparsity and ¢; minimization. | also
toast my ‘mentees’ Jean-Luc Starck and Michael Lustig for
taking serious career risks to introduce sparsity-based meth-
ods into their fields (astronomy and medical imaging) with
impressive energy, imagination, and persistence.
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1. Introduction and Motivation of the Work

Low Density Parity Check (LDPC) codes were proposed by
Gallager [1] in 1962. After introduction of turbo codes by Berrou
et al. [2] in 1993, researchers revisited the LDPC codes, and
extended the work of Gallager. During 1962 to 1993, only few peo-
ple, notably Tanner in 1981 [3], paid attention to the work of
Gallager and made some contributions. After 1993 huge number
of contributions have been made to LDPC codes; see for example
[6], [12]-[17] and references there.

Recently RA and IRA codes, as simple subclasses of LDPC codes
with fast encoder structure, were proposed [7], [8]. RA and IRA
codes can also be considered as serial concatenated codes [18]. RA
codes use fixed repetition for input bits. On the contrary, IRA
codes inspired by RA and irregular LDPC [5] codes have irregu-
lar repetition for input bits. In fact, node degree distribution can
be optimized to achieve low threshold performance. To achieve
very low threshold for IRA, as for LDPC codes, maximum repeti-
tion for some portion of input bits can be very high.

ARA codes are concatenation of an accumulator with RA or IRA
codes. Before elaborating on the role of this accumulator as a pre-
coder for RA or IRA codes and graph representation of ARA
codes, we use the definition of protograph introduced by Thorpe
in [9]. A similar definition called projected graph was introduced
by Richardson et al. in [10] for implementation of the decoder for
LDPC codes. They show that if an LDPC code can be represented
by the smallest base-graph or projected graph, then high speed
implementation of the decoder will be more feasible. Protograph
definition also facilitates the minimal graph representation for the
overall graph of an LDPC code. We will show that ARA codes
have such a protograph or projected graph representation.

A protograph [9] is a Tanner graph with a relatively small number
of nodes. A protograph G = (V, C, E) consists of a set of variable
nodesV, a set of check nodes C, and a set of edges E. Each edge
e € E connects a variable node ve €V to a check node ¢, € C.
Parallel edges are permitted, so the mapping e — (ve, Ce) €V x C
is not necessarily 1:1. As a simple example, we consider the pro-
tograph shown in Figure 1. This graph consists of V| = 4 variable
nodes and |C| = 3 check nodes, connected by |E| = 9 edges. The
four variable nodes in the protograph are denoted by “0,1,2,3”
and the three check nodes by “0,1,2”. By itself, this graph may be
recognized as the Tanner graph of an LDPC code with (n =3,
k = 1). In Figure 1, the variable nodes connected to the channel
are shown with dark circles i.e., transmitted nodes. Blank circles
are those variable nodes not transmitted through the channel, i.e.,
punctured nodes. Check nodes are circles with plus sign inside.
Under certain conditions on the corresponding parity check
matrix, i.e., full rank, the code rate for the protograph code can be
defined as R = (V| — |C|)/Vt|, where V¢ represent a set of trans-
mitted nodes in the protograph. There are |E| = 9 types of edges
in the protograph representation of RA code. In fact the proto-
graph LDPC codes are subclass of multi edge type LDPC codes
introduced in [11]. In multi edge type LDPC code, a group of
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edges may represent a type, whereas in the protograph LDPC
codes each edge is a type.

For a given protograph, we can obtain a larger graph by a copy-
and-permute operation. For more details on protographs see [9].
The resulting larger graph is called the derived graph and the cor-
responding LDPC code is a protograph code. In general, we can
apply the copy-and-permute operation to any protograph to
obtain derived graphs of different sizes. This operation consists of
first making N copies of the protograph, and then permuting the
endpoints of each edge among the N variable and N check nodes
connected to the set of N edges copied from the same edge in the
protograph. Equivalently the derived graph can be viewed as a
multi edge type LDPC code in which each edge in the protograph
is a distinct type. Thus the derived graph can be obtained by
replacing each edge of the protograph with a permutation of size
N. In other words, LDPC codes with protograph are multi edge
codes with equal number (N) of edges for each type. In our exam-
ples we will consider both multi edge type LDPC codes and pro-
tograph LDPC codes. The difference is mainly on the use of per-
mutation on multiple edges or on single edges. Multi edge type
LDPC codes with rational degree distribution can also have a pro-
jected graph description. In Figure 2, ensembles of three types of
LDPC codes are presented, namely unstructured LDPC, Multi
edge LDPC and protograph LDPC codes.

In Figure 1(a), the encoder with single permutation may represent
a multi edge type RA code. In Figure 1(b) protograph based RA
code is shown (as long as the permutation = is chosen to be
decomposable into permutations along each edge of the proto-
graph). In the figure, the minimum threshold of protograph RA
code is also shown. As follows “threshold” means “E,/N, itera-
tive decoding threshold”.

Irregular repetition in RA reduces the iterative decoding thresh-
old. We asked ourselves the following question. Is it possible to
reduce iterative decoding threshold by other means? While per-
forming experiments on hybrid concatenated codes (parallel con-
catenation of a serial concatenated code with another convolution-
al code in parallel) [21], we noticed that if the parallel rate-1 con-

An encoder for multi edge type RA Code Protograph of rate 1/3 RA

2

—— %H[E]

permutation
Repeat3 (interleaver) " g
AN !
AECHmLARIRF Threshold 0.502 dB
(a) (b)

Fig. 1. Rate 1/3 RA code with repetition 3, multi edge and
protograph versions.
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volutional code is non-recursive, in particular, if it is a differentia-
tor, then the iterative decoding threshold can be reduced. We
applied this observation to RA code which is a serial concatenated
code. In hybrid concatenated code, the information data usually is
applied to the input of the outer code. If instead we apply the
information data to the output of differentiator, then differentiator
can be viewed as an accumulator. Thus we learned that an accu-
mulator as a rate-1 precoder (rate-1 LDGM code) applied before
the repetition code can improve the iterative decoding perform-
ance. Other types of rate-1 LDGM codes were tried but none have
shown a better improvement in threshold when concatenated with
RA code. These observations led us to discover the Accumulate
Repeat Accumulate protograph LDPC code. The protograph rep-
resentation of such construction is shown in Figure 3(a).

[I. Accumulate-Repeat-Accumulate Codes
Let us consider a rate 1/3 systematic RA code with repetition 3 as
in Figure 3(b). Alternatively consider the same repetition 3 node
in RA that is precoded by an accumulator. Let us compare the
extrinsic SNR behavior of these two cases using Gaussian density
evolution as shown in Figure 3(c). As the Gaussian density evo-
lution analysis shows, the use of a rate-1 accumulator dramati-
cally improves the extrinsic SNR behavior of repetition 3 at high
extrinsic SNR region. However, it slightly deteriorates the behav-
ior of repetition 3 code at very low extrinsic SNR region.

Now let us use the inner accumulator code. Since the serial con-
catenation consists of outer accumulator, middle repetition, and
inner accumulator, we call it Accumulate-Repeat-Accumulate
(ARA) code. The rate 1/3 ARA code, the corresponding proto-
graph, and the extrinsic input-output SNR curves using Gaussian
density evolution are shown in Figure 3. Except for this example
where we used Gaussian density evolution to show the advan-
tage of precoding, in this paper actual density evolution on pro-
tographs will be used. Using density evolution, we obtain the
exact iterative decoding threshold of —0.048 dB for the proto-
graph shown in Figure 3(a). If we remove the precoder, and trans-

Ensemble of LDPC Codes
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Fig. 2. Ensemble of LDPC codes; unstructured, multi edge
and protograph versions.
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mit the node 1 in the Figure 3(b), the threshold will be 0.73 dB.
Thus precoder improves the iterative decoding threshold by 0.77
dB. We call such performance improvement due to the use of pre-
coder as “Precoding gain.”

These comparisons are fair if we fix the maximum variable node
degree. Shortly we will demonstrate such comparisons with unstruc-
tured irregular LDPC codes. In a similar way we can construct rate
1/2 and higher ARA codes. However, as we increase the code rate,
the number of check nodes are decreased, and degree of inner checks
(corresponding to the accumulator part) may increase beyond three.
In such case we require some portion of the input bits not to be pre-
coded in order to allow the iterative decoding to start, i.e., “Doping”
[24] is required for iterative decoder to start. An example of a simple
rate 1/2 ARA code, its protograph, and the corresponding threshold
are shown in Figure 4 when n = 0. We also propose a constructive
method to design codes with higher rates from a rate 1/2 ARA code
and its protograph by adding 2n additional variable nodes each with
degree 4 to the protograph. This is like adding 2n repeat 4 RA codes
to a single rate 1/2 ARA code. In this case the addition is done at the
inner check nodes of rate 1/2 ARA, and one common inner accumu-
lator is used. One example of such a family of ARA codes for various
code rates is shown in Figure 4.

0—D—0 s>

Middle Inner
Repeat 3 accumulator

precoder
{outer accumulator)

Threshold -0.048 dB

{a) Protograph of systematic rate 1/3 ARA code

Repeat 3 accumulator

Threshold 0.73 dB

{b) Protograph of systematic rate 1/3 RA code

Code rate 1/3
Eb/Mo=-0.04 dB SNRin =
SNRout -

w

£
(-9
=z
w
]
&s - SNRin
5 ™ SNRout \
R 13
ives N — SNRin
@ EBEC/é ™ SNRout
precoder  pmocears
1 {accumulator) £
o
o 1 2 3 4 5 B 7 8 2 10
SNRin, SNRout

(c) Gaussian density evolution to analyze the extrinsic input-output behaviors of component codes

Fig. 3. (a) Protograph of systematic rate 1/3 ARA, (b) sys-

tematic RA code, and (c) extrinsic message analysis using
Gaussian density evolution showing the improvement due
to the use of precoder.

I[EEE Information Theory Society Newsletter



22 |

We can also use irregular repetition instead of regular repetition in
ARA codes, which results in Irregular ARA codes or simply IARA
codes. A simple example of a rate 1/2 IARA code was discussed in
[4]. 1t was shown that the threshold for that IRA example was 0.99
dB. The precoded version (IARA) has a threshold of 0.36 dB. Thus
0.63 dB improvement. In [4], an example of low threshold (0.264
dB) rate 1/2 ARA code was provided. The protograph for this
example has a maximum degree of 5. The best rate 1/2 unstruc-
tured irregular LDPC code with a maximum degree of 5 in [5] has
a threshold of 0.72 dB. There are few reasons for such a difference.
In [5], the degree of variable nodes are greater or equal to 2, and
punctured variable nodes were not allowed. If we look at the pro-
tographs of ARA codes, they contain degree 1 variable nodes and
punctured variable nodes. In fact, later Richardson and Urbanke
[11], [13] mentioned that the degree 1 variable nodes and punc-
tured variable nodes also can be used in the multi edge type LDPC
code design. As we mentioned earlier, protograph based ARA
codes use permutations per each edge of protograph. When we
have accumulators a protograph based ARA can be constructed if
the structure of permutation in ARA codes is based on edge con-
nections in the ARA protograph between middle variable nodes
and inner check nodes (right most check nodes), i.e., between rep-
etition and accumulator. However a “multi edge” type ARA code
can be defined when permutations are used per group of edges,
e.g., a single permutation is used for repetition.

2n
code rate =(n+1)/(n+2)
M
4
2
0 0
. P 1 3
\L/
Outer accumulator Middle Inner accumulator
(precoder) repetition
Code | Protograph Capacity| Difference
Rate | Threshold
1/2 0.560 0.187 0.373
213 1.414 1.059 0.355
3/4 1.980 1.626 0.354
4/5 2.396 2.040 0.356
5/6 2.717 2.362 0.355
6/7 2.980 2.625 0.355
718 3.197 2.845 0.352
8/9 3.385 3.033 0.352

Fig. 4. Protograph of ARA code family with repetition 4, for
rates 1/2 to 8/9, and the corresponding iterative decoding
thresholds in dB.
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Simulation results for protograph ARA code family in Figure 4
with circulant permutations per each edge of protograph are
shown in Figure 5 for code rates 1/2 through 7/8 . Use of circu-
lant permutations instead of random permutations is preferred
for implementation of encoder and decoder. For decoding of ARA
codes the message passing algorithm was used. Low rate ARA
codes can be constructed by concatenating an LDGM code with
an RA code [20]. For example a rate 1/10 ARA code is construct-
ed with iterative decoding threshold of —1.028 dB. For perform-
ance simulation results of protograph ARA codes for various code
rates see [19], and [20]. For encoders for protograph based ARA
codes with circulant permutations see [22].

lll. Follow up Contributions to ARA Codes

The most significant contribution to ARA codes was made by Henry
Pfister and Igal Sason [25]. They proved that ensembles of accumu-
late-repeat-accumulate codes are capacity-achieving codes for the
erasure channel with bounded complexity. The next contributing
factor emerged from a JPL coding research team including; Kenneth
Andrews, Dariush Divsalar, Sam Dolinar, Jon Hamkins, Chris Jones,
and Jeremy Thorpe (now with Google Inc.). This group noticed that
if at least one of degree 2 variable nodes in the inner accumulator of
ARA code is replaced with a degree 3 node, the resulting proto-
graph code will have a linear minimum distance property. They
called this new codes Accumulate Repeat Jagged Accumulate
(ARJA) protograph LDPC codes [23]. A family of ARJA codes for
various code rates proposed to Consultative Committee for Space
Data Systems (CCSDS) for Standard. Concatenation of an LDGM
(accumulator) code with a regular (3,6) LDPC code was also con-
sidered in [23] but with smaller improvement.

