BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Combining the Burrows Wheeler Transform and the Context-Tree Weighting Algorithm

Frans M.J. Willems

Department of Electrical Engineering Eindhoven University of Technology

1st IEEE Seminar on Future Directions in & 2nd African Winter School on Information Theory and Communications, August 16-21, 2015, Protea Kruger Gate, South Africa

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation

BWT and CTW

Frans Willems

INTRODUCTION

Motivation

Universal Source Coding Algorithms Problem, Outline

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

European School on Information Theory, April 20-24, 2015, Zandvoort, The Netherlands:

Tutorial lectures were given by Young-Han Kim, Stephanie Wehner, Imre Csiszar, and Stephan ten Brink and

Motivation

BWT and CTW

Frans Willems

INTRODUCTION

Motivation

Universal Source Coding Algorithms Problem, Outline

IID SOURCES, PREFIX CODES, REDUNDANC

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Richard Durbin (Genome Informatics Group, Sanger Institute, Cambridge, UK)

Human Genome Project, now 99598 citations, h-index = 102, now co-leader of 1000 Genomes Project.

"Storage and Search of Genome Sequence Information".

Based on the Burrows-Wheeler transform: "A Block-sorting Lossless Data Compression Algorithm", Digital Systems Research Center Report 124, 1994, by M. Burrows, & D.J. Wheeler.

Universal Source Coding Algorithms

BWT and CTW

Frans Willems

INTRODUCTION

Motivation Universal Source Coding Algorithms Problem Outline

IID SOURCES, PREFIX CODES, REDUNDANC

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

CLASSES of UNIVERSAL SOURCE CODING ALGORITHMS:

String Matching methods

Ziv-Lempel (1977, Sliding-Window, **IT-Soc Best Paper Award**). Ziv-Lempel (1978, Dictionary). Elias (1987, Recency rank, Move-to-Front analysis). W. (1989, Kac-connection). Wyner-Ziv (1994, LZ77 - proof).

• Source-Modeling and Arithmetic Coding methods

Arithm. Cod.: Pasco (1976), Rissanen (1976), Rissanen-Langdon (1979), Rissanen-Langdon (1981) Source Modeling: Langdon-Rissanen (1983), Rissanen (1983, Context-algorithm), Weinberger-Rissanen-Feder (1995), W.-Shtarkov-Tjalkens (1995, **IT-Soc Best Paper Award**): Context-Tree Weighting (CTW) Method

• Burrows-Wheeler (BW) transform, followed by Move-to-Front and Huffman Coding Methods

BW: 1994 MTF: Bentley-Sleator-Tarjan-Wei (1986), Elias (1987)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Problem Description

BWT and CTW

Frans Willems

INTRODUCTION

Motivation Universal Source Coding Algorithms Problem. Outline

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Computer Science focusses on **minimizing Memory and Computational Complexity**.

Information Theory focusses on minimizing Redundancy.

BW is very efficient, allows for searching in the compressed domain, but is **SUBOPTIMAL in terms of redundancy** for tree sources. BW does NOT achieve the Rissanen lower bound $(1/2 \log_2 N \text{ bits per parameter}, 1984,$ **IT-Soc Best Paper Award**).Effros-Visweswariah-Kulkarni-Verdu (2002): in the binary case log₂ N bits per parameter**extra redundancy**per parameter.

Fixed-depth CTW is linear in N (memory and computations) but is **REDUNDANCY OPTIMAL** in Rissanen sense $(1/2 \log_2 N)$ bits per parameter) for tree sources. CTW does not allow for searching in the compressed domain however.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

PROBLEM:

Improve the redundancy of BW data-compression.

Problem Description

BWT and CTW

Frans Willems

INTRODUCTION

Motivation Universal Source Coding Algorithms Problem. Outline

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Computer Science focusses on **minimizing Memory and Computational Complexity.**

Information Theory focusses on minimizing Redundancy.

BW is very efficient, allows for searching in the compressed domain, but is **SUBOPTIMAL in terms of redundancy** for tree sources. BW does NOT achieve the Rissanen lower bound $(1/2 \log_2 N \text{ bits per parameter}, 1984,$ **IT-Soc Best Paper Award**).Effros-Visweswariah-Kulkarni-Verdu (2002): in the binary case log₂ N bits per parameter**extra redundancy**per parameter.

Fixed-depth CTW is linear in N (memory and computations) but is **REDUNDANCY OPTIMAL** in Rissanen sense $(1/2 \log_2 N)$ bits per parameter) for tree sources. CTW does not allow for searching in the compressed domain however.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

PROBLEM:

Improve the redundancy of BW data-compression.

Outline Lecture

BWT and CTW

Frans Willems

INTRODUCTION

Motivation Universal Source Coding Algorithms Problem. Outline

IID SOURCES, PREFIX CODES, REDUNDANC

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

- INTRODUCTION
- IID SOURCES, PREFIX CODES, REDUNDANCY

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

- ENUMERATIVE CODING
- ARITHMETIC CODING
- CONTEXT-TREE WEIGHTING
- BURROWS WHEELER
- CODING BW-SEQUENCES
- CODING B-COUNTS
- FINDING BEST TREE MODEL
- BINARY DECOMPOSITION
- CONCLUSION
- FUTURE DIRECTIONS

Binary Sources, Sequences, IID

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

Binary IID Sources

Prefix Codes Redundancy

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

The **binary source** produces a **sequence** $x_1^N = x_1 x_2 \cdots x_N$ with components $\in \{0, 1\}$ with probability $P(x_1^N)$.

Binary Source

Definition (Binary IID Source)

For an independent identically distributed (i.i.d.) source with parameter $\theta,$ for $0\leq\theta\leq1,$

 $x_1 x_2 \cdots x_N$

$$P(x_1^N) = \prod_{n=1}^N P(x_n),$$

where

$$P(1) = \theta$$
, and $P(0) = 1 - \theta$.

A sequence x_1^N containing w ones (i.e., having weight w) and N - w zeros has probability

$$P(x_1^N) = (1-\theta)^{N-w}\theta^w.$$

Definition (Entropy Binary IID Source)

The **ENTROPY** of this source is $h(\theta) \stackrel{\Delta}{=} (1-\theta) \log_2 \frac{1}{1-\theta} + \theta \log_2 \frac{1}{\theta}$ (bits).

Prefix Codes

BWT and CTW

Frans Willems

INTRODUCTION

ID SOURCES, PREFIX CODES, REDUNDANCY

Binary IID Sources

Prefix Codes

Redundancy

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

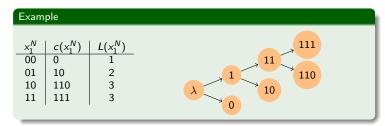
CONCLUSION

FUTURE DIRECTIONS

Definition (Prefix Code)

In a prefix code no codeword is the prefix of any other codeword.

We restrict ourselves to prefix codes. Codewords in a prefix code can be regarded as **leaves in a rooted tree**. Prefix codes lead to **instantaneous decodability**.



Prefix-Codes (cont.)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

Binary IID Sources

Prefix Codes

Redundancy

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Theorem (Kraft, 1949)

(a) The lengths of the codewords in a prefix code satisfy Kraft's inequality

$$\sum_{\substack{N \in \mathcal{X}^N \\ 1}} 2^{-L(x_1^N)} \le 1.$$

(b) For codeword lengths satisfying Kraft's inequality there exists a prefix code with these lengths.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Prefix-Codes (cont.)

BWT and CTW

Frans Willems

INTRODUCTION

ID SOURCES, PREFIX CODES, REDUNDANCY

Binary IID Sources

Prefix Codes

Redundancy

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

This leads to:

Theorem (Fano, 1961)

(a) Any prefix code satisfies

$$E[L(X_1^N)] \ge H(X_1^N) = Nh(\theta).$$

The minimum is achieved if and only if $L(x_1^N) = \log_2 \frac{1}{P(x_1^N)}$ (ideal codeword length) for all $x_1^N \in \mathcal{X}^N$ with nonzero $P(x_1^N)$. (b) There exist prefix codes with $L(x_1^N) = \left\lceil \log_2 \frac{1}{P(x_1^N)} \right\rceil$, hence

$$L(x_1^N) < \log_2 \frac{1}{P(x_1^N)} + 1$$

(ideal codeword length plus 1 bit). These codes achieve

 $E[L(X_1^N)] < H(X_1^N) + 1 = Nh(\theta) + 1$ bit.