Conclusion

In this paper we proposed a new channel coding scheme called
Accumulate Repeat Accumulate codes (ARA). This class of codes can
be viewed as a subclass of Low Density Parity Check (LDPC) codes
with fast encoder structure, and they have a projected graph or proto-
graph representation, which allows for high speed iterative decoding
implementation using belief propagation. Based on density evolution
for protograph based ARA codes, we have shown that for maximum

FPGA Simulations
IPL AR4A Family

™ solid: BER
dashed : WER

Bit and Word Error Rates

K=4086

Rate 314
BER k4020

Rate 7/8
k=4088

Flarion Rate 172 Ratg 45 1
k=4086 LDPC k=4086
low error floor Rate 5/6

k=4080

0.5 1.0 15 20 25 30 35 40 45
EbiNo, dB

Fig. 5. Simulation results for examples of rate 1/2 and higher
ARA codes.
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variable node degree 5 a minimum bit SNR as low as 0.08 dB from
channel capacity for rate 1/2 can be achieved as the block size goes to
infinity . Such a low iterative decoding threshold cannot be achieved
by RA, IRA, or unstructured irregular LDPC codes with the same con-
straint on the maximum variable node degree. We constructed fami-
lies of higher rate protograph based ARA codes with iterative decod-
ing thresholds that stay close to their respective channel capacity
thresholds uniformly. The weight distribution of some simple multi
edge type ARA codes is obtained in [4]. Through existing tightest
bounds it was shown in [4] that the ML performance of ARA codes
approaches very closely the performance of random codes.
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University of Melbourne, and Ali Pezeshki from Electrical and
Computer Engineering at Colorado State University.

The advent of phased array radars and space-time adaptive pro-
cessing has given radar designers the ability to make radars
adaptable on receive. The current state of radar technology allows
the transmission of wavefields that vary across space, polariza-
tion, time and frequency and which can be changed in rapid suc-
cession. The ability to exploit space-time adaptive processing is
limited by the computational power available at the receiver and
optimal design only makes things worse unless the waveforms
are properly designed to simplify processing at the receiver.

Exciting applications are emerging that are separate from
defense. For example, the NSF Engineering Research Center for
Collaborative Adaptive Sensing of the Atmosphere is prototyp-
ing a network of radars with the aim of changing the time scale
on which the public is warned of severe weather. As our planet
warms we expect to see a greater number of extreme climate
events, such as tornados, hail storms, flooding, and wildfires, yet
the curvature of the earth means that the US network of weather
radars only provides universal coverage of phenomena above
10,000 feet and misses extreme weather emerging at low altitude.

My story starts sixty years ago with efforts by Marcel Golay [2], [3]
to improve the sensitivity of far infrared spectrometry that led to
the discovery of pairs of complementary sequences. Shortly there-
after Welti proposed to use Golay sequences in radar, but they
have found very limited application to date. | hope to convince
you that suitably transmitted and processed, radar waveforms
based on Golay sequences provide new primitives for adaptive
transmission that enable better detection and finer resolution,
while managing computational complexity at the receiver.

Sixty years ago saw the birth of Information Theory and Coding
in 1948, but measurement is a much older subject. Hamming
codes were discovered in 1950, but the dual codes, the first order
Reed Muller codes were discovered in 1942 by the famous statis-
tician Fisher in the context of design of experiments. Earlier still
is the development of weighing designs by Frederick Yates [8],
where we are given a measurement device with mean zero and
variance o2 and we want to minimize the number of measure-
ments we need to make in order to measure each of N objects
with variance o2/N. This idea of measuring objects in combina-
tion is characteristic of some of the most exciting modern work in
detection and estimation. One example is the single pixel camera
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developed at Rice University which uses a micro-mirror array to
form random linear combinations of pixels. We follow Golay and
take our linear combinations in the frequency domain.

In the middle of the 20th century, infrared spectrometry was a
challenge. There was a kind of twilight zone between measure-
ments that could easily be made optically and those that could
easily be made with radio-frequency techniques and this gap is
described by Golay in his 1952 paper Bridges across the infrared-
radio gap. Golay published two different designs for far infrared
spectrometers designed to operate at room temperature, and we
will examine the second in a little more detail.

Golay faced three problems; weak sources, strong background noise
and insensitive detectors—temperature sensors that could not by
themselves distinguish between different frequencies of infrared
radiation and essentially integrated energy across the entire band.
Optical spectrometers employ diffraction, so that different frequen-
cies appear at different angles, and slits are used to separate these
frequencies. Narrow slits improve discrimination but do not pass
enough energy for the detector to work well. Wide slits pass enough
energy but do not provide sufficient frequency discrimination.

Golay split the infrared radiation into two paths and made each
path pass through an entry and exit mask as shown in Figure 1.
The path label specifies the slit pattern in the entry mask. The
desired frequency, indicated in black, arrives orthogonal to the
masks, and the background radiation, indicated in gray, arrives
obliquely. The desired radiation from path 1 proceeds to the
detector as shown, and the desired radiation from path 2 is
blocked. The background radiation casts a gray shadow on each
exit mask that is a translation of the corresponding input mask.
The two sequences x and y are such that the amount of radiation
(at each background frequency) arriving at the detector is the
same for both paths. Subtraction now provides a measurement of
radiation at the desired frequency. The mathematical restriction
that is placed on the sequences x and vy is simply that the sum of
the two autocorrelation functions is a delta function (that is
Es = E; — E» if and only if Rx(k) + Ry(Kk) is a delta function).

Golay Complementary Waveforms in Radar

In active sensing we illuminate the scene with a waveform and
analyze the return to detect the presence of scatterers, estimate
their range from the round trip delay and estimate velocity from
the Doppler Effect. In the absence of Doppler, consider the prob-
lem of estimating range from the round trip delay. We are looking
for peaks when the return is matched to the illuminating wave-
form. The ideal would be an autocorrelation function that is
impulse-like, so we want a narrow mainlobe with lots of energy
and we want to suppress range sidelobes because we worry about
a strong scatterer masking a weak scatterer that is close by.

When we incorporate Doppler, the ambiguity function may be
viewed as the point spread function of the radar imaging system. It
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Fig. 1. The origin of Golay Complementary Sequences.

captures the blurriness of the image as a function of the radar
waveform, when matched filtering is used at the receiver. Moyal’s
Identity places a lower bound on the volume under the squared
ambiguity surface as a function of the energy in the signal. It encap-
sulates in a slightly different guise the Heisenberg Uncertainty
Principle. The ideal ambiguity function would be a thumbtack, but
since that is not possible, the aim of the radar engineer is to move
the inevitable volume under the squared ambiguity function to
regions where it matters less for the operational task of the radar.
Figure 2 shows the ambiguity function for the Barker code of length
13 and the left half of the ambiguity surface viewed from above.
Note the range sidelobes at zero Doppler appearing in black.

By separating waveforms in time we reap the usual advantages
that attach to modular design in engineering. The waveforms are
short (order 1 us) with respect to the Pulse Repetition Interval or
PRI (order 100 xs) and we can ignore Doppler at the chip level.

It was in 1960 that Welti proposed the use of Golay sequences in
pulsed radar. Fifty years later they are nowhere to be seen, and
every practicing radar engineer knows that they don’t work
because of sensitivity to Doppler. The problem is that the ambi-
guity function of a Golay pair of phase coded waveforms is free
of range sidelobes only at zero Doppler, and off the zero Doppler
axis it has large sidelobes in range. This means that a weak target
located near a strong target can be masked by the range sidelobes

December 2008

29

of the ambiguity function centered on the strong target.

However all is not lost, and the freedom to sequence different Golay
pairs makes possible the design of pulse trains for which the com-
posite ambiguity function maintains ideal shape inside a specific
Doppler interval [6]. The trick is to sequence the Golay pairs so that
the pulse train ambiguity function has a higher order null at the
Doppler frequency where we want to eliminate range sidelobes. We
employ a binary sequence p to coordinate transmission of the com-
ponents of a Golay pair, resulting in the ambiguity function

1 M1 1 2M_1 )
SRk +Ry(] 3 e + S[Rx(k) — Ry(0] Y (~D)Pel
n=0 n=0

Sidelobe free Range sidelobes

When we separate mainlobe from range sidelobes we see that the
magnitude of the range sidelobes is determined by the spectrum

M1

Sp®) = Y (—1)Prel”
n=0

This should be very familiar to those who have worked on the
design of spectral null codes for magnetic recording, and in fact
this is a more forgiving problem because we do not care about
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Ambiguity Function:

Ag(r,v) = j s(t)s(t — T)e *™dt

— 0

Fig. 2. Radar imaging.

rate. If we focus on creating a higher order null at zero Doppler,
then we are led to a famous sequence in number theory.

Prouhet-Thue-Morse Sequence

The nth term in the PTM sequence py, is the sum of the binary dig-
its of n mod 2:

n | (0) = 0000 | (1) = 0001 | (2) = 0010 | (3) = 0011

ml o | 1 | 1 [ o
Xy y Xy X XYy
01101001

The PTM sequence of length 2M+1 kills M Taylor moments and

classical coding theorists will have noticed from the iterative con-

struction that this sequence is a codeword in the first order Reed

Muller code. The PTM pulse train can bring out slow-moving

weak scatterers such as pedestrians out of the shadow of strong

stationary reflectors such as buildings (see Figure 3).

We have only explored time as a degree of freedom, but this
approach extends to polarization and space. The basic unit of illu-
mination is a matrix of phase coded waveforms indexed by trans-
mit antenna and by PRI, where the polarization of constituent
waveforms may vary. It turns out that choosing this matrix to be
a unitary filter bank simplifies signal processing considerably,
and in two dimensions the filter bank has the same structure as
the Alamouti block space-time code. The generalization to multi-
ple dimensions uses the filter banks introduced by Tseng and Liu
[7] to study acoustic surface waves, and we refer the interested
reader to [1] for more details.

In 1953 Woodward introduced the narrowband radar ambiguity
function in his book Probability and Information Theory with
Applications to RADAR where he acknowledges the influence of
Shannon’s work. He ends the book with the following quote: The
reader may feel some disappointment, not unshared by the writer, that the
hasic question of what to transmit remains substantially unanswered. It is
extraordinarily self-deprecating quote, and | think ultimately incor-
rect. Looking to the future, it is possible to envisage unitary filter
banks as a new illumination paradigm that enables broad waveform
adaptability across time, space, frequency and polarization.
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Heisenberg-Weyl Groups and Sequence Design

Where do Golay complementary sequences come from? The
mathematical framework for sequence design turns out to be the
framework for quantum error correction. The error group of an m-
qubit quantum system is the m-fold Kronecker product of the
dihedral group D4 extended by multiplication by the square root
of —1. The notation D(a, b) keeps track of how the Kronecker
product is formed; the binary vector a captures appearances of the
bit flip x and the binary vector b captures appearances of the
phase flip z. There are 22™+2 matrices, all of them square to | or
—1, any pair of matrices commute or anticommute and a simple
symplectic form governs which possibility occurs.

a b
XZRX®zZR®XZ® lp <+ D(11010, 10110)

D(a, b)D(@, 1) = (=1)¥PtY-ap( )D(a, b)
D(a, )2 = (—1)2PIom

A different Heisenberg-Weyl group provides the mathematical
foundation for the world of Fourier analysis. The operators A(k, 0)
are cyclic time shifts, the operators A(0, j) are the corresponding
frequency shifts, and these two groups are interchanged by the
Fourier transform. In the binary world the operators D(a, 0) are
the time shifts, the operators D(0, b) are the frequency shifts, and
these two groups are interchanged by the Walsh-Hadamard trans-
form. Think of Walsh functions as the sinusoids of the binary
world. Why sinusoids? It is because they are eigenfunctions of the
time shift operators.

What are chirps in this binary world? The answer is second order
Reed Muller codewords (realized over Z4 as in [5]). Each coset of
the first order Reed Muller code corresponds to an orthonormal
basis of the underlying Hilbert space. The cosets are indexed by
binary symmetric matrices P and the vector

5 PxT T
d(X) = IxPx +2bx Xe Zgn

is an eigenvector of the commutative subgroup of operators
D(a, aP). This is entirely analogous to the properties of classical
chirps (see [4]).

The operators D(a, b) are an orthonormal basis for the space of
operators with respect to the trace inner product, and the Weyl
transform gives the basis expansion of an arbitrary operator.
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Fig. 3. By transmitting a Golay pair according to the PTM sequence we can clear out the range sidelobes along modest

Doppler frequencies.

Rather than look at sequences, we are going to work with the cor-
responding rank 1 projection operators. We connect periodic and
aperiodic correlation by padding with zeros and we express the
Golay complementary property as follows:

0TAK, 00 +¢TAk,0)p =0 for k0
Tr((Ps +Py)A(k 0) =0 for k#0

We want to remove the overlap between the support of the cyclic
time shifts and the support of the sum of the rank 1 projection
operators. If we start with a sequence that has a maximal com-
mutative symmetry group, then the support of the corresponding
projection operator vanishes outside this subgroup. We can also
calculate (in the D(a, b) basis) the union of the supports of the
Weyl transforms of the cyclic time shift operators. The answer
turns out to be a pair of Sirpinski triangles! Now all we have to do
is find a maximal commutative subgroup (coset of RM(1, m)) that
has minimal intersection with the triangles, and choose two
eigenvectors so that the support of the sum of the corresponding
projection operators has empty intersection. This is how Golay
complementary pairs are made.

1mmm

0000 1000 111
a

Fig. 4. The support of the time shift operators A(k, 0) for
m = 4.
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Postscript 1 would like to conclude with one final thought,
and that is that classical coding theory and Fourier analysis are
just different sides of the same coin.

References

[1] A.R. Calderbank, S.D. Howard, and W. Moran, “Waveform
diversity in radar signal processing,” IEEE Signal Processing
Magazine, to appear, 2009.

[2] MJ.E. Golay, “Multi-slit spectrometry,” Journal of the Optical
Society of America, vol. 39, no. 6, p. 437, 1949.

[3] M.J.E. Golay, “Static multi-slit spectrometry and its application
to the panoramic display of infrared spectra,” Journal of the Optical
Society of America, vol. 41, no. 7, pp. 468-472, 1951.

[4] S.D. Howard, A.R. Calderbank, and W. Moran, “The finite
Heisenberg-Weyl groups in radar and communications,”
EURASIP Journal on Applied Signal Processing, Article ID 85685,
2006.

[51 A.R. Hammons, Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane
and P. Sole, “The Z4-linearity of Kerdock, Preparata, Goethals and
related codes,” IEEE Transactions on Information Theory, vol. IT-40,
pp. 301-319, 1994.

[6] A. Pezeshki, A.R. Calderbank, W. Moran and S.D. Howard,
“Doppler resilient waveforms with perfect autocorrelation,” IEEE
Transactions on Information Theory, vol. 54, no. 9, pp. 4254-4266,
Sept. 2008.

[7] C.C. Tseng and C.L. Liu, “Complementary sets of sequences,”
IEEE Transactions on Information Theory, vol. 18, no. 5, pp. 644-652,
1972.

[8] F. Yates, “Complex experiments,” Supplement to the Journal of
the Royal Statistical Society, vol. 2, no. 2, pp. 181-247, 1935.

I[EEE Information Theory Society Newsletter



32

Building Quantum Computers
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In theory, quantum computers can be used to efficiently factor
numbers, quadratically speed up many search and optimization
problems, and enable currently impossible physics simulations.
At first, quantum states appeared to be too fragile for implement-
ing large quantum computers. Fortunately, because of theoretical
advances in quantum error correction and fault tolerance, there
are now no fundamental obstacles to realizing quantum comput-
ers. However, building quantum computers is difficult. Current
experiments can barely achieve adequate control of two quantum
bits. Nevertheless, the gap between theoretical and practical
quantum computing is closing. In what follows, | give a brief
explanation of what quantum computers are, explain why we
believe that in principle, arbitrarily large quantum computations
can be accurately implemented, and survey the experimental
state of the art and main implementation challenges.

A simple way to think of a quantum computer is as a traditional,
classical computer with access to a quantum state machine. Thus
guantum computing is an extension of classical computing with
all the classical programming constructs available for problem
solving and control of the quantum state machine. The quantum
state machine is specified by its state space, initial state, transition
operators and readout operators. It can be thought of as the result
of applying the superposition principle to the 2" configurations (bit
strings) of n bit systems together with the ability to exploit inter-
ference, where n may vary during a computation. In particular,
the state space consists of the unit vectors in a 2"-dimensional
Hilbert space with a distinguished orthonormal basis, whose ele-
ments are denoted by |b) with b bit strings of length n. The unit
vectors can therefore be written as superpositions |y) = Y, aplb),
where the complex numbers «y are called the amplitudes of the
superposition and >, lap|2 = 1. For n = 1, the state space is that
of a quantum bit (qubit for short). Just as bit strings of length n are
the configurations of n bit systems, the superposition states |v/)
are considered to be states of n qubits. This is done by identifying
the 2"-dimensional Hilbert space with the tensor product of the n
2-dimensional Hilbert spaces associated with the qubits. The dis-
tinguished basis is obtained from the tensor products of the dis-
tinguished basis elements of the component qubits. Note that it is
necessary to clearly distinguish between systems (such as qubits)
and their states. This also makes it easier to understand the rela-
tionship between the formal definition of our state machines and
their physical realizations.

The initial state of a quantum state machine has no qubits. To add
qubits, we can make use of a transition operator that maps the
state of n qubits ), op|b) to the state of n+ 1 qubits >y ap|b0),
where b0 is the length n+ 1 bit string obtained by appending 0.
The representation of the states of a quantum state machine as the
states of n qubits is important for defining unitary transition oper-
ators that may be applied to the states. One such operator is the

Hadamard gate
1 1
-1
=2 (1 _1>
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acting on one qubit. H can be applied to the k’th of n qubits by
tensoring with identity operators acting on the other n—1
qubits. Another is the Toffoli gate, which acts on three qubits by
linear extension of the map on three bits that flips the third bit if
the first two are 1. To define the linear extension, bit strings are
identified with the corresponding distinguished basis elements.
The Toffoli gate can be applied to three of n qubits by tensoring
with identity operators acting on the remaining qubits. The
Hadamard and Toffoli gates are sufficient for quantum comput-
ing. Nevertheless it is convenient to be able to apply any one-
qubit unitary and the controlled-not gates. The controlled-not
gate is the linear extension of the map that flips the second bit if
the first one is 1. The Toffoli gate can be decomposed into a prod-
uct of one-qubit unitary and controlled-not gates.

Information about the state of a quantum state machine is
obtained by measurement. Suppose that the state of the machine
is > ap|b). Afull, destructive measurement returns the bit string
b with probability |op|2 and resets the machine to its initial state.
It is convenient, but not necessary, to be able to make nondestruc-
tive measurements of any one of the qubits. To learn how such
measurements act, and for an introduction to quantum comput-
ing, see, for example, Nielsen and Chuang’s textbook [10].

A phenomenon that is often mentioned as a source of the power
of quantum computing is quantum parallelism, which involves
the application of a classical reversible algorithm implemented by
Toffoli gates “simultaneously” to all bit patterns in a superposi-
tion with exponentially many non-zero amplitudes. This is sim-
ply the generalization of the linear extension principle by which
we defined the Toffoli gate. Transition operators such as the
Hadamard gate must be used to prepare the state. Because the
measurement cannot access amplitudes except by an exponential-
ly complex analysis of the statistics of measurement outcomes,
any use of such quantum parallelism must be followed by large
scale interference of the state’s amplitudes to extract the desired
information. Interference refers to the effect by which one can
reversibly increase amplitudes in some states in a way that is sen-
sitive to relative phases. For example, the Hadamard gate applied
to |0) yields the state %\0) + %u), which when measured
returns 0 or 1 with equal probability. Applying it again restores
both the state |0) and determinism of the measurement outcome.
If a process that changes the sign of the amplitude of |1) is applied
before the second Hadamard gate, the final state is |1), demon-
strating the sensitivity of the interference effect in the second
Hadamard gate to the relative phases of the amplitudes. It is
worth contrasting these effects to what is possible with proba-
bilistic computing, where instead of superpositions involving
amplitudes, we have mixtures involving probabilities of states.
Gates correspond to Markov processes, which are reversible only
if they are deterministic.

Building quantum computers requires physical systems with
gquantum state spaces that are capable of realizing qubit states and
are sufficiently controllable. DiVincenzo [6] gives five require-
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ments for the physical realization of quantum computers that cor-
respond to the earlier specifications of a quantum state machine.
The first is the availability of arbitrarily many independent quan-
tum-information-carrying systems. The second requires that the
guantum systems’ state can be consistently intialized. Skipping
the third requirement for now, the fourth asks for the ability to
apply quantum operations sufficient for implementing arbitrary
guantum computations efficiently. The fifth involves the ability to
measure the systems so as to enable the required readout. These
four requirements have been demonstrated individually in a
number of physical systems.

The third and so far the most difficult requirement to demonstrate
experimentally is that the states and operations are subject to suffi-
ciently low noise. The continuous nature of the amplitudes and the
sensitivity of interference effects to seemingly small changes in
phases imply that quantum states and gates must be protected not
only from bit flip errors, but from a continuous family of unwanted
effects including changes in the phases of amplitudes. These
unwanted effects are referred to as decoherence. Decoherence is asso-
ciated with incomplete isolation from the environment and imper-
fect calibration of control fields required to implement gates. The
microscopic nature of most suitable quantum systems and the need
for strong interactions with the control and measurement apparatus
makes it particularly difficult to reduce the effects of decoherence.

Like quantum gates, general quantum errors exhibit interference
effects that preclude purely probabilistic models. Nevertheless,
we commonly refer to gates having independent probabilities of
error. This is justified if unwanted effects act independently in
time and space and are unbiased. Although this is not generally
the case, actions can be taken to increase independence and
decrease bias. Alternatively, it is understood that the probability
refers to the square of an amplitude in the operators expressing
the effect of an error. Originally it was believed that in order to
realize a quantum computation of size N, the probability of error
per gate must be sufficiently smaller than 1/N2, where the square
accounts for the possibility that errors add in amplitude rather
than probability. However, as for classical computing with errors,
it has been proven that under reasonable assumptions on the
errors, if the probability of error per gate is smaller than some
constant, then it is possible to efficiently quantum compute arbi-
trarily accurately. This result is known as the threshold theorem.
See Sect. 10.6 of [10] for an overview of quantum fault tolerance
and versions of this theorem. Since there are many ways to para-
meterize quantum error models and many physical constraints
(such as spatial layout) to consider, the error threshold claimed by
the theorem is best understood as defining a region of the relevant
space of parameters and constraints where scalable quantum com-
puting is possible in principle. Note that if the parameters are
near the boundary of this region, the overhead required for
implementing computations fault tolerantly becomes impractical.

Fault tolerant quantum computing involves using quantum error-
detecting and -correcting codes to protect quantum information.
To maintain and compute with the protected quantum informa-
tion, we use carefully designed sequences of gates that ensure that
any errors in the gates themselves do not disturb the protected
information. All schemes for protecting quantum or classical
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information can be understood in terms of subsystems. Consider
the trivial problem of protecting one qubit when we are given
three physical qubits, where only the first two are subject to
errors. The solution is to have the third qubit carry the protected
information. The third qubit is a subsystem of the three-qubit
physical system. Protected states are associated not with single
states but with subspaces of states of the physical system, and the
errors preserve these subspaces. Formally, a quantum subsystem
of a physical system whose state space consists of unit states in
the Hilbert space H is a tensor factor of a subspace of H. The other
factor is called the cosubsystem. Equivalently, finite quantum sub-
systems are characterized by subalgebras of the algebra of
bounded operators on H, where the subalgebras are ismorphic to
matrix algebras. From a physical point of view, such subalgebras
of operators consist of the (complex) observables of the subsystem
and characterize the measurements that one can make of the
states of the subsystem. The general scheme for protecting infor-
mation is to determine a subsystem of the physical system that
has the property that, provided the cosubsystem’s state is suitably
prepared, errors perturb only the cosubsystem’s state with high
probability. If the cosubsystem’s state does not matter, then no
action needs to be taken to maintain protection. Otherwise, it is
necessary to periodically restore the cosubsystem to a state that
ensures future protection. In the traditional view, this action is
accomplished by error correction and re-encoding. From the sub-
system view, the protected information never requires “correc-
tion”; it is sufficient to reset the cosubsystem after errors occurred.
One can think of errors as increasing the entropy of the cosubsys-
tems, and the protection procedure as a way of removing the
entropy. Therefore, physical quantum computers generally
require an entropy sink to protect information from errors.