Redundancy

BWT and CTW

Frans Willems

NTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

Binary IID Sources Prefix Codes

Redundancy

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

```
FIND BEST TREE MODEL
```

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Definition

The individual redundancy $\rho(x_1^N)$ of a sequence x_1^N is defined as

$$p(x_1^N) = L(x_1^N) - \log_2 \frac{1}{P(x_1^N)},$$

i.e., codeword-length minus ideal codeword-length.

Definition

The **expected redundancy** $\rho(x_1^N)$ is defined as

$$\rho = E[L(X_1^N)] - E[\log_2 \frac{1}{P(x_1^N)}] = E[L(X_1^N)] - H(X_1^N),$$

i.e., expected codeword-length minus entropy.

Note that there exist codes with individual redundancies ≤ 1 and consequently with expected redundancies $\leq 1.$

Indexing Sequences of Fixed Weight

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing

Pascal-∆ Method Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

```
BINARY DECOMPOSITION
```

CONCLUSION

FUTURE DIRECTIONS

IDEA:

Sequences having the same number of ones (weight) have the same probability and only need to be INDEXED.

Definition (Lexicographical Ordering)

In a lexicographical ordering (0 < 1) we say that $x_1^N < y_1^N$ if $x_n < y_n$ for the smallest index n such that $x_n \neq y_n$. Consider a subset S of the set $\{0,1\}^N$. Let $i_S(x_1^N)$ be the lexicographical index of $x_1^N \in S$, i.e., the number of sequences $y_1^N < x_1^N$ for $y_1^N \in S$.

Example

Let N = 5 and $S = \{x_1^N : w(x_1^N) = 3\}$ where $w(x_1^N)$ is the weight of x_1^N . Then $|S| = {5 \choose 3} = 10$ and:

$i_{\mathcal{S}}(11100) = 9$	$i_{\mathcal{S}}(10011) = 4$
$i_{\mathcal{S}}(11010) = 8$	$i_{\mathcal{S}}(01110) = 3$
$i_{\mathcal{S}}(11001) = 7$	$i_{\mathcal{S}}(01101) = 2$
$i_{\mathcal{S}}(10110) = 6$	$i_{\mathcal{S}}(01011) = 1$
$i_{S}(10101) = 5$	$i_{S}(00111) = 0$

Pascal- Δ Method (Lynch (1966), Davisson (1966), Schalkwijk (1972))

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing

Pascal- Δ Method

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

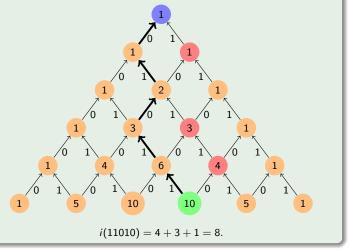
BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Example (From Sequence to Index)

Let
$$N = 5$$
 and $S = \{x_1^N : \sum x_n = 3\}$. Then $|S| = {5 \choose 3} = 10$.



Pascal- Δ Method

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Pascal-∆ Method

ARITHMETIC CODING

CONTEXT-TREI WEIGHTING

BURROWS WHEELEF

CODING BW-SEQUENCES

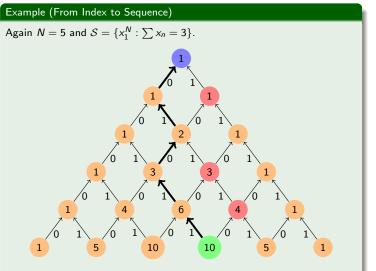
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



Index i = 8, now (a) $8 \ge 4$ hence $x_1 = 1$, (b) $8 \ge 4 + 3$ hence $x_2 = 1$, (c) 8 < 4 + 3 + 2 hence $x_3 = 0$, (d) $8 \ge 4 + 3 + 1$ hence $x_4 = 1$, (e) $x_5 = 0$.

How to Code the Index?

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing

 $Pascal-\Delta$ Method

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

If sequence x_1^N has weight w, the index $i(x_1^N)$ is encoded using a fixed-length code of length

$$L_{I}(x_{1}^{N}) = \left\lceil \log_{2} {N \choose w} \right\rceil.$$

Example

Index $i_{\mathcal{S}}(11010) = 8$. Since $|\mathcal{S}| = 10$ the length of the fixed-length code for $i(x_1^N)$ is 4, and the corresponding codeword could be 1000.

How to Code the Weight? θ Coding

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing Pascal-∆ Metho Weight Coding

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

```
FIND BEST TREE MODEL
```

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

The weights that can occur are $w \in \{0, 1, \dots, N\}$. Knowing source parameter θ we can easily compute the probability that weight w occurs

$$P_{ heta}(w) = {N \choose w} (1- heta)^{N-w} heta^w.$$

The weight w of sequence x_1^N can therefore be encoded with a variable-length code of length

$$L_{\theta}(w) = \left\lceil \log_2 \frac{1}{\binom{N}{w}(1-\theta)^{N-w}\theta^w}
ight
ceil$$

Now we can write for the total codeword length for sequence \mathbf{x}_1^N having weight w

$$\begin{split} L(x_1^N) &= L_{\theta}(w) + L_I(x_1^N) \\ &= \left\lceil \log_2 \frac{1}{\binom{N}{w}(1-\theta)^{N-w}\theta^w} \right\rceil + \left\lceil \log_2 \binom{N}{w} \right\rceil \\ &\leq \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w} + 2. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING Indexing Pascal-A Method Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Assume that our sequence x_1^N has weight $w = w(x_1^N)$, then for all $0 \le \theta \le 1$, we get for the individual redundancy

$$\begin{split} \rho(x_1^N) &= L(x_1^N) - \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w} \\ &\leq \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w} + 2 - \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w} \\ &= 2 \text{ bits.} \end{split}$$

For the **expected redundancy**, when $0 \le \theta \le 1$, we get

 $\rho = E[L(X_1^N)] - Nh(\theta) \le 2$ bits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing Pascal-Δ Metl

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

The weights that can occur are $w \in \{0, 1, \dots, N+1\}$, hence there are N+1 alternatives. Therefore we can use a **uniform code** of length

$$L_U(w) = \lceil \log_2(N+1) \rceil.$$

Now we can write for the **total codeword length** for sequence x_1^N having weight w

$$\begin{split} L(x_1^N) &= L_U(w) + L_I(x_1^N) \\ &= \left\lceil \log_2(N+1) \right\rceil + \left\lceil \log_2 \binom{N}{w} \right\rceil \\ &\leq \log_2(N+1)\binom{N}{w} + 2. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Uniform Coding: Individual Redundancy

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing Pascal-Δ Me

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Assume that our sequence x_1^N has weight w, then for all $0 \le \theta \le 1$, then we get for the individual redundancy

$$\begin{split} \rho(\mathbf{x}_1^N) &= L(\mathbf{x}_1^N) - \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w} \\ &\leq \log_2(N+1) \binom{N}{w} + 2 - \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w}. \end{split}$$

If both $N - w \rightarrow \infty$ and $w \rightarrow \infty$ the Stirling approximation yields

$$(N+1)\binom{N}{w} \approx (N+1) \frac{\sqrt{2\pi N}}{\sqrt{2\pi (N-w)}\sqrt{2\pi w}} (\frac{N}{N-w})^{N-w} (\frac{N}{w})^w$$

Moreover

$$(1- heta)^{N-w} heta^w \leq (rac{N-w}{N})^{N-w}(rac{w}{N})^w.$$

Combining this yields for the individual redundancy for $N-w \to \infty$ and $w \to \infty$ that

$$\rho(\mathbf{x}_1^N) = L(\mathbf{x}_1^N) - \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w}$$

$$\stackrel{(\approx)}{\leq} \log_2 \sqrt{\frac{N}{2\pi}} - \log_2 \sqrt{(\frac{N-w}{N})(\frac{w}{N})} + 2 \text{ bits.}$$

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODIN Indexing Pascal-A Method

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

For the **expected redundancy**, when $0 < \theta < 1$, for large N we obtain

$$ho = E[L(X_1^N)] - Nh(heta) \stackrel{(pprox)}{\leq} \log_2 \sqrt{rac{N}{2\pi}} - \log_2 \sqrt{(1- heta) heta} + 2 ext{ bits.}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

UNIVERSAL!

NOT VERY GOOD AT THE BORDERS ...

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing Pascal- Δ Meth

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELEF

CODING BW-SEQUENCES

CODING B-COUNTS

```
FIND BEST TREE MODEL
```

BINARY DECOMPOSITION

```
CONCLUSION
```

FUTURE DIRECTIONS

Definition (KT Probability (1981))

For all integer $a \ge 0$ and $b \ge 0$, define the KT-probability as

$$P_{kt}(a,b) \stackrel{\Delta}{=} \frac{(2a)!}{2^{a}a!} \frac{(2b)!}{2^{b}b!} \frac{1}{2^{a+b}(a+b)!}$$

Since $\sum_{w=0,N} {N \choose w} P_{kt}(N-w,w) = 1$, the weight *w* of sequence x_1^N can be encoded with a variable-length KT-code of length

$$L_{KT}(w) = \left\lceil \log_2 \frac{1}{\binom{N}{w}} P_{kt}(N-w,w) \right\rceil$$

Now we can write for the **total codeword length** for sequence x_1^N having weight w

$$L(x_1^N) = L_{KT}(w) + L_I(x_1^N)$$

= $\left[\log_2 \frac{1}{\binom{N}{w}P_{kt}(N-w,w)}\right] + \left[\log_2 \binom{N}{w}\right]$
 $\leq \log_2 \frac{1}{P_{kt}(N-w,w)} + 2.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

KT Coding: Individual Redundancy

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING Indexing

Pascal- Δ Metho

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Assume that our sequence x_1^N has weight $w=w(x_1^N),$ then for all $0\leq\theta\leq 1,$ we get

$$\begin{split} \rho(x_1^N) &= & L(x_1^N) - \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w} \\ &\leq & \log_2 \frac{1}{P_{kt}(N-w,w)} + 2 - \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w} \end{split}$$

If both $N - w \rightarrow \infty$ and $w \rightarrow \infty$ the Stirling approximation yields

$$\frac{1}{P_{kt}(N-w,w)}\approx \sqrt{\frac{\pi N}{2}}(\frac{N}{N-w})^{N-w}(\frac{N}{w})^w.$$

Again

$$(1- heta)^{N-w} heta^w \leq (rac{N-w}{N})^{N-w}(rac{w}{N})^w.$$

Combining this yields for the individual redundancy for $N - w \rightarrow \infty$ and $w \rightarrow \infty$ that

$$\rho(x_1^N) = L(x_1^N) - \log_2 \frac{1}{(1-\theta)^{N-w}\theta^w} \stackrel{(\approx)}{\leq} \frac{1}{2} \log_2 N + \frac{1}{2} \log_2 \frac{\pi}{2} + 2 \text{ bits.}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

KT Coding: Expected Redundancy

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing Pascal-Δ Met

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

For the **expected redundancy**, when $0 < \theta < 1$, for large *N* we get

$$\rho = E[L(X_1^N)] - Nh(\theta) \stackrel{(\approx)}{\leq} \frac{1}{2}\log_2 N + \frac{1}{2}\log_2 \frac{\pi}{2} + 2 \text{ bits}$$

NOTE

It can be shown for KT coding, for all 0 $\leq \theta \leq$ 1, that

$$\begin{split}
\rho(\mathsf{x}_1^N) &\leq & \frac{1}{2}\log_2 N + 3 \text{ bits for all } \mathsf{x}_1^N, \text{ and} \\
\rho &\leq & \frac{1}{2}\log_2 N + 3 \text{ bits.}
\end{split}$$

Weight Codewordlength

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING Indexing Pascal- A Method

Weight Coding

ARITHMETIC CODING

CONTEXT-TREI WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Example (N = 255, codewordlength as function of weight w of x_1^N) No [···]-s. 6 codewordlength (bit) 5 4 3 2 Krichevsky-Trofimov Uniform 0 50 100 150 200 250 w

Codewordlengths are roughly $\log_2 N$. Note that *KT*-codewordlength is smaller ($\approx \frac{1}{2} \log_2 N$) for w = 0 and w = N.

BOUND Individual Redundancy

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING Indexing Pascal-A Method

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

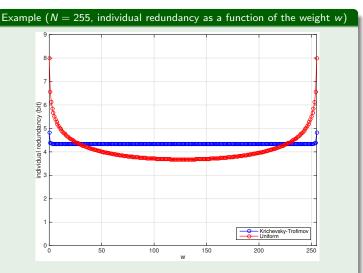
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



Individual redundancies are roughly $\frac{1}{2}\log_2 N$. Note that uniform redundancy is larger $(=\log_2(N+1))$ for $\theta = 0$ and $\theta = 1$.

er e 174(

Expected Redundancy

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING Indexing Pascal-A Method

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Example (N = 255, expected redundancy as function of θ .) q 8 expected redundancy (bit) 2 1 - Krichevsky-Trofimov Iniform 0 'n 0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Expected redundancies are roughly $\frac{1}{2} \log_2 N$. Again the uniform redundancy is larger $(= \log_2(N+1))$ for w = 0 and w = N.

비지 카페지 지는지 지는지 않는 지생

Conclusion Enumerative Source Coding

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

Indexing Pascal-∆ MetI

Weight Coding

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

- NON-UNIVERSAL: θ-Coding yields individual redundancy not exceeding 2 bits.
- UNIVERSAL:
 - Both Uniform Coding and KT Coding achieve individual redundancy roughly ¹/₂ log₂ N if both N − w → ∞ and w → ∞.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- KT Coding has similar behaviour at borders (w = 0 and w = N).
- Uniform Coding is simpler.

Arihmetic Coding: Idea Elias

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

```
BURROWS WHEELER
```

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODE

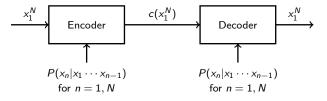
BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Elias:

Codewords can be COMPUTED SEQUENTIALLY from the source sequence using conditional PROBABILITIES of next symbol given the previous ones, and vice versa.



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Arithmetic Coding: Universal Codes

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODE

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

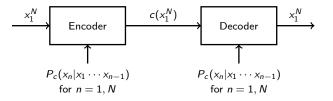
Coding Probabilities

If the actual probabilities $P(x_1^N)$ are not known arithmetic coding is still possible if instead of $P(x_1^N)$ we use coding probabilities $P_c(x_1^N)$ satisfying

$$P_c(x_1^N) > 0$$
 for all x_1^N , and
 $\sum_{x_1^N} P_c(x_1^N) = 1.$

Then

$$L(x_1^N) < \log_2 \frac{1}{P_c(x_1^N)} + 2.$$



э

PROBLEM: How do we choose the coding probabilities $P_c(x_1^N)$?

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Arithmetic Coding based on KT Probability

A good coding probability $P_c(x_1^N)$ for a sequence x_1^N that contains a zeroes and b = N - a ones is

$$P_{kt}(a,b) \triangleq \frac{(2a)!}{2^{a}a!} \frac{(2b)!}{2^{b}b!} \frac{1}{2^{a+b}(a+b)!}$$

Probability of a sequence with a zeroes and b ones followed by a one

$$P_{kt}(a,b+1) = rac{b+1/2}{a+b+1} \cdot P_{kt}(a,b),$$

hence SEQUENTIAL COMPUTATION is possible! Using arithmetic coding, the total individual redundancy

$$\rho(x_1^N) < \log_2 \frac{\theta^a (1-\theta)^b}{P_{kt}(a,b)} + 2 \le \frac{1}{2} \log_2 N + 3 \text{ bits.}$$

for all θ and x_1^N with *a* zeroes and *b* ones.

Context Tree Weighting: Universal Codes

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TRE WEIGHTING

Binary Tree-Sources

Context Trees Coding Probabilities Remarks

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

OBJECTIVE:

Design good code probabities for sources with UNKNOWN PARAMETERS and STRUCTURE.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Context Tree Weighting: Binary Tree-Sources

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

Binary Tree-Sources Context Trees Coding Probabilities Remarks

BURROWS WHEELER

CODING BW-SEQUENCES

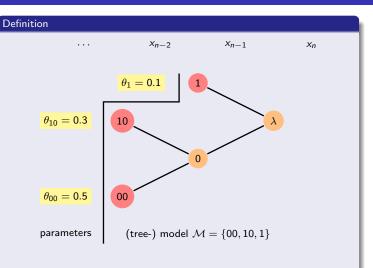
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



 $P(X_n = 1 | \dots, X_{n-1} = 1) = 0.1$ $P(X_n = 1 | \dots, X_{n-2} = 1, X_{n-1} = 0) = 0.3$ $P(X_n = 1 | \dots, X_{n-2} = 0, X_{n-1} = 0) = 0.5$

Context Trees

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

Binary Tree-Source

Context Trees

Remarks

BURROWS WHEELER

CODING BW-SEQUENCES

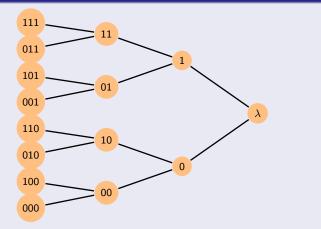
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



Node s contains the sequence of source symbols that have occurred following context s. Depth is D.