The analysis of fault-tolerant quantum computing leads to strate-
gies for eventually building large-scale quantum computers.
Most suitable physical systems consist of localized quantum sub-
systems with at least two distinguishable states that can repre-
sent qubit states. These physically explicit qubits are normally
subject to a significant amount of decoherence. The first task is to
ensure sufficient control of the physical systems, including the
ability to couple them, and to use whatever experimental tech-
niques are available to reduce the effects of decoherence to the
point where general-purpose error-correction techniques can be
applied according to the threshold theorem. Eventually, fault-tol-
erant techniques are used to protect logical qubit subsystems that
are nontrivially supported by many physical systems.
Depending on the errors, it may be necessary to recursively con-
struct qubit subsystems of lower-level logical qubits, a strategy
known as concatenation. It helps to recognize that there are a
number of common information processing tasks that are much
easier to perform fault tolerantly than implementing unitary
gates on logical qubits. These tasks include state preparation,
measurement and quantum communication. In fact, the con-
straints on errors in physical operations used for these tasks are
significantly weaker than on errors in unitary control. Thus, pro-
vided there is some means of establishing quantum communica-
tion channels between physical systems used to support logical
qubits, one can initially focus on building very accurate quantum
registers with only a small number (three or four) of qubits. One
can rely on communication for computations requiring more
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qubits. Unlike classical communication, quantum communica-
tion and remote computation can be performed by what is
known as quantum teleportation, which has the advantage of hav-
ing no quantum latency. This implies that the speed of remote
computation is not limited by slow quantum processes, only by
the classical communication required for control. Although
focusing on small but accurate quantum registers makes sense
now, the ultimate goal is to ensure that good quantum gates are
not much slower than classical circuit elements. This will require
a tight integration of quantum and classical processing and fault
tolerance.

Targeted experimental efforts to build quantum computers
started with Shor’s discovery of the quantum algorithm to fac-
tor large integers around 1994. Since then there have been
many proposals to build quantum computers using a variety of
physical systems. For a survey, see [1]. The clear current front
runner for building small to medium size quantum computers
is based on atomic qubits in ion traps. There are currently three
other approaches that can claim to have demonstrated coher-
ent two-qubit control: Liquid state nuclear magnetic resonance
(NMR) quantum computing, postselected photonic qubits, and
superconducting qubits. Of these approaches, the first two
have little hope of constructing quantum registers with more
than about ten qubits, because of inherent exponential ineffi-
ciencies that require a significant change or addition to the
underlying technology.

To be able to usefully solve problems currently infeasible on clas-
sical computers with known quantum algorithms requires thou-
sands of qubits and billions of gates. Although up to eight qubits
have been nontrivially manipulated with atomic qubits in ion
traps, at this point no one has clearly demonstrated a computa-
tionally useful two-qubit register. It is expected that this will be
achieved shortly in ion traps.

In ion-trap quantum computing, the physical qubits are repre-
sented by two energy levels of ions that are electromagnetically
trapped. The ions can be manipulated by means of laser pulses.
The combination of the trapping potential and Coulomb repul-
sion leads to common vibrational modes that can be exploited
for applying nontrivial two-qubit gates. This approach to quan-
tum computing can be scaled by having multiple traps with the
ability to move ions between them as proposed by Wineland and
coauthors [12]. All but the requirement for sufficiently low noise
have been individually demonstrated. There are three main
challenges for experimental ion-trap quantum computing. The
first is to realize gates with sufficiently low error probabilities.
Error probabilities of about 0.5% have been demonstrated for
two-qubit gates [2]. The current guidelines for demonstration of
the low-noise requirement are to have less than 0.01% probabil-
ity of error per unitary gate. State preparation and measurement
can have probabilities of error of 1%, which has been demon-
strated in ion traps. The second challenge is to show that all the
requirements can be met in one device. This is a problem of tech-
nology integration and is typically much harder than demon-
strating each requirement independently. The third challenge is
to have an efficient way of quantum communicating between
ion-trap quantum registers, preferably by optical interconnects.
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The first steps in this direction have been taken by Moehring
and coauthors [8].

Superconducting qubits are based on the collective dissipa-
tion-less behavior of electrons in superconducting circuits.
There are a number of different ways to design such circuits
to exhibit the desired two-level subsystems needed to repre-
sent qubits. For reviews of the relevant physics, see [4], [5]. It
was not clear whether the collective effects were experimen-
tally accessible until some coherent control and measure-
ment of qubits in superconducting circuits was demonstrat-
ed by Nakamura and coworkers [9]. Unexpectedly, experien-
tal quantum computing with superconducting qubits is pro-
gressing rapidly and has overtaken other seemingly more
promising approaches. A possible advantage of supercon-
ducting qubits is that it is possible to have gates that are
much faster than is practical with atomic qubits. Because
noise also acts on shorter time scales, this is also a challenge,
requiring high-quality control involving very fast electron-
ics. At this time, slow gates are an advantage as the electron-
ics required for control is off-the-shelf. The path toward large
scale quantum computing with superconducting qubits is
not yet as well defined as for atomic qubits in ion traps, so
the requirements have not been demonstrated as clearly.
Because current realizations of superconducting qubits
require temperatures well below 1 K, the challenge of inte-
grating technology seems more severe at the moment.
Communication with devices in separate refrigeration units
is also difficult and no means for doing so has been demon-
strated so far.

There are many other approaches to building quantum com-
puters that are being investigated experimentally. Promising
ones include atomic qubits of trapped atoms in optical lattices
[3] and various quantum-dot-based schemes [7], both of which
have two-qubit gate demonstrations in progress. There are also
esoteric approaches, such as topological quantum computing
based on anyonic excitations, which is claimed to be intrinsical-
ly robust against noise. Whether and where these excitations
can be found in experimentally accessible condensed matter
phases is a subject of theoretical controversy and experimental
investigation [11].

Since the challenge of building quantum computers has no ana-
logue in the history of computing, this is a great time to be doing
research in quantum technologies. There are many theoretical and
experimental problems to be solved and challenges to be met, and
although difficult, they are likely surmountable. The associated
improvements in quantum control have wide applicability
beyond quantum computing proper. Assuming no fundamental
physics surprises, which would of course be welcome, | expect
the use of quantum mechanics in practical technology and com-
putation to become pervasive.
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Abstract

Man has grappled with the meaning and utility of randomness
for millennia. Randomness is paramount to many fields of sci-
ence, and in particular plays a key role in information theory and
coding theory. Here we explore some key aspects of the meaning
and utility of randomness in computation.

1. Introduction

The marriage of randomness and computation has been one of
the most fertile ideas in computer science, with powerful conse-
quences in a wide variety of areas ranging from cryptography to
computational learning theory to distributed computing. It
enabled new understanding (and uses) of fundamental concepts
such as knowledge, secret, learning, proof, and indeed, random-
ness itself.

In this short note we discuss the role of randomness in algo-
rithms, and its impact on their efficiency. It is taken, with some
modifications, from my survey “P, NP and Mathematics” [10]%.
This survey contains motivation, intuition and precise definitions
of computational complexity theory for the interested reader. In
particular, it discusses the rich field (which we do not discuss
here) that evolved from studying the role of randomness in proofs,
leading to such paradoxical (and highly useful) notions of zero-
knowledge proofs and holographic (or probabilistically checkable)
proofs. Other good sources on randomness in computation are
the books [6], [16] and the relevant chapters in [20].

Finally we remark on the connections to Information Theory and
Coding Theory. Randomness is of course an integral part of both,
in modeling and technique. Besides the well known presence of
randomness and probabilistic algorithms in Coding Theory, e.g.,
in the probabilistic construction of codes and in probabilistic
decoding algorithms, there are many new connections between
these fields and Computational Complexity Theory, benefitting
both sides. Many of these were born out of the computational
study of randomness in computation. Specific areas of interaction
include list-decodable codes, locally-decodable codes and
expander codes, for which computer science interest arose partly
from the study of probabilistic proofs, randomness extractors and
derandomization. Some of these connections and consequences to
coding are discussed in the monographs [9], [24], [25].

2. Preliminaries
We briefly and informally describe some of the complexity theo-
retic notions used in this paper, including Turing machines and

1This and other surveys mentioned below are available for personal use
from the authors’ home pages.

I[EEE Information Theory Society Newsletter

Avi Wigderson

Boolean circuits, and the classes P and A'P. More precise defini-
tions can be found in [10], as well as standard texts on
Computational Complexity such as [7], [18].

Algorithms are discussed informally, but assuming some formal
underlying computational model such as a Turing machine. The
specific choice of model is not important, since we will consider
the time efficiency of algorithms up to polynomial factors.
Computational problems are abstracted as functions f, where
given an input x, the task is computing f(x). Inputs are encoded
as binary strings; this representation induces a length measure
on inputs to f. The time complexity of an algorithm t(n) is meas-
ured asymptotically as the number of steps performed by the
algorithm on (the worst) input of length n. Algorithms (or pro-
grams) were traditionally viewed as completely deterministic,
and here we will explore enhancing them with access to random
coin tosses.

The class P, is the class of functions f for which some algorithm
computes f in time polynomial in n. This class is commonly used
to capture problems which have efficient? solutions.

The class NP captures in some intuitive sense many of the prob-
lems we would like to solve. These are all problems for which cor-
rect solutions can be verified efficiently (namely in polynomial
time). A canonical example of a problem in AP is SAT, the satis-
fiability problem. Here the input is a Boolean formula over, say, n
Boolean variables. The task is to determine if some assignment to
these variables makes the formula evaluate to “True”. Obviously,
given a guess of such assignment, one can easily verify its cor-
rectness by evaluating the formula. But brute for search over all
assignments will take exponential time in n.

The famous P versus NP question, namely “is P = N'P?”, asks
if brute-force search can be avoided in all these problems. For
example, can some clever algorithm always find satisfying
assignment in polynomial time (if one exists). Indeed, this is no
mere example; the problem SAT is an NP-complete problem,
which means it is “hardest” in the class AP. One important man-
ifestation of this fact is that P = AP if and only if SAT is in P.
NP-complete problems pervade mathematics and all sciences,
making this question so central. While having (on the face of it)
nothing to do with randomization, we’ll later see that it does.

Finally, we’ll need another computational model, that of Boolean
circuits. Informally, if Turing machines capture software, circuits
capture hardware. Boolean circuits compute a finite function on

2The “loaded” word efficient and its numerous interpretations across com-
putational models, resources and applications is the focus of computer
science, and the class P just happens to be one extremely important man-
ifestation of efficiency.
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(say) n input bits via a sequence of Boolean gates (a standard set
is {AND, OR, NOT}). To compute functions on arbitrary input
lengths one must specify a family of circuits, one for every input
length n. As before, the size complexity of such a circuit family
s(n) is measured asymptotically as the number of gates in the cir-
cuit for size n inputs. Circuits are often called “non-uniform”
algorithms, since in circuit families no specific relation need exist
between the circuits for different input lengths (while in “uni-
form” Turing machines, the same program handles at once all
input lengths).

The relation between the two models is interesting. Circuit fami-
lies can simulate Turing machines efficiently. But the converse is
false, due to this “nonuniformity” in circuit. To see this, note that
every function on n bits has a 2" size circuits (e.g., by expressing
the function in disjunctive normal form). Thus every function
(including undecidable ones) can be computed by circuit families.
However, for functions in A"P there is a general belief (substanti-
ated in a weak technical sense which is beyond the scope of this
article) that circuit size and Turing machine time behave similar-
ly. No subexponential size (namely 2°(M) upper bound is known
for e.g., SAT. Indeed, one major direction to proving that
P # NP, is attempting to prove the stronger result, that NP does
not even have polynomial size circuits. Like all other attempts on
this major problem, not much progress has been made, although
very interesting lower bounds were obtained for restricted fami-
lies of circuits, e.g., monotone and constant-depth circuits. Circuit
lower bounds will play a role in the results below.

3. Randomness in Algorithms

The following two sections tell the contradicting stories on the
power and weakness of algorithmic randomness.

3.1. The Power of Randomness in Algorithms

Let us start with an example, which illustrates the potential algo-
rithmic power of randomness. It concerns a problem that comes
up naturally in many mathematical areas, namely the discovery,
verification and proof of algebraic identities. Assume we work
here over the field of rationals Q. The n x n Vandermonde matrix
V (X1, ..., %n) in n variables has (x)i~1 in the (i, j) position. The
Vandermonde Identity is:
Proposition 3.1. detV(x;,....xn) = [Ti-j(Xi — X).

While this particular identity is simple to prove, many others like
it are far harder. Suppose you conjectured an identity
f(x1,...,Xn) =0, concisely expressed (as above) by a short arith-
metic formula say, and wanted to know if it is true before invest-
ing much effort in proving it. Of course, if the number of variables
n and the degree d of the polynomial f are large (as in the exam-
ple), expanding the formula to check that all coefficients vanish
will take exponential time and is thus infeasible. Indeed, no
subexponential time algorithm for this problem is known! Is there
a quick and dirty way to find out?