Context-Tree Splits Up Sequences in Subsequences

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREI

Binary Tree-Sources

Context Trees

Coding Probabilities Remarks

BURROWS WHEELER

CODING BW-SEQUENCES

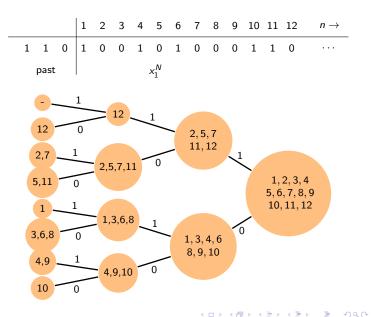
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



Context-Tree Nodes Containing IID Sequences

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

Binary Tree-Sources Context Trees

Coding Probabilities Remarks

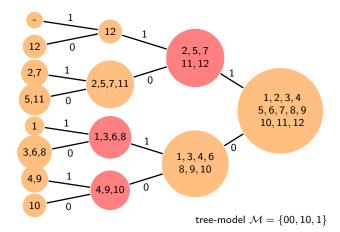
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

Binary Tree-Sources

Coding Probabilities

Tremarks

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODE

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Recursive Definition: From Leaves via Internal Nodes to Root

Let a_s and b_s be the number of zeros resp. ones in the subsequence corresponding to leaf, node, or root s.

The subsequence corresponding to a leaf s of the context tree is IID. A good coding probability for this subsequence is therefore

 $P_w(s) \stackrel{\Delta}{=} P_{kt}(a_s, b_s).$

Weighting the coding probabilities corresponding to both alternatives (node is iid or needs further splitting) yields the coding probability

$$P_w(s) \stackrel{\Delta}{=} \frac{P_{kt}(a_s, b_s) + P_w(0s) \cdot P_w(1s)}{2}$$

for the subsequence that corresponds to node or root s. Recursively we find in the root λ of the context-tree the coding probability $P_w(\lambda)$ for the entire source sequence x_1^N .

Individual Redundancy CTW

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

Binary Tree-Sources

Coding Probabilities Remarks

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Theorem (W., Shtarkov, and Tjalkens (1995))

In general for a tree source with $|\mathcal{M}|$ leaves (parameters):

$$\rho(x_1^N) < (2|\mathcal{M}| - 1) + \sum_{l \in \mathcal{M}} \frac{1}{2} \log_2(a_l + b_l) + 2 \text{ bits.}$$

(model, parameter, and coding redundancies)

About Model Redundancies

A binary tree model can be described recursively: Code(tree)=0 if tree is only root, else Code(tree)=(1,Code(subtree-0),Code(subtree-1)). This leads to $2|\mathcal{M}| - 1$ bits.

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

Binary Tree-Sources Context Trees Coding Probabilities Remarks

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

• CTW implements a "weighting" (Bayes mixture) over all tree-models with depth not exceeding *D*, i.e.,

$$P_w(\lambda) = \sum_{\mathcal{M} \leq D} P(\mathcal{M}) P_{kt}(x_1^N | \mathcal{M}),$$

with $P_{kt}(x_1^N|\mathcal{M}) = \prod_{s \in \mathcal{M}} P_{kt}(a_s, b_s)$ and $P(\mathcal{M}) = 2^{-(2|\mathcal{M}|-1)}$.

- There is one tree-model of depth 0 (i.e. the IID model). If there are $\#_d$ models of depth not exceeding d then there are $\#_d^2 + 1$ models of depth not exceeding d + 1. Therefore $\#_2 = 5$, $\#_3 = 26$, $\#_4 = 677$, $\#_5 = 458330$, $\#_6 = 210066388901$, $\#_7 = 4.4128 \cdot 10^{22}$, $\#_8 = 1.9473 \cdot 10^{45}$, etc.
- Straightforward analysis. No model-estimation that only gives asymptotic results as in e.g. Rissanen [1983, 1986], Weinberger, Rissanen, and Feder [1995]).
- Number of computations needed to process the source sequence x₁^N is linear in N. Same holds for the storage complexity.
- Optimal parameter redundancy behavior in Rissanen [1984] sense (i.e., ¹/₂ log₂ N bits/parameter).

Remarks Context-Tree Weighting

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

Binary Tree-Sources Context Trees Coding Probabilities Remarks

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

- A modified version achieves entropy not only for tree sources but for all stationary ergodic sources.
- A two-pass version (context-tree maximizing) exists that finds the minimum description length (MDL) model, matching to the source sequence. Now

$$P_m(s) \stackrel{\Delta}{=} \frac{\max[P_{kt}(a_s, b_s), P_m(0s) \cdot P_m(1s)]}{2}$$

If a tree source with model generates the sequence x_1^N the maximizing method produces a model estimate which is correct with probability one as $N \to \infty$. The two-pass version achieves again

$$\wp(\mathsf{x}_1^\mathcal{N}) < (2|\mathcal{M}|-1) + \sum_{l \in \mathcal{M}} rac{1}{2} \log_2(\mathsf{a}_l + \mathsf{b}_l) + 2 ext{ bits}$$

• If instead of P_{kt} we would use "uniform weight coding"

$$P_u(x_1^N) = \frac{1}{N+1} \frac{1}{\binom{N}{w}}$$

as coding probability we get similar redundancy results with the problems mentioned before at the borders.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Transform

BW Reconstruction Coding the BW-transforme sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

The Burrows Wheeler Transform is a TRANSFORM! The transformed sequence will be coded.

Let $x_1^N = 100101000110$ again. Consider x_1^N and all its cyclic left rotations.

1	1	0	0	1	0	1	0	0	0	1	1	0
2	0	0	1	0	1	0	0	0	1	1	0	1
3	0	1	0	1	0	0	0	1	1	0	1	0
4	1	0	1	0	0	0	1	1	0	1	0	0
5	0	1	0	0	0	1	1	0	1	0	0	1
6	1	0	0	0	1	1	0	1	0	0	1	0
7	0	0	0	1	1	0	1	0	0	1	0	1
8	0	0	1	1	0	1	0	0	1	0	1	0
9	0	1	1	0	1	0	0	1	0	1	0	0
10	1	1	0	1	0	0	1	0	1	0	0	0
11	1	0	1	0	0	1	0	1	0	0	0	1
12	0	1	0	0	1	0	1	0	0	0	1	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Transform

BW Reconstruction Coding the BW-transformed sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Sort lexicographically based on the suffixes.

12	0	1	0	0	1	0	1	0	0	0	1	1
2	0	0	1	0	1	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0	0	1	0	1
5	0	1	0	0	0	1	1	0	1	0	0	1
11	1	0	1	0	0	1	0	1	0	0	0	1
1	1	0	0	1	0	1	0	0	0	1	1	0
3	0	1	0	1	0	0	0	1	1	0	1	0
8	0	0	1	1	0	1	0	0	1	0	1	0
6	1	0	0	0	1	1	0	1	0	0	1	0
4	1	0	1	0	0	0	1	1	0	1	0	0
9	0	1	1	0	1	0	0	1	0	1	0	0
10	1	1	0	1	0	0	1	0	1	0	0	0

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Transform

BW Reconstruction Coding the BW-transformer sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

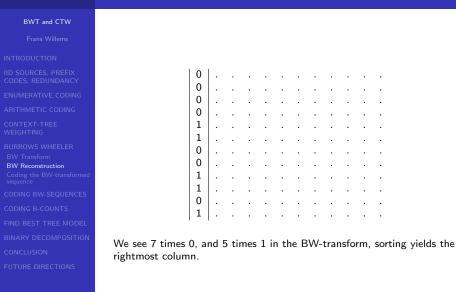
FUTURE DIRECTIONS

Now the left-most column is the BW-transform of x_1^N . Hence BW(100101000110) = (101100110000).

12	0	1	0	0	1	0	1	0	0	0	1	1
2	0	0	1	0	1	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0	0	1	0	1
5	0	1	0	0	0	1	1	0	1	0	0	1
11	1	0	1	0	0	1	0	1	0	0	0	1
1	1	0	0	1	0	1	0	0	0	1	1	0
3	0	1	0	1	0	0	0	1	1	0	1	0
8	0	0	1	1	0	1	0	0	1	0	1	0
6	1	0	0	0	1	1	0	1	0	0	1	0
4	1	0	1	0	0	0	1	1	0	1	0	0
9	0	1	1	0	1	0	0	1	0	1	0	0
10	1	1	0	1	0	0	1	0	1	0	0	0

The index $i_{bw}(x_1^N) = 6$ of x_1^N in the ordering is later needed for reconstruction.