A natural idea suggests itself: assuming f is not identically zero,
then the variety of zeros it defines has measure zero, and so if we
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pick at random values to the variables, chances are we shall miss
it. If f is identically zero, every assignment will evaluate to zero.
So a “random” point in Q" will distinguish the two cases with
high probability. It turns out that this idea can be made precise, by
restricting random choices to a finite domain, and the following
can be simply proved:

Proposition 3.2 ([21], [28]). Let f be a nonzero polynomial of
degree at most d in n variables. Let r; be uniformly and independently
chosen from {1, 2, ..., 3d}. Then Pr[f(ry,..., rm) =0] < 1/3.

Note that since evaluating the polynomial at any given point is
easy given a formula for f, the above constitutes an efficient
probabilistic algorithm for verifying polynomial identities.
Probabilistic algorithms differ from the algorithms we have seen
so far in two ways. First, they postulate the ability to toss coins
and generate random bits. Second, they make errors. The beauty
is, that if we are willing to accept both (and we should!), we seem
to be getting far more efficient algorithms for seemingly hard
problems.

The deep issue of whether randomness exists in nature has
never stopped humans from assuming it anyway, for gambling,
tie breaking, polls and more. A fascinating subject of how to
harness seemingly unpredictable weak sources of randomness
(such as sun spots, radioactive decay, weather, stock-market
fluctuations or internet traffic) and converting them into a uni-
form stream of independent, unbiased coin flips, is the mathe-
matical study of randomness extractors which we shall not
describe here (see the excellent survey [22]). We shall postulate
access of our algorithms to such perfect coin flips, and develop
the theory from this assumption. We note that whatever
replaces these perfect random bits in the numerous practical
implementations of probabilistic algorithms seems empirically
to work pretty well.

The error inherent in probabilistic algorithms seems a more serious
issue—we compute to discover a fact, not a “maybe”. However, we
do tolerate uncertainty in real life (not to mention computer hard-
ware and software errors). Furthermore, observe that the error of
probabilistic algorithm is much more controllable—it can be
decreased arbitrarily, with small penalty in efficiency. To see this,
assume an algorithm makes error at most 1/3 on any input (as the
one above). Then running it k times, with independent random
choices each time, and taking a majority vote would reduce the
error to exp(—k) on every input!

Thus it is natural to revise the notion of efficient computation to
allow probabilistic algorithms with small error, and define the
probabilistic analog BPP (for Bounded error, Probabilistic,
Polynomial time) of the class P.

Definition 3.3 (The class BPP, [5]). The function f is in
BPP if there exists a probabilistic polynomial time algorithm A,
such that for every input x, PrlA(x) # f(x)] < 1/3.

Again, we stress that this probability bound is over the internal
coin-tosses of the algorithm, and holds for every input. Moreover,
replacing the error probability 1/3 by exp(—|x|), namely expo-
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nentially small in the input length, leaves the definition of PP
unchanged (by the amplification idea above)3.

Probabilistic algorithms were used in statistics (for sampling) and
physics (Monte Carlo methods) before computer science existed.
However, their introduction into computer science in the 1970s, start-
ing with the probabilistic primality tests of Solovay-Strassen [23] and
Rabin [19], was followed by an avalanche that increased the variety
and sophistication of problems amenable to such attacks tremen-
dously—a glimpse to this scope can be obtained e.g., from the text-
book [16]. We remark again that here we restrict ourselves only to
those probabilistic algorithms which save time, and note that ran-
domness seems to help save other computational resources as well!

We list here a few sample problems which have probabilistic
polynomial time algorithms, but for which the best known deter-
ministic algorithms require exponential time. These are amongst
the greatest achievements of this field.

= Generating primes ([19], [23]). Given an integer X (in binary),
produce a prime in the interval [X, 2x] (note that the prime num-
ber theorem guarantees that a random number in this interval is a
prime with probability about 1/|x|). \erification that the generat-
ed number is prime can be done efficiently either probabilistically
with the algorithms mentioned above, or deterministically, with
the recent breakthrough of [2] which we will mention later again.

= Polynomial factoring ([15]). Given an arithmetic formula
describing a multivariate polynomial (over a large finite field),
find its irreducible factors®.

= Permanent approximation ([13]). Given a nonnegative real
matrix, approximate its permanent® to within (say) a factor of 2.

= Volume approximation ([4]). Given a convex body in high
dimension (e.g., a polytope given by its bounding hyper-
planes), approximate its volume® to within (say) a factor of 2.

The most basic question about this new computational paradigm
of probabilistic computation, is whether it really adds any power
over deterministic computation.

Open Problem 3.4. 1s PP = P?

The empirical answer is an emphatic NO: we have no idea in sight
as to how to solve the problems above, and many others, even in

3This small error easily implies that some fixing of the randomness will not
err on any input of a fixed length n. This is the core of a result of Adleman
[1], that every problem in BPP has polynomial size circuits. It is another
demonstration of the power of nonuniformity.

4Note that it is not even clear that the output has a representation of poly-
nomial length—but it does!

5Unlike its relative, the determinant, which can be easily computed effi-
ciently by Gauss elimination, the permanent is known to be #P-complete

(which implies A/P-hardness) to compute exactly.

6Again, computing the volume exactly is #P-complete.
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subexponential time deterministically, let alone in polynomial
time. However, the next subsection should change this viewpoint.

3.2. The Weakness of Randomness in Algorithms

Let us start from the bottom line: if any of the numerous problems
in NP is hard, then randomness is weak. There is a tradeoff
between what the words hard and weak formally mean. To be con-
crete, we give perhaps the most dramatic such result of
Impagliazzo and Wigderson [11].

Theorem 3.5 ([11]). If SAT cannot be solved by circuits of size
2°(M then BPP = P. Moreover, SAT can be replaced in this statement
by any problem which has 29 -time algorithms’.

Rephrasing, exponential circuit lower bounds on essentially any
problem of interest imply that randomness can be always elimi-
nated from algorithms without sacrificing efficiency (up to poly-
nomial). Many variants of this result exist. Weakening the
assumed lower bound does weaken the deterministic simulation
of randomness, but leaves it highly nontrivial. For example, if
NP does not have polynomial-time circuits, then BPP has deter-
ministic algorithms with subexponential runtime exp(n®) for
every ¢ > 0. Moreover, analogs are known where the hardness
assumption is uniform (of the type P # N'P), e.g., [12].

Note the remarkable nature of these results: they show that if one
computational task is hard, than another is easy!

We are now faced with deciding which of two extremely appeal-
ing beliefs to drop (as we discover that they are contradictory!).
Either that natural problems (e.g., N’P-complete ones) cannot be
solved efficiently, or that randomness is extremely powerful.
Given that our intuition about the former seems far more estab-
lished, we are compelled to conclude that randomness cannot sig-
nificantly speed up algorithms, and indeed BPP = P.

Conjecture 3.6. BPP =P.

We now turn to give a high level description of the ideas leading
to this surprising set of results, which are generally known under
the heading Hardness vs. Randomness®. We refer the reader to the
surveys in [6], [20] for more.

We are clearly after a general way of eliminating the randomness
used by any (efficient!) probabilistic algorithm. Let A be such an
algorithm, working on input x, and using as randomness the uni-
form distribution U, on binary sequences of length n. Assume A
computes a function f, and its error on any input is at most 1/3.
The idea is to “fool” A, replacing the distribution U, by another
distribution D, without A noticing it!

This leads to the key definition of pseudorandomness of Yao [26].

"This class includes most NP-complete problems, but far more complex
ones, e.g., determining optimal strategies of games, not believed to be in /P.

8The title of Silvio Micali’s PhD thesis, who with his advisor Manuel Blum
constructed the first hardness based pseudorandom bit generator.
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Definition 3.7 (Pseudorandomness, [26]). Call a distribution
D pseudorandom if no efficient process® can “tell it apart™® from
the uniform distribution Up.

By the definition, any such distribution is as good as Up, as A’s
computation on x is an efficient process.

Remark 3.8. This definition specializes a more general one of
computational indistinguishability between probability distribu-
tions, which originates in the landmark paper of Goldwasser and
Micali [8]. This key behavioristic definition of randomness under-
lies the mathematical foundations of modern cryptography which
are laid out in that paper. We also note that computational indis-
tinguishability suggests a metric on probability distributions
which is a coarsening of the usual statistical distance (L1 norm) or
informational divergence. Computationally indistinguishable
distributions may have drastically different entropies, and we
make full use of it below.

Back to our derandomization task. Can we efficiently generate a
pseudorandom distribution D from only very few random bits?
Specifically, we would like to compute D = G(Up) where G is a
deterministic polynomial time algorithm and m « n. Such func-
tions G which produce pseudorandom distributions from short
random seeds are called pseudorandom generators. With them, a
deterministic simulation will only need to enumerate all possible
2M seed values (rather than the trivial 2"). For each such seed it
will use the output of G as “randomness” for the computation of
A on x, and take a majority vote. As the error of A was at most 1/3
under Up, and A’s output probability changes by at most 1/9
between D and Uy, the new error is at most 4/9, so the majority
vote will correctly compute f(x), for every x. If m gets down to
O(logn), then 2™ = n°D | and this becomes a deterministic poly-
nomial time algorithm.

But how can we construct such a pseudorandom generator G?
Since the definition of pseudorandomness depends on the com-
putational limitations of the algorithm, one might hope to
embed some hard function g into the workings of the generator
G, and argue as follows. If an efficient process can distinguish
the output of G from random, we shall turn it into an efficient
algorithm for solving the (assumed hard) function g. This yields
a contradiction.

Thus the heart is this conversion of hardness into pseudoran-
domness. The two main different methods for implementing this
idea are the original generator of Blum-Micali and Yao [3], [26]
(which must use hard functions g with very special structure, like
factoring or discrete logarithm), and the one by
Nisan-Wigderson [17] (which can use any hard function g that
has an exponential time algorithm). We note that here the hard-
ness required of g is of the average-case variety, which is either
assumed in the former, or has to be obtained from worst-case
hardness in the latter. Thus this field invents and uses new types

9This can mean an algorithm or a circuit.

10E.g., produce a given output with noticeably different probability, say
1/9.
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of efficient reductions, translating nonstandard computational
tasks (from distinguishing a random and pseudorandom distri-
butions, to computing a function well on average, to computing
it in the worst case.

We note that this very general line of attack may benefit from
specialization. We saw that to derandomize a probabilistic algo-
rithm all we need is a way to efficiently generate a low entropy
distribution which fools it. But fooling a specific, given algorithm
may be easier than fooling them all. Indeed, careful analysis of
some important probabilistic algorithms, (specifically, the way
they use their randomness), has enabled their derandomization
via tailor-made generators. These success stories (of which the
most dramatic is the recent deterministic primality test of [2])
actually suggest the route of probabilistic algorithms and then
derandomization as a paradigm for deterministic algorithm
design. More in the textbook [16].

Finally, let us remark on recent progress regarding this mysteri-
ous connection between hardness and randomness. In the theo-
rems above, it works in one way. Given a hard function, we can
derandomize. A recent remarkable result proves a partial con-
verse. Kabanets and Impagliazzo [14] showed that derandomiz-
ing (the extremely specific and simple) probabilistic algorithm
embodied in Proposition 3.2 above is equivalent to proving certain
circuit lower bounds. This news may be taken negatively, saying
we are unlikely to prove unconditional derandomization results,
or positively, indicating another route to proving lower bounds,
namely via derandomization.

References

[1] L. Adleman, “Two Theorems about Random Polynomial
Time,” Proceedings of 19th IEEE Symposium on Foundations of
Computer Science, 1978, pp. 75-83.

[2] M. Agrawal, N. Kayal, and N., Saxena, “Primes is in P,” Ann.
of Math., vol. 160, no. 2, pp. 781-793, 2004.

[3] M. Blum and S. Micali, “How to generate cryptographically
secure sequences of pseudorandom bits,” SIAM J. Comput., vol. 13,
pp. 850-864, 1984.

[4] M. Dyer, A. Frieze, and R., Kannan, “A random polynomial
time algorithm for approximating the volume of a convex body,”
J. ACM, vol. 38, no. 1, pp. 1-17, 1991.

[5] J. Gill, “Computational complexity of probabilistic Turing
machines,” SIAM J. Comput., vol. 6, pp. 675-695, 1977.

[6] O. Goldreich, Modern Cryptography, Probabilistic Proofs and
Pseudorandomness. Algorithms Combin. 17, Springer-Verlag,
Berlin 1999.

[7] O. Goldreich, Computational Complexity, a Conceptual Perspective.
Cambridge University Press, 2008.

[8] S. Goldwasser and S., Micali, “Probabilistic encryption,” J.
Comput. System Sci., vol. 28, pp. 270-299, 1984.

I[EEE Information Theory Society Newsletter



@

[91 V. Guruswami, Algorithmic Results in List Decoding,
Foundations and Trends in Theoretical Computer Science, vol. 2,
no. 2, NOW Publishers, 2007.

[10] A. Wigderson, “P, NP and Mathematics—a computational
complexity perspective,” Proceedings of the International Congress of
Mathematicians, vol. I, EMS publishing, 2007, 665-712.

[11] R. Impagliazzo and A. Wigderson, “P = BPP unless E has
Subexponential Circuits: Derandomizing the XOR Lemma,”
Proceedings of the 29th annual ACM Symposium on Theory of
Computing, ACM Press, New York 1997, 220-229.

[12] R. Impagliazzo and A. Wigderson, “Randomness vs. Time:
De-randomization under a uniform assumption,” Proceedings of
the 39th Annual Symposium on Foundations of Computer Science,
IEEE Comput. Soc. Press, Los Alamitos, CA, 1998, 734-743.

[13] M. Jerrum, A. Sinclair, and E. Vigoda, “A polynomial-time
approximation algorithm for the permanent of a matrix with
nonnegative entries,” J. ACM, vol. 51, no. 4, pp. 671-697, 2004.

[14] V. Kabanets and R. Impagliazzo, “Derandomizing Polynomial
Identity Tests Means Proving Circuit Lower Bounds,” Comput.
Complexity, vol. 13, no. 1-2, pp. 1-46, 2004.

[15] E. Kaltofen, “Polynomial Factorization,” in Computer Algebra:
Symbolic and Algebraic Computation, 2nd ed., Springer-Verlag,
Wien, New York 1983, 95-113.

[16] R. Motwani and P. Raghavan, Randomized Algorithms.
Cambridge University Press, Cambridge 1995.

[17] N. Nisan and A., Wigderson, “Hardness vs. Randomness,” J.
Comput. System Sci., vol. 49, no. 2, pp. 149-167, 1994.

[18] C.H. Papadimitriou, Computational Complexity. Addison
Wesley, Reading, MA, 1994,

IEEE Information Theory Society Newsletter

[19] M.O. Rabin, “Probabilistic algorithm for testing primality,” J.
Number Theory, vol. 12, pp. 128-138, 1980.

[20] S. Rudich and A. Wigderson, (eds.), Computational Complexity
Theory. IAS/Park-City Math. Ser. 10, Institute for Advanced
Studies/Amer. Math. Soc., 2000.

[21] J.T. Schwartz, “Fast probabilistic algorithms for verification of
polynomial identities,” J. ACM, vol. 27, no. 4, pp. 701-717, 1980.

[22] R. Shaltiel, “Recent Developments in Explicit Constructions
of Extractors,” Bull. EATCS, vol. 77, pp. 67-95, 2002.

[23] R.M. Solovay and V. Strassen, “A fast Monte-Carlo test for
primality,” SIAM J. Comput., vol. 6, no. 1, pp. 84-85, 1977.

[24] M. Sudan, Efficient Checking of Polynomials and Proofs and the
Hardness of Approximation Problems. ACM Distinguished Theses,
Lecture Notes in Comput. Sci. 1001, Springer-Verlag, Berlin
1996.

[25] S. Vadhan, A Unified Theory of Pseudorandomness, SIGACT
News, vol. 38, no. 3, 2007.

[26] A.C. Yao, “Theory and application of trapdoor functions,”
Proceedings of the 23th annual IEEE Symposium on Foundations of
Computer Science, IEEE Comput. Soc. Press, Los Alamitos, CA,
1982, pp. 80-91.

[27] A.C. Yao, “How to generate and exchange secrets,” in
Proceedings of the 27th annual IEEE Symposium on Foundations of
Computer Science, IEEE Comput. Soc. Press, Los Alamitos, CA,
1986, pp. 162-167.

[28] R.E. Zippel, “Probabilistic algorithms for sparse polynomi-
als,” in Symbolic and algebraic computation (EUROSCAM °’79),
Lecture Notes in Comput. Sci. 72, Springer-Verlag, Berlin 1979,
pp. 216-226.

December 2008



41

Recent Activities of the IT Student Committee

Brooke Shrader, lvana Maric, Lalitha Sankar and Aylin Yener

First, we would like to note that The First Annual School of
Information Theory was held the first week of June at the Penn
State Campus, in University Park, PA. A detailed report of this
exciting event was presented in the September issue of the
newsletter. The preparations for the Second Annual School of
Information Theory are underway and will be communicated in
the subsequent issues.

Now onto the events at ISIT 2008: For the fourth consecutive year,
the Student Committee hosted two well-attended student lunch
events at ISIT:

The Roundtable Research Discussion and Lunch was held on
Monday, July 7 during ISIT. There were over 130 students and
post-docs in attendance - enough to fill the Grand Ballroom East.
In fact, the turnout was so overwhelming that the lunch line
extended far outside the room! We would like to thank the vol-
unteer discussion leaders, who are listed next to the discussion
topics below, for their enthusiastic participation.

= Graphical models - Alex Dimakis (UC Berkeley)

= Source coding - Krish Eswaran (UC Berkeley)

= Feedback - Ramji Venkataramanan (University of Michigan)

= Interference and Secrecy - Xiang He (Penn State)

= Relaying - Bobak Nazer (UC Berkeley)

= Distributed detection and estimation - Anima Anandkumar
(Cornell)

= Scaling laws - Awlok Josan (University of Michigan)

= Zero-error Information Theory - Salim El Rouayheb (Texas
A&M)

= Optimization - Chee Wei Tan (Princeton)

As in the previous years, a panel event was organized during the
Thursday lunch hour. This year, the panel was dedicated to the
memory of the late Professor Sergio Servetto, and was titled
“What Makes a Great Researcher?” We were lucky to have the
following great panelists: Thomas Cover and Andrea Goldsmith
of Stanford, Sergio Verdu of Princeton University, Alon Orlitsky
of UCSD and Alexander Barg of University of Maryland. The
panel moderator was Aylin Yener of Penn State University. Once
again the panel event attracted over 130 attendees. As has

Students at the round table event.

December 2008

become a custom, free IT student committee T-shirts were dis-
tributed to the participants. We extend our gratitude to ISIT local
arrangement chairs Raviraj Adve, and TJ Lim, both of University
of Toronto, for their help in the organization of these events. We
especially thank Raviraj Adve for his help with ordering T-shirts
and lunches.

We are happy to announce that the student paper award - first pro-
posed by the student committee, and presented for the second time
at this conference following ISIT'07 in Nice - was awarded to three
students: they were Paul Cuff (Stanford) for his paper titled
“Communication Requirements for Generating Correlated
Random Variables”, Satish Babu Korada (EPFL) for his paper coau-
thored with Ruediger Urbanke (EPFL) and titled “Exchange of
Limits: Why Iterative Decoding Works”; and to Yury Polyanskiy
(Princeton) for his paper coauthored with H. Vincent Poor
(Princeton) and Sergio Verdu (Princeton), titled “New Channel
Coding Achievability Bounds”. Congratulations to the winners!

Finally, we would like to express our deepest thanks and grati-
tude to two of the members of our committee, Brooke Shrader
and Lalitha Sankar, who have been tireless volunteers on the stu-
dent committee from the beginning and now moved on to the
next phase in their lives. We congratulate Brooke, who recently
received her PhD from University of Maryland and now is a sci-
entist at MIT Lincoln Labs. We wish Brooke and Lalitha the best
for their future.

At the same time, we welcome our new members, Krish Eswaran
of UC Berkeley as our new student co-chair; Nan Liu of Stanford,
Deniz Gunduz of Princeton/Stanford, and Xiang He of Penn State
as our new event coordinators and members at large; and
Matthieu Bloch of Notre Dame for web-related topics. We look for-
ward to working with them towards new and exciting activities.

As always, we look for volunteers to join the committee and help
with organization of various future events. If you would like to be
a volunteer, please e-mail Aylin Yener at yener@ee.psu.edu, lvana
Maric at ivanam@wsl.stanford.edu or Krish Eswaran at
keswaran@eecs.berkeley.edu. We welcome your input, comments
and look forward to hearing from you.
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Update on the Society’s Outreach Efforts

This year the Board of Governors decided at our first meeting of the
year in Porto to back an initiative to increase our outreach to encour-
age diversification of our membership, particularly for women
members, in a way that is inclusive and beneficial for all our mem-
bers, to be led by me, with the advice and assistance of Bob Gray. In
doing so, we are following the lead of successful programs in relat-
ed fields. Many of our members may already be familiar with the
very well attended ICASSP women's breakfast or with the network-
ing community's N2 Women (networking networking women) ini-
tiative (http://www.comsoc.org/N2Women/). The N2 Women
have helpfully documented what seem to be the main components
of a successful initiative: events at main conferences, co-opting both
senior and junior members of the community, a mailing list with
very few but useful e-mails, and a visible web site hosted by the rel-
evant society.

The level of participation of women in the Society provides a
mixed picture. The participation of women in our society at dif-
ferent member levels is given in the table below. For the purpose
of comparison, two of our sister societies, Signal Processing (SP)
and Communications (COM) are also shown. The grades of mem-
bership are shown as follows GSM - graduate student member,
Mem - member, SM - senior member, Fel - Fellow, LF - Life Fellow.

GSM-F Mem-F SM-F Fel-F LF-F GSM-M Mem-M SM-M Fel-M LF-M

m 25 101 22 9 1 178 1613 435 204 137
SP 79 473 134 30 0 613 8176 1828 440 160
COM 330 1385 211 19 2 2331 22039 3458 606 327

The numbers bear out the pattern, often observed in science and
engineering, of a shrinking pipeline. Overall, our numbers are
comparable to those of our sister societies. The male/female mul-
tiplier at the different levels are, over all Fellows (Fel+LF), 34 for
IT, 20 for SP, 44 for COM; for GSM they are around 7 for all three
societies and for members they are all between 16 and 17. The
only worrisome disparity with respect to other societies seems to
occur at the senior member level, which is the pipeline for
Fellows. The ratios at that level of membership are 19 for IT, 13 for
SP and 16 for COM. While the number of Fellows in the last years

Panel: Balancing your career and personal life -
a perspective from the Information Theory community

panelists : Andrea Geldsmith (Stanford) , Robert Gray
(Stanford), Muriel Medardy(MiT), Ubli Mitra (USC)

When: Wednesday 12:45 - 2:00 PM
Where: Baliroom East

How do you balance career and personal needs? Two-body problems, when (whether)
to have children, how to address perceptions in your professional environment - in this
panel, several members of the Information Theory community will share their perspec-
tives on these and other issues.
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has risen considerably (an inspection of the list of Fellows shows
at least 7 in the last 8 years), it would appear the majority of those
(possibly all - IEEE did not have the data available) rose to the
level of Fellow through Societies other than IT. The historical data
on participation of our women members in ISIT TPCs has been
very variable. While no numbers are easily available, an inspec-
tion of the list of TPC members (which may suffer from some
inaccuracy in my visual inspection, for which | apologize) shows
that the numbers were 3/58 for 2005, 1/55 for 2006, 6/56 (and 2/4
TPC co-chairs) for 2007 and 3/63 for 2008. The trend of participa-
tion in the future may be increasing. Participation of women in
leadership of the Society seems to be encouraging. The participa-
tion of women in the Board of Governors seems relatively robust
recently, with about 3720, including our President elect.

The topics of our meetings have been selected in keeping with our
mission to provide events that address needs and encourage par-
ticipation of our underrepresented demographics, while being of
interest and use to the community at large. The topic of balancing
work and life is often important in career decisions of women
and, increasingly, in those of men as well. Our first event took
place at ISIT in Toronto, on the topic of balancing career and per-
sonal life, with planned panelists of Andrea Goldsmith, Bob Gray;,
Ubli Mitra and myself. Fittingly, given the topic of the panel, | had

BEYOND
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to rush home because of a very sick child, but Lalitha Sankar and
Elza Erkip kindly agreed to participate on the panel. The atten-
dance at the event was very encouraging. The attendance was of
about 150-200, and the benefit of the event to the entire commu-
nity was evidenced by the fact that men constituted one half or
more of the audience.

The issue of finding mentoring is of particular importance for
demographic groups with low representation. Our second event,
spearheaded by Todd Coleman, took place at Allerton, on the
topic of finding mentors in grad school and beyond, was done in
collaboration with the student initiative, led by Aylin Yener. The
roughly 40 participants included junior and senior faculty as well
as graduate students and postdocs. The panelists (Todd
Coleman, Elza Erkip, Olgica Milenkovic, Roy Yates, and Aylin
Yener) and the participants discussed topics concerning how to
find mentors within and outside one's institution, both during

graduate school and one's professional career, and how to be a
more effective mentor. Our sincere thanks go to the organizers of
ISIT and Allerton 2008 for their help and support in making these
events a success.

In order to help foster an online community, we have created a
new mailing list withits@mit.edu (Women in the Information
Theory Society), which has been collecting new names and which
is open to all. This list will be used with great restraint, mainly to
advertise future events. We are also collecting web pages from
interested members of our Society to create a WithITS webpage,
which we shall link to our Society web site. If you wish to be
added to this mailing list or to have your web page added to the
WithITS, please e-mail me at medard@mit.edu (please send the
url of your webpage if you wish for it to be included). Feel free to
contact me with suggestions for future events, in particular if you
would be interested in helping to lead such an event.