Burrows Wheeler Reconstruction (1)



Burrows Wheeler Reconstruction (2)

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction

Coding the BW-transformed sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0							1
0							1
0							1
0							1
1 1							1
1							
0							
0							0
1							0
1							0
0					•		0
1	•	•	•		•	•	0

Observe that, in all rows, a symbol in the leftmost column (BW-transform) follows the symbol in the rightmost column.

We then see 3 times 00, 4 times 10, 4 times 01, and 1 times 11. Sorting yields the two rightmost columns.

Burrows Wheeler Reconstruction (3)

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction

Coding the BW-transformed sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0	.					1	1
0	.					0	1
0						0	1
0						0	1
1						0	1
1						1	0
0						1	0
0						1	0
1						1	0
1						0	0
0						0	0
1	.					0	0

Again, in all rows, a symbol in the leftmost column (BW-transform) follows the corresponding symbols in the two rightmost columns.

We then see 1 times 000, 2 times 100, 3 times 010, 1 times 110, 2 times 001, 2 times 101, 1 times 011, and 0 times 000. Sorting yields the three rightmost columns.

Burrows Wheeler Reconstruction (4)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction

sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0					0	1	1
0					1	0	1
0					1	0	1
0					0	0	1
1					0	0	1
1					1	1	0
0					0	1	0
0					0	1	0
1					0	1	0
1					1	0	0
0					1	0	0
1					0	0	0

Burrows Wheeler Reconstruction (5)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0	.				0	0	1	1
0					1	1	0	1
0					0	1	0	1
0					1	0	0	1
1					0	0	0	1
1					0	1	1	0
0					1	0	1	0
0					1	0	1	0
1					0	0	1	0
1					0	1	0	0
0	.				0	1	0	0
1					1	0	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Burrows Wheeler Reconstruction (6)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction Coding the BW-transforme

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0				0	0	0	1	1
0				0	1	1	0	1
0				0	0	1	0	1
0				0	1	0	0	1
1				1	0	0	0	1
1				0	0	1	1	0
0				1	1	0	1	0
0				0	1	0	1	0
1				1	0	0	1	0
1				1	0	1	0	0
0				1	0	1	0	0
1				0	1	0	0	0

Burrows Wheeler Reconstruction (7)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction Coding the BW-transformed

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0	.			1	0	0	0	1	1
0				0	0	1	1	0	1
0				1	0	0	1	0	1
0				1	0	1	0	0	1
1				0	1	0	0	0	1
1				0	0	0	1	1	0
0				0	1	1	0	1	0
0				0	0	1	0	1	0
1				0	1	0	0	1	0
1				1	1	0	1	0	0
0				0	1	0	1	0	0
1				1	0	1	0	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Burrows Wheeler Reconstruction (8)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction Coding the BW-transformer

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0			0	1	0	0	0	1	1
0			0	0	0	1	1	0	1
0			0	1	0	0	1	0	1
0			1	1	0	1	0	0	1
1			1	0	1	0	0	0	1
1			1	0	0	0	1	1	0
0			0	0	1	1	0	1	0
0			1	0	0	1	0	1	0
1			1	0	1	0	0	1	0
1			0	1	1	0	1	0	0
0			0	0	1	0	1	0	0
1			0	1	0	1	0	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Burrows Wheeler Reconstruction (9)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction Coding the BW-transforme

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0	.		1	0	1	0	0	0	1	1
0			1	0	0	0	1	1	0	1
0			1	0	1	0	0	1	0	1
0			0	1	1	0	1	0	0	1
1			0	1	0	1	0	0	0	1
1			0	1	0	0	0	1	1	0
0			0	0	0	1	1	0	1	0
0			0	1	0	0	1	0	1	0
1			1	1	0	1	0	0	1	0
1			0	0	1	1	0	1	0	0
0			1	0	0	1	0	1	0	0
1			0	0	1	0	1	0	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Burrows Wheeler Reconstruction (10)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction

sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0	•	0	1	0	1	0	0	0	1	1
0		0	1	0	0	0	1	1	0	1
0	.	1	1	0	1	0	0	1	0	1
0	.	0	0	1	1	0	1	0	0	1
1		0	0	1	0	1	0	0	0	1
1		1	0	1	0	0	0	1	1	0
0	.	1	0	0	0	1	1	0	1	0
0	.	1	0	1	0	0	1	0	1	0
1		0	1	1	0	1	0	0	1	0
1		0	0	0	1	1	0	1	0	0
0	.	0	1	0	0	1	0	1	0	0
1		1	0	0	1	0	1	0	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Burrows Wheeler Reconstruction (11)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction

sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	•	0	0	1	0	1	0	0	0	1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		1	0	1	0	0	0	1	1	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0		0	1	1	0	1	0	0	1	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	.	0	0	0	1	1	0	1	0	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		1	0	0	1	0	1	0	0	0	1
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		0	1	0	1	0	0	0	1	1	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		0	1	0	0	0	1	1	0	1	0
1 . 1 0 0 1 1 0 1 0 0 0 . 1 0 1 0 1 0 1 0 0	0		1	1	0	1	0	0	1	0	1	0
0.1010010100	1		0	0	1	1	0	1	0	0	1	0
	1		1	0	0	0	1	1	0	1	0	0
	0		1	0	1	0	0	1	0	1	0	0
	1	.	0	1	0	0	1	0	1	0	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Burrows Wheeler Reconstruction (12)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction

Coding the BW-transformed sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

0	1	0	0	1	0	1	0	0	0	1	1
0	0	1	0	1	0	0	0	1	1	0	1
0	0	0	1	1	0	1	0	0	1	0	1
0	1	0	0	0	1	1	0	1	0	0	1
1	0	1	0	0	1	0	1	0	0	0	1
1	0	0	1	0	1	0	0	0	1	1	0
0	1	0	1	0	0	0	1	1	0	1	0
0	0	1	1	0	1	0	0	1	0	1	0
1	0	0	0	1	1	0	1	0	0	1	0
1	0	1	0	0	0	1	1	0	1	0	0
0	1	1	0	1	0	0	1	0	1	0	0
1	1	0	1	0	0	1	0	1	0	0	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Burrows Wheeler Reconstruction (13)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

BW Reconstruction

Coding the BW-transformed sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

11	0	1	0	0	1	0	1	0	0	0	1	1
10	0	0	1	0	1	0	0	0	1	1	0	1
9	0	0	0	1	1	0	1	0	0	1	0	1
8	0	1	0	0	0	1	1	0	1	0	0	1
7	1	0	1	0	0	1	0	1	0	0	0	1
6	1	0	0	1	0	1	0	0	0	1	1	0
5	0	1	0	1	0	0	0	1	1	0	1	0
4	0	0	1	1	0	1	0	0	1	0	1	0
3	1	0	0	0	1	1	0	1	0	0	1	0
2	1	0	1	0	0	0	1	1	0	1	0	0
1	0	1	1	0	1	0	0	1	0	1	0	0
0	1	1	0	1	0	0	1	0	1	0	0	0

From the index $i_{bw}(x_1^N) = 6$ of x_1^N we get the original sequence back.

Coding the BW-transformed sequence

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

```
BURROWS WHEELER
```

BW Reconstruction

Coding the BW-transformed sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

IDEA:

For tree sources, the transformed sequence $BW(x_1^N)$ is a concatenation of IID subsequences, as many as there are leaves in the tree model.^{*a*}

^aCircularity effects are ignored.

Example $(x_1^{\mathcal{N}}=100101000110$ and tree-model $\mathcal{M}=\{00,10,1\})$

BW(100101000110) = 101, 1001, 10000. See

			1				1
		1	1			1	1
			1			1	1
							1
	1	1					1
1	1					1	
		1					
	1		1				
4	1	1				1	
		1	1			1	
	1						

Coding the BW-transformed sequence

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

```
BURROWS WHEELER
BW Transform
```

BW Reconstruction

Coding the BW-transformed sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

IDEA:

For tree sources, the transformed sequence $BW(x_1^N)$ is a concatenation of IID subsequences, as many as there are leaves in the tree model.^{*a*}

^aCircularity effects are ignored.

Example ($x_1^N = 100101000110$ and tree-model $\mathcal{M} = \{00, 10, 1\}$)

BW(100101000110) = 101, 1001, 10000. See

12	0	1	0	0	1	0	1	0	0	0	1	1
2	0	0	1	0	1	0	0	0	1	1	0	1
7	0	0	0	1	1	0	1	0	0	1	0	1
5	0	1	0	0	0	1	1	0	1	0	0	1
11	1	0	1	0	0	1	0	1	0	0	0	1
1	1	0	0	1	0	1	0	0	0	1	1	0
3	0	1	0	1	0	0	0	1	1	0	1	0
8	0	0	1	1	0	1	0	0	1	0	1	0
6	1	0	0	0	1	1	0	1	0	0	1	0
4	1	0	1	0	0	0	1	1	0	1	0	0
9	0	1	1	0	1	0	0	1	0	1	0	0
10	1	1	0	1	0	0	1	0	1	0	0	0

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER BW Transform BW Reconstruction

Coding the BW-transformed sequence

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

- Move-to-front techniques (Bentley et al. (1986), Elias (1987)) combined with Huffman codes can be used.
- Piecewise IID coding (Merhav (1993), W. (1996)) can be used. These methods demonstrate that we need to specify the transition points, which requires roughly log₂ N bits per transition (Effros et al. (2002)).
- CTW only needs $2|\mathcal{M}| 1$ bits, which is roughly 2 bits per transition.

OBJECTIVE:

Design a procedure for coding the BW transformed sequence that needs only $2|\mathcal{M}|-1$ bits.

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

FSM-Closedness

Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

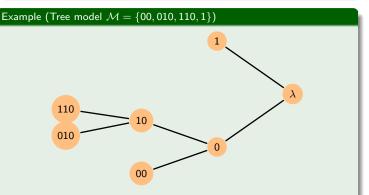
BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Definition

The generator of leaf $u_d u_{d-1} \cdots u_1$ at depth d is $u_d u_{d-1} \cdots u_2$ at depth d-1. A tree model is FSM-closed if all its leaves have a generator that is either a leaf or internal node of the tree model.



Leaf 00 has generator 0 which is an internal node of \mathcal{M} . But note that leaves 110 and 010 do not have a generator in tree model \mathcal{M} . Therefore \mathcal{M} is not FSM-closed and we cannot describe the source as a FSM.

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

FSM-Closedness

Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

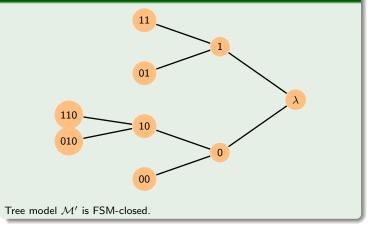
FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Example (Tree model $\mathcal{M}' = \{00, 010, 110, 01, 11\}$)



If a tree model is FSM-closed then each leaf and each node in the tree model has a generator that is a leaf or node of the tree model.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

FSM-Closedness

Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

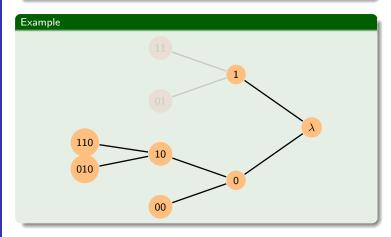
BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Definition

A tree model can be made FSM-closed by adding the generators of all leaves. The resulting model is the FSM-closure of the tree model.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

FSM-Closedness

Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

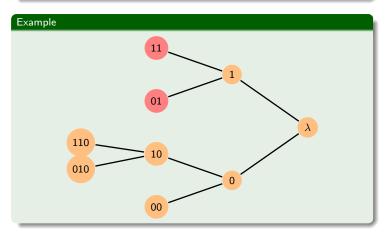
BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Definition

A tree model can be made FSM-closed by adding the generators of all leaves. The resulting model is the FSM-closure of the tree model.



Coding BW-sequences: PROBLEM

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness

Problem

FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Suppose that $\widehat{\mathcal{M}}$ is the tree-model that matches best to the BW-sequence. More about how to find $\widehat{\mathcal{M}}$ later.

- This tree model $\widehat{\mathcal{M}}$ is included in the description $(2|\widehat{\mathcal{M}}| 1 \text{ bits})$.
- Apart from that the *b*-counts (weights of subsequences) of all leaves of $\widehat{\mathcal{M}}$ are added to the description.
- Finally the lexicographical indices of all the subsequences corresponding to the leaves of $\widehat{\mathcal{M}}$ are included.

Question:

Can we reconstruct the entire BW-sequence from the description using $\ensuremath{\mathsf{ENUMERATIVE}}$ techniques?

Definition

Let a_s the number of zeros and b_s the number of ones in the subsequence that corresponds to s, then

$$c_s = a_s + b_s$$

is length of this subsequence.

FSM-Closed Tree Model (1)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem

FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Suppose that the *b*-counts in the leaves of **FSM-closed tree model** $\widehat{\mathcal{M}} = \{00, 010, 110, 01, 11\}$ are given to the decoder, hence the decoder knows b_{00} , b_{010} , b_{110} , b_{01} , b_{11} , and N.

- The decoder first computes the *b*-counts in all the nodes of the tree model, hence b_λ, b₀, b₁, and b₀₁.
- The decoder now processes layer by layer, starting in the root (layer 0). First in the root the *a*-count is computed.

$$a_{\lambda} = N - b_{\lambda}$$

Layer 0 is processed now.

In layer 1 there are two nodes, 0 and 1 that fit into Â. Since is FSM-closed, their generator λ exists, is at level 0, and is thus processed before. Therefore we can compute the c's of these nodes.

$$egin{array}{rcl} c_0 &=& a_\lambda\ c_1 &=& b_\lambda \end{array}$$

With the available *b*-counts also the *a*-counts can be computed

$$a_0 = c_0 - b_0$$

 $a_1 = c_1 - b_1.$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Layer 1 is processed now.

FSM-Closed Tree Model (2)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model

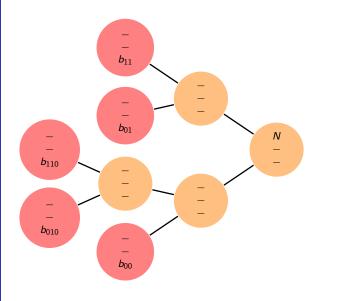
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



FSM-Closed Tree Model (3)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not, FSM-Closed Model

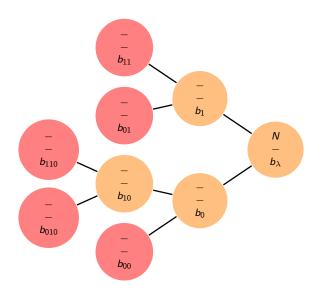
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



FSM-Closed Tree Model (4)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not, FSM-Closed Model

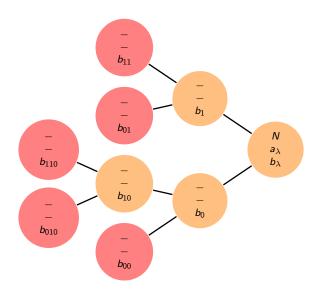
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



FSM-Closed Tree Model (5)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model

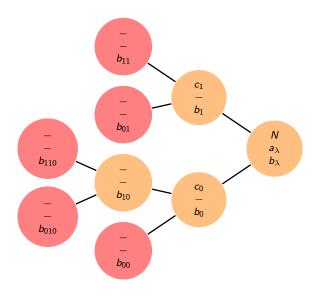
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



FSM-Closed Tree Model (6)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not, FSM-Closed Model

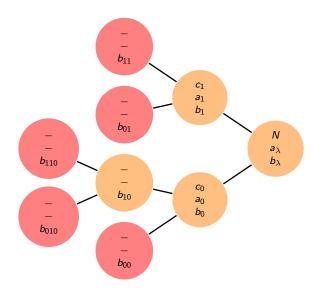
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



FSM-Closed Tree Model (7)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem

FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

• In layer 2 there are three leaves, 00, 01, and 11, and a node 10, that fit into $\widehat{\mathcal{M}}$. Since $\widehat{\mathcal{M}}$ is FSM-closed, again their generators 0 and 1 exist, are at level 1, and are thus processed before. Now we can compute the *c*'s of these leaves and node.

 $egin{array}{rcl} c_{00} & = & a_0 \ c_{10} & = & a_1 \ c_{01} & = & b_0 \ c_{11} & = & b_1. \end{array}$

With the available *b*-counts also the *a*-counts can be computed for these leaves and node

$$\begin{array}{rcl} a_{00} & = & c_{00} - b_{00} \\ a_{10} & = & c_{10} - b_{10} \\ a_{01} & = & c_{01} - b_{01} \\ a_{11} & = & c_{11} - b_{11}. \end{array}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

FSM-Closed Tree Model (8)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

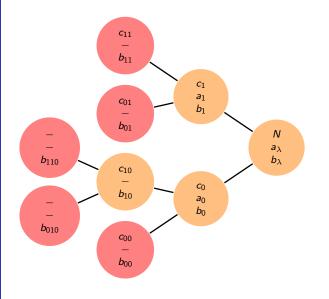
CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model

EIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



FSM-Closed Tree Model (9)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model

Not FSM-Closed Model

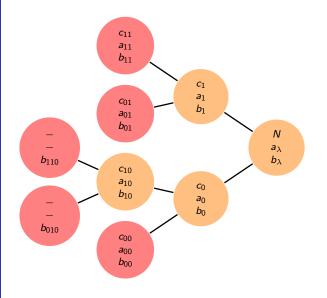
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem

FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

In layer 3 there are two leaves, 010, and 110, that fit into Â. Since is FSM-closed, again their generators 01 and 11 exist, are at level 2, and are thus processed before. Now we can compute the c's of the subsequences in these two leaves.