Vijayfest - International Workshop on Advances in

Communications

The International Symposium on Advances in
Communications in honour of Vijay K.
Bhargava on the occasion of his 60th birthday
was held in Victoria, British Columbia on
September 21-23, 2008. A prolific scholar, Vijay
has made fundamental contributions to com-
munication theory, coding theory, and wire-
less communications. He is also a great educa-
tor, which was recognized with the 2002 IEEE
Graduate Teaching Award. During the period
that he served as the Chairperson of the Department of Electrical and
Computer Engineering at the University of British Columbia, the
department underwent significant expansion including a new build-
ing, 20 new faculty and a doubling of student numbers.

Vijay Bhargava

b

Aaron Gulliver, lan F. Blake, and Vahid Tarokh

Vijay is very active in the IEEE and in particular the IT Society.
He has served as President of the Information Theory Society,
Vice President of the Regional Activities Board, Director of
Region 7, Montreal Section Chair and Victoria Section Chair.
He is a past member of the Board of Governors of the IEEE
Communications Society and the IEEE Information Theory
Society. He organized ISIT'83 (St. Jovite) with lan Blake and L.
Lorne Campbell, and ISIT'95 (Whistler) with lan Blake and
Michael Pursley. In 1987 he founded the IEEE Pacific Rim
Conference on Communications, Computers and Signal
Processing, and in 1988 the Canadian Conference on Electrical
and Computer Engineering. He was awarded the IEEE
Haraden Pratt Award in 1999 and the IEEE Larry K. Wilson
Transnational Award in 1996.

Moe Win, Norman Beaulieu, Vijay Bhargava, Sherman Shen, Ross Murch, Khaled Ben Letaief, and Vahid Tarokh.
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The Workshop featured twenty-two presentations, plus a gradu-
ate student session. The speakers and titles of the workshop
papers are listed below:

Speaker
Vincent Poor

Vahid Tarokh

Charlie Yang
David Haccoun
Han Vinck
Dong In Kim

Chengshan Xiao

Poramate Tarasak

Angel Bravo
Andreas Antoniou

Hlaing Minn

Title

Tight Finite-blocklength Bounds in
Channel Coding

Capacity Bounds and Signaling Schemes
for Bi-directional Coded Cooperation
Protocols

An Information Theoretic Study of Stock
Market Behavior

Simple Iterative Decoding Using
Convolutional Doubly Orthogonal Codes
Capacity and Coding for Impulse Noise
Channels

Near-optimal Receiver for Multiuser
UWB Systems

Channel Equalization and Symbol
Detection for Single Carrier Broadband
MIMO Systems with Multiple Carrier
Frequency Offsets

Cyclic/Phase Shifting for Active
Interference Cancellation on Multiband
OFDM UWB Transmission
Multireception Systems in Mobile
Environments

On the Roots of Wireless
Communications

An Improved Ranging Method in
OFDMA Systems
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Ross Murch

Hamid Jafarkhani
Francois Gagnon
Stephen Wicker
Vikram Krishnamurthy
Norman Beaulieu

Ekram Hossain

Fortunato Santucci

Qiang Wang

Anwarul Hasan

Hugues Mercier

MIMO Systems and Practical Antenna
Considerations

Network Beamforming

Multi-user Detection for Ad-hoc
Networks in Emergency and Tactical
Scenarios

Advanced Sensing Systems and the Right
to Privacy

Global Games Approach for
Decentralized Spectrum Access

Are Amplify-and-Forward Relaying and
Decode-and-Forward Relaying the Same?
Cognitive Radio MAC: Practical Issues,
Potential Approaches and Open
Problems

Reliability and Efficiency Analysis of
Distributed Source Coding in Wireless
Sensor Networks

A Generalized Decoding Problem
Detecting Errors in Elliptic Curve Scalar
Multiplication Units
Synchronization-Correcting Codes:
Challenges and Applications

The session chairs were all former Ph.D. students of Vijay who are
now professors. The symposium was held in the beautiful and his-
toric Fairmont Empress Hotel in the center of Victoria. The highlight
of the social program was a magnificant banquet on September 22
(Vijay’s birthday), with Alexandre Henri-Bhargava serving as the
Master of Ceremonies. Over 100 attendees were entertained with
numerous stories about Vijay and his travels around the world.

Aaron Gulliver, Vijay Bhargava, Han Vinck, Vahid Tarokh, lan Blake and Vincent Poor.
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Marvin K. Simon, 1939-2008

45

Robert McEliece

Voulez-vous savoir le grande drame de ma vie? C'est que j"ai mis mon génie dans ma vie; je n*ai mis que mon talent dans mes ceuvres. --- Oscar Wilde.

Marv Simon was a friend of, and an important
contributor to, the Information Theory Society,
but his primary intellectual home was the
Communications Society. So when he died
untimely at the age of 68 on September 23 last
year, it was certainly appropriate that a full-page
obituary appeared in the Communications
Magazine,! rather than the IT Newsletter. But as ISIT 2008 recedes
into history and Marv's Yahrzeit approaches, I'd like to share some
of my memories of this remarkable man.

I'll skip his many professional achievements, which were in any
event covered in the earlier obituary. Suffice it to say that Marv
was one of the most prolific and influential communications
researchers of his generation. Without ever having held a full-
time university post, he mentored dozens of students and
younger colleagues, including IT luminaries Dariush Divsalar
and Slim Alouini. He was a true intellectual, and nothing delight-
ed him more than the discovery of a new inequality or a simpli-
fied proof, which he would be more than happy to share.

But Marvin was much more than a successful scientist. His nim-
ble mind led him into many unexpected places. For example, in
the 1980's he became one of the world's experts on computer
adventure games. During this time he wrote several best-selling
books with the solutions to many popular games, among which
“Keys to Solving Computer Adventure Games" and "Hints, Maps,
and Solutions to Computer Adventure Games," are still available
on amazon.com. He acquired this expertise during hundreds of
hours spent playing computer games with his son Jeffrey. (He
was an extraordinarily loyal father to Jeffrey, recently losing 50
pounds by becoming a guinea pig for his son's nutritional theo-
ries.) His daughter Brette was, and is, a successful corporate

1 p. 22, November 2007 issue.
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lawyer, which was a great source of naches for Marv. Marv would
also have wanted everyone to know that near the end of his life,
when his doctors had despaired, Brette refused to accept their
pessimistic prognoses, and through her extraordinary interven-
tion skills added at least an extra year to Marv's life.

The most memorable interactions | personally had with Marvin
were musical. In January 2004 Marvin agreed to be the piano
player for my performance of the song “Thank You Very Much”
in the 2004 Shannon Lecture, and we began rehearsing weekly
at his house. During these rehearsals, | learned that Marv led
two lives: research engineer, which | of course knew about, and
accomplished musician, which I didn't. It turned out that Marv
had been studying music, mostly piano, since age 9, and he was
good enough to make a living at it. And although he had had
to make a binary career choice (choosing engineering over
music) as a teenager, he had never stopped studying, playing,
and performing.

As far as my own needs went, Marv was perfect. He was a gifted
sight-reader, and a patient teacher. He owned a enormous collec-
tion of sheet music, including an arrangement of “Thank You
Very Much” that | had never seen before and which | eventually
chose for the Shannon Lecture. He knew everything about the
composer Leslie Bricusse, including the correct pronunciation of
his last name, and to top it all, he and his wife Anita had seen the
musical “Scrooge” with the original cast in London.

And finally if I may be permitted a brief generalization, Marv
Simon was soft-spoken but self-confident, a creative thinker who
combed his hair, proud of this family but aware of their faults;
and a fine host.

Atque in perpetuum, Marvin, ave atque vale.
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GOLOMB’S PUZZLE COLUMN™

Proofs by Dissections, Tiling, EtC. s omonw. colomb

Various geometric techniques can be used to give pictorial
proofs of facts, formulas, and relationships. For example, the
identity

1+34+54---+@2n—1)=n? 5n1 BB B =1 +243+---4+n)2,

can be readily visualized from . For a right triangle with legs of length a and b, and a
hypotenuse of length ¢, we know ¢? = a2 + b?. Prove this
by superimposing a tiling of the plane with squares of side
¢ on a periodic tiling using squares of side a and of side b.
(Mustrate your tiling proof using (a, b, ¢) = (3,4,5).)

3
1—| . The partition function pt(n) counts the number of ways to

write n as a sum of positive integers, without regard to
order. (Since 4 can be written as:
| ] 4,3+1,2+2,241+1,1+1+1+41, we have
To cut the Greek cross (X-pentomino) I into four congru- pt(4) = 5.) We use pt“(n) to denote the number of partitions
ent pieces which can be reassembled to form a square, a tiling of ninto at most k parts, and ptx(n) to denote the number of
of the plane with these X’s is superimposed on a tiling with partitions of n into parts not exceeding k. (Thus pt2(4) = 3
squares of the same area. since it counts 4,3 4+ 1,2 + 2; and ptx(4) = 3 since it counts
242,2+1+1, 1+1+41+1) Show geometrically that
The pieces A, B, C, D are congruent to each other, and can be pt‘(n) = pt(n), and illustrate your proof of the case
assembled to form either a square of side /5, or an X com- n=>5 k=3
posed of five squares of side 1.

. The determinant ad — bc of the matrix i z> equals (in

absolute value) the area of the parallelogram whose ver-
tices are (0, 0), (a, b), (c,d), and (a+c, b+ d).

(This is the parallelogram based on the row vectors « = (a, b)
and B = (c, d).) Think of ad and bc as areas of rectangles, and
give a geometric proof (by dissection) to show that the area of
the parallelogram equals |ad — bc].

(a+c,b+d)

Your task is to find geometric proofs of each of the following.

1. If a rectangle is inscribed on the base of an acute triangle, (0,0)
its area cannot exceed half the area of the triangle.
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GOLOMB’S PUZZLE COLUMN™

Some Problems About Primes Solutions

Solomon W. Golomb

1. “Every positive integer is in one and only one of the 4. The largest odd N such that all

. The ratio

sequences Ap =n+m(n) and By = pp + n—1 (with n > 1)~
is an instance of what | call the “Sales Tax Theorem.” We
imagine a place where the sales tax starts at 0 and increases
by 1¢ at each of the values pp, with n > 1. Then the tax on an
item listed at n¢ will be 7 (n)¢, for a total price of n + 7 (n).
When the list price (in cents) goes from py — 1 to pn, the
sales tax increases by 1¢, so the total price increases by 2¢.
Thus, the total prices (in cents) that do not occur are precise-
ly the numbers pn +7(pn) —1=pan+n—1.

(N)

starts out, for N > 1, at (2) = 2; and since
li Jr(x)
My 0

=0, we see that limy_, » ﬂ(x) = oo That is, the
ratio % becomes (and ultlmately remains) arbitrarily
large. Thus, to show that, for N > 2, H(N) takes every integer
value k > 2, we need only show that (N) cannot skip an
integer when it is increasing, i.e., that W <k< n(NJlll
cannot occur for integer k > 2. Now, either 7 (N + 1) = 7(N)
or t(N+1)=x(N)+1. In the former case, from
F(LN) <k< Db we get N < kr(N) < N+1, putting the
integer kr (N) between two consecutive integers, an impossi-
bility. But in the latter case, % <k< % < % again
giving N < kr(N) < N+ 1. (The first few integer values of
% =k occur at least three times each. Does this pattern
persist? Can such a result be proved?)

. The largest N such that all ¢(N) —1 values of k with
1 <k=<N and g.c.d.(k,N) =1 are prime is N = 30, where
¢(30) — 1 =7, and these seven values of k, {7, 11, 13, 17, 19,
23, 29, are all the primes p with 5 < p < 30.

1¢(N)—1 odd values of k with

1<k<N and g.c.d(k,N)=1 are

prime is N = 105, where

$#(105) — 1 = 23, and these 23 odd

values of k, {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103}, are all the primes p with
7 < p<105.

- Z(N) = N [p< (1 — é), where y=+/N, is an integer for
exactly seventeen values of N > 0:{1, 2, 3,4, 6, 8,9, 12, 15, 18,
21, 24, 30, 45, 70, 105, 154. For y = /N > 13, and thus for
N > 169, the denominator of ]_[ (1= l) will contain
prime factors that cannot be ellmlnated by multiplication
times N.

. For the same 17 values of N in the solution to Problem 5, and
for no others, 7(N) = 7 (y) + Z(N) — 1, where y = VN. Itisa
lucky coincidence that N =70 and N = 154 are solutions,
since these values of N are not multiples of all the odd
primes pwith p<y=+/N.
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Guest Column: News from the National

Science Foundation

Dear reader,

I am sad to say, this is the last quarterly guest column | am writing
in this series. It has been a privilege to fulfill part of my duty as your
program officer by utilizing this space to write to you about rele-
vant NSF programs and news, and facilitating our interaction on all
that impact us as professionals in the communications community.