 $c_{010} = a_{01}$ $c_{110} = a_{11}.$

With the available *b*-counts also the *a*-counts can be computed for these leaves

 $a_{010} = c_{010} - b_{010}$ $a_{110} = c_{110} - b_{110}.$

FSM-Closed Tree Model (11)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model

Not FSM-Closed Model

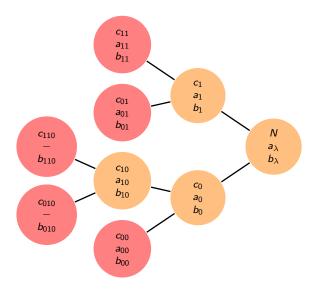
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



FSM-Closed Tree Model (12)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model

Not FSM-Closed Model

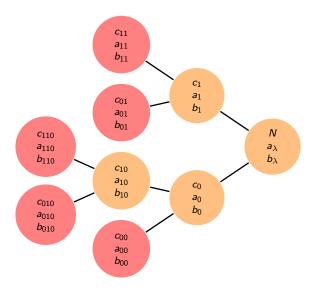
CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem

FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

- For all leaves s in $\widehat{\mathcal{M}}$ the subsequence length c_s and b-count b_s is known. Note that the b-count is the weight of the subsequence.
- Now with the indices *i*₀₀, *i*₀₁₀, *i*₁₁₀, *i*₀₁, and *i*₁₁, the corresponding subsequences <u>*bw*</u>₀₀, <u>*bw*</u>₀₁₀, <u>*bw*</u>₁₁₀, <u>*bw*</u>₀₁, and <u>*bw*</u>₁₁, can be reconstructed.
- The BW-transformed sequence is now the concatenation of the five subsequences, hence

 $BW = \underline{bw}_{00}, \underline{bw}_{010}, \underline{bw}_{110}, \underline{bw}_{01}, \underline{bw}_{11}.$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

NOTE that this approach is outlined in Martin, Seroussi, & Weinberger (2004), with emphasis on the FSM-case, not on the BWT-case.

Tree Model, not FSM-Closed (1)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Suppose that the *b*-counts in the leaves of tree model $\widehat{\mathcal{M}} = \{00, 010, 110, 1\}$, which is **not FSM-closed**, are given to the decoder, hence the decoder knows b_{00} , b_{010} , b_{110} , b_1 , and N.

- The decoder first computes the *b*-counts in all the nodes of the tree model, hence b_λ, b₀, and b₁₀.
- The decoder now processes layer by layer, starting in the root (layer 0). First in the root the *a*-count is computed.

$$a_{\lambda} = N - b_{\lambda}$$

Now all the nodes in layer 0 are processed.

• In layer 1 there are two nodes, 0 and 1, that fit into $\widehat{\mathcal{M}}$. Since "all nodes in layer 0" are complete, we can compute the *c*'s of the nodes 0 and 1.

$$c_0 = a_\lambda$$

 $c_1 = b_\lambda$

With the available *b*-counts also the *a*-counts can be computed for these nodes

 $a_0 = c_0 - b_0$ $a_1 = c_1 - b_1.$

Now all the nodes in layer 1 are processed.

Tree Model not FSM-Closed (2)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

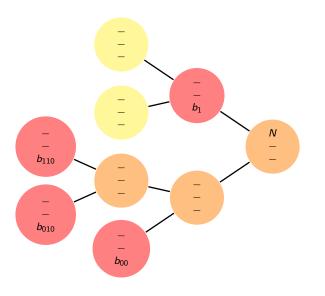
CONTEXT-TREI WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS FIND BEST TREE MODEL BINARY DECOMPOSITIO CONCLUSION

FUTURE DIRECTIONS



(ロ)、(型)、(E)、(E)、 E) の(の)

Tree Model not FSM-Closed (3)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

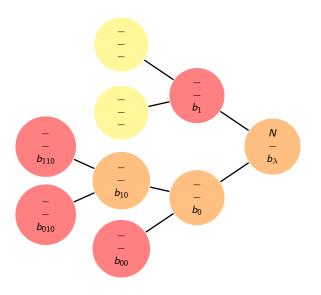
CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

FIND BEST TREE MODEL BINARY DECOMPOSITIO CONCLUSION

FUTURE DIRECTIONS



Tree Model, not FSM-Closed (4)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

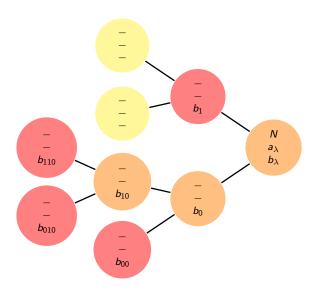
CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS FIND BEST TREE MODEI BINARY DECOMPOSITIO CONCLUSION

FUTURE DIRECTIONS



Tree Model, not FSM-Closed (5)

BWT and CTW

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

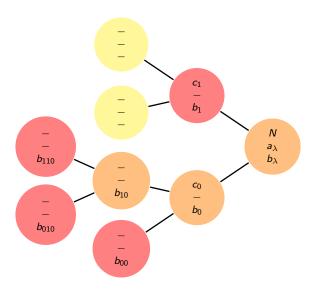
CONTEXT-TREI WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

FIND BEST TREE MODEL BINARY DECOMPOSITIO CONCLUSION

FUTURE DIRECTIONS



Tree Model, not FSM-Closed (6)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

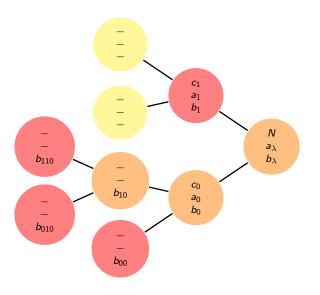
CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

FIND BEST TREE MODEL BINARY DECOMPOSITIO CONCLUSION

FUTURE DIRECTIONS



Tree Model, not FSM-Closed (7)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

TIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

• In layer 2 there is a leaf, 00, and a node 10, that fit into $\widehat{\mathcal{M}}$. Since all nodes at layer 1 are complete, we can compute the *c*'s of the subsequences in this leaf and node.

 $c_{00} = a_0$ $c_{10} = a_1.$

With the available *b*-counts for the node and leaf that fit into $\widehat{\mathcal{M}}$ the *a*-counts can be computed

 $a_{00} = c_{00} - b_{00}$ $a_{10} = c_{10} - b_{10}.$

• In layer 2 there are two nodes, 01 and 11, **that do not fit into** \mathcal{M} . Since all nodes at layer 1 are processed, we can also compute the *c*'s of these two nodes.

$$egin{array}{rcl} c_{01} & = & b_0 \ c_{11} & = & b_1. \end{array}$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

We need b_{01} and b_{11} now ...

Tree Model, not FSM-Closed (8)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

New Approach

٥

- Leaf 1 at layer 1 is complete (we know c_1 and weight b_1), and therefore the corresponding subsequence \underline{bw}_1 can be reconstructed from the lexicographical index i_1 .
 - The first c_{01} digits of \underline{bw}_1 are digits corresponding to node 01, call this sequence \underline{bw}_{01} . We can now simply count the number a_{01} of 0-digits and the number b_{01} of 1-digits in \underline{bw}_{01} .
 - The last c₁₁ digits of <u>bw₁</u> are digits corresponding to node 11, call this sequence <u>bw₁₁</u>. We can now simply count the number a₁₁ of 0-digits and the number b₁₁ of 1-digits in <u>bw₁₁</u>.

Now all the nodes in layer 2 are processed.