New and Upcoming Programs

Cyber-Enabled Discovery and Innovation, our NSF-wide multidiscipli-
nary program, has completed its maiden voyage of 2008 with a fantastic
group of projects, clearly poised to potentially produce transformative
science. At the time of writing, the last of the thirty-six awards is being
made by our grants division; therefore, by the time you read this, there
will have been plenty of publicity about the results of CDI’s first year.

We revised the CDI solicitation based on the lessons learned from
year 1: http://www.nsf.gov/pubs/2008/nsf08604/nsf08604.htm .
The solicitation is open, and of course, | am hoping for an even
bigger participation by our community in unconventional intellec-
tual partnerships that the program calls for.

News from the Communications Program

In July we received, as usual, an exciting batch of CAREER pro-
posals. The CAREER panel for Communications and Information
Foundations will be held, as scheduled, the first week in October.
The review panel, which comprises experts who care deeply for
our junior faculty and for the program, will have a hard time
choosing between these terrific proposals.

As | proudly announced in the last installment, our Communications
Program has become its own “Cluster;” i.e., we are no longer a “program
element” under Theoretical Foundations, rather, a full blown program
called “Communications and Information Foundations (CIF)” as part of
the Computing and Communications Foundations Division, which will
continue to serve the Communication, Information Theory, and Signal
Processing communities. CIF is part of the coordinated CISE solicitation
2009, with its ongoing research foci, in addition to new frontiers in quan-
tum information theory and foundations of secure communications.

Our community should also find that part of the directorate-wide
cross-cutting program “Network Science and Engineering
(NetSE)” is relevant to our interests in network information theory
and coding, wireless networks, and sensor networks areas. There
was a NetSE informational meeting held on September 5, where
our community was well represented.

At the time of writing, the 2009 CISE solicitation which includes

CIF, NetSE, and other areas of potential interest to our community,
is open: http://www.nsf.gov/funding/pgm_list.jsp?org=CISE .
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Sirin Tekinay

Due to changing rules and regulations of the NSF’'s Human Resource
Management regarding rotators such as yours truly, it turned out |
could not be offered a position here, despite being recommended for
one. The worst part of this was that the representation of our commu-
nity has been jeopardized. While | personally made plans to relocate to
Istanbul, at the same time, | immediately applied for the volunteer sta-
tus in order to make sure our program would enjoy seamless coverage.
| have been broadcasting a message to our community, as widely
as | can, suggesting that people get involved, communicate with
NSF administration, and make sure our great community continues to
have the champion it deserves at NSF. I'm glad to see NSF administra-
tion working hard to make up for their mistakes by working on the job
announcement, and actively recruiting folks. | look forward to handing
the torch over to another member of our community who will be our
representative and advocate.

The “Social Scene”

The entire CDI team received the NSF Award for “Collaborative
Integration” with a big luncheon on September 8. The award was
announced on June 11; however, since the CDI team is so big and the
CDI program is so special, the NSF Director gave this special party to
celebrate its success. Ninety-nine plaques were given out: the team
has grown, beyond the official working group of twenty four, com-
prising two representatives from each part of the foundation; we have
an extended family of program officers who helped with the review
process, acted as backup to the working group members; then we
have the administrative staff, the unsung heroes who made it happen.
It was a bittersweet farewell of sorts to the CDI chair, yours truly.

On a Personal Note

I have accepted the position of Vice Rector for Research and Technology
atanew, privately funded research university in Istanbul, my hometown.
The school is called Ozyegin University (http.//ozyegin.
edu.tr/eng/main/defaultasp) and it boasts many firsts in Turkey, from
student loans to having an executive academic administrator dedicated
to research and technology. My second hat there will be the Director of
School of Engineering. | am busy establishing the vision and putting
together a portfolio of applied research. We already have many reverse-
brain-drain hires we are proud of, and we are looking forward to more
(http://0zyegin.edu.tr/eng/insanKaynaklariZisOlana klari.asp). The
School of Business has started its classes with a very good bunch of stu-
dents and the School of Engineering is gearing up to open its doors to stu-
dents in September 2009.

As | leave my post at your service, | am getting back into our inter-
national research community, at a different level than | left. | look
forward to our continued interaction in this new capacity.

... Always, dream big, and keep in touch!
Sirin Tekinay
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Ca” fOr NOmInatlonS continued from page 3

IEEE Information Theory Society 2009 Aaron
Wyner Distinguished Service Award

The IT Society Aaron D. Wyner Award honors individuals who
have shown outstanding leadership in, and provided long stand-
ing exceptional service to, the Information Theory community.
This award was formerly known as the IT Society Distinguished
Service Award. Nominations for the Award can be submitted by
anyone and are made by sending a letter of nomination to the
President of the IT Society. The individual or individuals making
the nomination have the primary responsibility for justifying why
the nominee should receive this award.

NOMINATION PROCEDURE: Letters of nomination should

- Identify the nominee's areas of leadership and exceptional serv-
ice, detailing the activities for which the nominee is believed to
deserve this award;

- Include the nominee's current vita;
- Include two letters of endorsement.

Current officers and members of the IT Society Board of Governors
are ineligible.

Please send all nominations by March 15, 2008 to IT Society
President, Andrea Goldsmith <andrea@systems.stanford.edu>.

IEEE Information Theory Society 2009 Paper
Award

The Information Theory Society Paper Award is given annually for
an outstanding publication in the fields of interest to the Society
appearing anywhere during the preceding two calendar years. The
purpose of this Award is to recognize exceptional publications in
the field and to stimulate interest in and encourage contributions to
fields of interest of the Society. The Award consists of a certificate
and an honorarium of US$1,000 for a paper with a single author, or
US$2,000 equally split among multiple authors. The award will be
given for a paper published in the two preceding years.

NOMINATION PROCEDURE: By March 1, 2009, please email the
name of the paper you wish to nominate, along with a supporting
statement explaining its contributions, to the IT Transactions
Editor-in-Chief, Ezio Biglieri, at <ezio.biglieri@gmail.com>.

IEEE Joint Comsoc/IT 2009 Paper Award

The Joint Communications Society/Information Theory Society
Paper Award recognizes outstanding papers that lie at the inter-
section of communications and information theory. Any paper
appearing in a ComsSoc or IT Society publication during the years
2006-2008 is eligible for the 2009 award. A Committee with mem-
bers from both societies will make the selection. The award con-
sists of a plaque and cash prize presented at the Comsoc or IT
symposium of the authors' chosing.
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NOMINATION PROCEDURE: By March 1, 2009, please email the
name of the paper you wish to nominate, along with a supporting
statement explaining its contributions to both communications
and information theory, to Frank Kschischang at
<frank@comm.utoronto.ca>.

IEEE Fellow Program

For (s)he's a jolly good (IEEE) Fellow!

Do you have a friend or colleague who is a senior member of
IEEE and is deserving of election to IEEE Fellow status? If so,
consider submitting a nomination on his or her behalf to the
IEEE Fellow Committee. The deadline for nominations is March
1st. IEEE Fellow status is granted to a person with an extraordi-
nary record of accomplishments. The honor is conferred by the
|IEEE Board of Directors, and the total number of elected
Fellows in any one year is limited to 0.1% of the IEEE voting
membership. For further details on the nomination process
please consult: http://www.ieee.org/web/membership/fel-
lows/Zindex.html

IEEE Awards

The IEEE Awards program has paid tribute to technical profes-
sionals whose exceptional achievements and outstanding contri-
butions have made a lasting impact on technology, society and the
engineering profession.

Institute Awards presented by the IEEE Board of Directors fall into
several categories:

Medal of Honor (Deadline: July 1)

Medals (Deadline: July 1)

Technical Field Awards  (Deadline: January 31)

Corporate Recognitions  (Deadline: July 1)

Service Awards (Deadline: July 1)

Prize Papers (Deadline: July 1)

Fellowship (Deadline: March 1)

The Awards program honors achievements in education, industry,
research and service. Each award has a unique mission and crite-
ria, and offers the opportunity to honor distinguished colleagues,
inspiring teachers and corporate leaders. The annual IEEE Awards
Booklet, distributed at the Honors Ceremony, highlights the
accomplishments of each year's IEEE Award and Medal recipients.

For more detailed information on the Awards program, and for

nomination procedure, please refer to http://www.ieee.org/por-
tal/pages/about/awards/index.html.
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CALL FOR PAPERS AND FIRST ANNOUNCEMENT

Sixth International Workshop on
Optimal Codes and Related Topics — OC 2009

Programme Stefan Dodunekov (Sofia), Marcus Greferath (Dublin),
Committee Tor Helleseth (Bergen), Ivan Landjev (Sofia),

Juriaan Simonis (Delft), Leo Storme (Gent),

Henk van Tilborg (Eindhoven), Wolfgang Willems (Magdeburg)
Organizing Silvia Boumova (Sofia), Tsonka Baicheva (V. Tarnovo),
Committee Peter Boyvalenkov (Sofia), Emil Kolev (Sofia),

Ivan Landjev (Sofia), Nikolay Manev (Sofia)

Local Organizer

Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences

Topics

e Optimal linear codes over finite fields and rings;
e Bounds for codes;

e Spherical codes and designs;

e Covering problems for linear and nonlinear codes;
e Optimization problems for nonlinear codes;

e Sets of points in finite geometries;

e Combinatorial configurations and codes;

e Optimality problems in cryptography;

e Graph theory and codes;

e Related topics

Time

June 16 — 22, 2009

Location

The Workshop will take place in Varna (Bulgaria), hotel St. Elena
(http://svetaelena.com/hotel.aspx?lang=en). Varna is the
nearest airport. More information by 0c2009@math.bas.bg.

Registration Fee
(includes accommodation
all inclusive, social events,
workshop proceedings
and materials)

EURO 550/600 (Double/Single room) prior to May 16, 2009;
EURO 600/650 (Double/Single room) after May 16, 2009;
EURO 400 for students (Double room);

EURO 350 for spouses.

March 31, 2009: to inform the organizers if you intend to come;

Deadlines April 15, 2009: Deadline for submission of papers;
May 1, 2009: Notification of acceptance (to be mailed out).
Language The official language of the Workshop will be English.
The organizers intend to prepare a book of proceedings of the
Proceedings workshop. Authors are invited to submit at most six pages
camera-ready papers in English, LaTeX format 132x190 mm,
by e-mail to 0c2009@moi.math.bas.bg.
Web site http://www.moi.math.bas.bg/0c2009/0c2009.html.
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COEX, Seoul, Korea / June 28-July 3, 2009 / http://www.isit2009.info

Submitted papers sh

areas thal formith

applications af inf C :
submission deadline is January 7, 2(
social programs, and travel grants will be annou

General Co-chairs:
Jong-Seon No (Seoul National University, Korea jsno@snu.ac.kr
H. Vincent Poor [Princeton University, USAl poor@princeton.edu

Robert Calderbank [Princeton University, USAJ
Habong Chung [Hongik University, Korea)
Alon Orlitsky [UCSD, USA

For general inquiries, please contact the General Co-chairs.
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Conference Calendar

DATE CONFERENCE LOCATION CONTACT/INFORMATION DUE DATE

Feb 2-13 2009 2009 Information Theory and UCSD, San Diego, CA http://ita.calit2.net/workshop.php by invitation
Applications Workshop (ITA 2009)

March 18-20 1009 2009 Conference on Information Johns Hopkins University, http://ciss.jhu.edu/ January 5, 2009
Sciences and Systems (CISS 2009) USA

April 19-25, IEEE INFOCOM 2009 Rio de Janeiro, Brazil http://www.ieee-infocom.org/ August 29, 2008

2009

May 10 - 15,2009 The 2009 International Workshop on  Ullensvang, Norway http://wcc2009.0org/ TBA

Coding and Cryptography (WCC 2009)

May 15-30, 2009  XII International Symposium on St. Petersburg, Russia http://k36.0rg/redundancy2009/  March 1, 2009
problems of redundancy in information
and control systems

June 10-12, 2009 2009 IEEE Information Theory \olos, Greece http://www.itw2009.0rg Dec. 16, 2008
Workshop (ITW 2009)

June 14-18,2009  IEEE International Conference of Dresden, Germany http://www.comsoc.org/confs/ Sept. 8, 2008
Communications (1CC 2009) icc/2009/

June 28 -July 2,  The 2009 IEEE International Symposium Seoul, Korea http://www.isit2009.info January 7, 2009

2009 on Information Theory

Oct. 11-16, 2009 2009 IEEE Information Theory Taormina, Italy http://www.deis.unical.it/itw2009  March 19, 2009

Workshop (ITW 2009)

For other major ComSoc conferences: http://www.comsoc.org/confs/index.html
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