Tree Model, not FSM-Closed (9)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

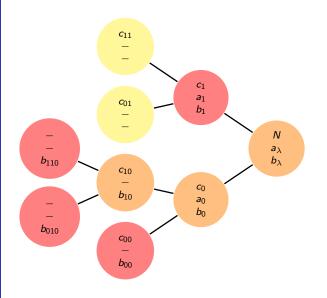
CONTEXT-TREI WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

FIND BEST TREE MODEL BINARY DECOMPOSITIO CONCLUSION

FUTURE DIRECTIONS



▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Tree Model, not FSM-Closed (10)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

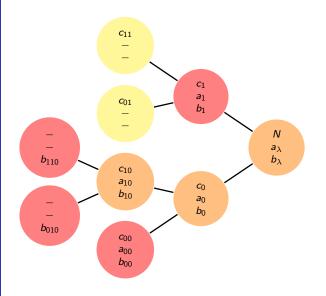
CONTEXT-TREI WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

FIND BEST TREE MODE BINARY DECOMPOSITIO CONCLUSION

FUTURE DIRECTIONS



Tree Model, not FSM-Closed (11)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

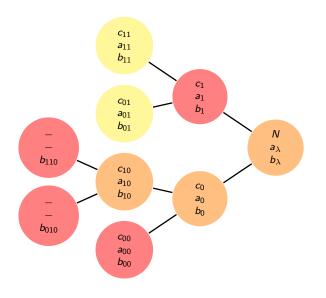
CONTEXT-TREI WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS FIND BEST TREE MODE BINARY DECOMPOSITIO CONCLUSION

FUTURE DIRECTIONS



BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

• In layer 3 there are two leaves, 010, and 110, that fit into $\widehat{\mathcal{M}}$. Since all nodes at level 2 are complete, we can compute the *c*'s of these leaves.

 $c_{010} = a_{01}$ $c_{110} = a_{11}.$

With the available *b*-counts also the *a*-counts can be computed for these leaves and node

 $a_{010} = c_{010} - b_{010}$ $a_{110} = c_{110} - b_{110}$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Tree Model, not FSM-Closed (13)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

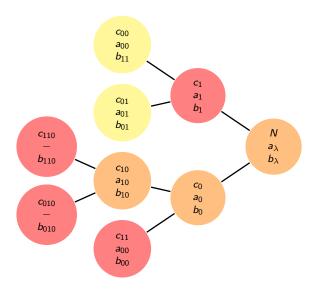
CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

FIND BEST TREE MODI

FUTURE DIRECTIONS



Tree Model, not FSM-Closed (14)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

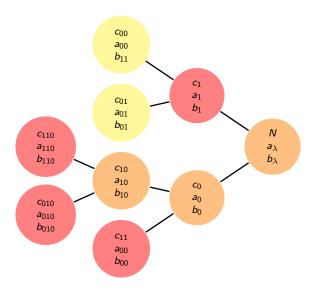
CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS FIND BEST TREE MOD BINARY DECOMPOSITI

CONCLUSION



BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES FSM-Closedness Problem FSM-Closed Tree Model Not FSM-Closed Model

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

- For all remaining leaves s in $\widehat{\mathcal{M}}$ the subsequence length c_s and *b*-count b_s (weight) is known.
- Now with the indices i₀₀, i₀₁₀, and i₁₁₀, the corresponding subsequences <u>bw₀₀</u>, <u>bw₀₁₀</u>, and <u>bw₁₁₀</u>, can be reconstructed.
- Since <u>*bw*</u>₁ was reconstructed before, the BW-transformed sequence is now the concatenation of the four subsequences, hence

 $BW = \underline{bw}_{00}, \underline{bw}_{010}, \underline{bw}_{110}, \underline{bw}_{1}.$

NOTE that the new approach works in the non-FSM closed case, without having to form the FSM-closure of the tree model first.

Coding *b*-Counts: Objective

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

Objective

Procedure

Loss

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Objective

How do we code the *b*-counts in the leaves $\mathcal{L}(\widehat{\mathcal{M}})$? Ideally we would like to achieve total codewordlength

$$\sum_{l \in \mathcal{L}(\widehat{\mathcal{M}})} \log_2(a_l + b_l + 1).$$

This corresponds to **uniform weight coding**. Note that the *c*'s apart from $c_{\lambda} = N$, are still unknown.

Coding *b*-Counts: Procedure

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

Objective

Procedure

Loss

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

• We start in the root node λ . There we describe b_{λ} . To this we need

 $\lceil \log_2(a_\lambda + b_\lambda + 1) \rceil$ bits.

 Then in all internal nodes s, starting in the root node λ, and processing level by level, we first find

 $i = \arg\min_{i=0,1} \log_2(a_{is} + b_{is} + 1),$

and we use one bit to describe i. Then we describe b_{is} using

 $\lceil \log_2(a_{is} + b_{is} + 1) \rceil$ bits.

Note that when b_{is} needs to be described, the corresponding $c_{0s} = a_{0s} + b_{0s}$ and $c_{1s} = a_{1s} + b_{1s}$ have already been reconstructed. This procedure leads to

 $\lceil \log_2(a_{\lambda} + b_{\lambda} + 1) \rceil + \sum_{n \in \mathcal{N}(\widehat{\mathcal{M}})} \lceil \log_2 \min(a_{0n} + b_{0n} + 1, a_{1n} + b_{1n} + 1) \rceil \text{ bits,}$

where $\mathcal{N}(\widehat{\mathcal{M}})$ are the internal nodes of $\widehat{\mathcal{M}}$.

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

Objective

Procedure

Loss

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Consider a node $n \in \mathcal{N}(\widehat{\mathcal{M}})$.

- Observe that we have described b_n using $\lceil \log_2(c_n + 1) \rceil$ bits, and next we describe both b_{0n} and b_{1n} using $1 + \lceil \log_2 \min(c_{0n} + 1, c_{1n} + 1) \rceil$ bits.
- Directly describing b_{0n} and b_{1n} would require $\lceil \log_2(c_{0n} + 1) \rceil + \lceil \log_2(c_{1n} + 1) \rceil$ bits.
- The loss in this node is now

$$\begin{split} \lceil \log_2(c_n+1) \rceil + 1 + \lceil \log_2 \min(c_{0n}+1, c_{1n}+1) \rceil \\ - \lceil \log_2(c_{0n}+1) \rceil - \lceil \log_2(c_{1n}+1) \rceil \\ = \quad \lceil \log_2(c_n+1) \rceil + 1 - \lceil \log_2 \max(c_{0n}+1, c_{1n}+1) \rceil \\ \leq \quad 2 \text{ bit.} \end{split}$$

Total loss is therefore

 $2(|\widehat{\mathcal{M}}|-1)$ bits.

Finding Best Tree Model: Maximizing

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

A two-pass version (context-tree maximizing) exists that finds the best model (MDL) matching to the source sequence, if coding is done as described before.

Context-Tree Maximizing

Define for nodes n

$$u(n) \triangleq 1 + \min\left[\left\lceil \log_2 \binom{c_n}{b_n} \right\rceil, 1 + \lceil \log_2 \min(c_{0n} + 1, c_{1n} + 1) \rceil + \mu(0n) + \mu(1n)\right]$$

while for leaves I

$$\mu(I) \stackrel{\Delta}{=} \left\lceil \log_2 \binom{c_I}{b_I} \right\rceil.$$

Tracking this procedure yield $\widehat{\mathcal{M}}$. Code-length is

 $L = \log_2(N+1) + \mu(\lambda).$

This procedure can be carried out very efficiently during the BW transform phase.

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Fix a depth, e.g. 3, then the subsequences of the nodes at depth 3 can be easily found, see BW table below:

0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 $0 \ 0 \ 1 \ 0 \ 1$ 0 0 0 0 1 0 1 0 0 || 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 || 0 1

Now node $000 \rightarrow \{10\} \rightarrow 1$, node $100 \rightarrow \{9,4\} \rightarrow 01$, node $010 \rightarrow \{6,8,3\} \rightarrow 100$, node $110 \rightarrow \{1\} \rightarrow 1$, node $001 \rightarrow \{5,11\} \rightarrow 10$, node $101 \rightarrow \{7,2\} \rightarrow 00$, node $011 \rightarrow \{12\} \rightarrow 0$, and finally node $111 \rightarrow \emptyset \rightarrow \emptyset$.

Binary Decomposition

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

Problem

Example Coding b-Counts Maximizing

CONCLUSION

FUTURE DIRECTIONS

CTW: Binary Decomposition, 1.8 bit/ASCII.

- Bytes: 8 bits, ASCII-symbols: 7 bits, DNA nucleotide (A,T, G and C): 2 bits, etc.
- The first bit of a symbol depends on the context (a number of past symbols).

The second bit of a symbol depends on the first bit of that symbol and the context.

The **third bit of a symbol** depends on the first and second bit of that symbol and the context, etc.

• Therefore there is a tree model for the first bit. There are two tree models for the second bit, one for first bit being 0 and a second one when the first bit is 1. There are four tree models for the third bit etc.

Question:

Can we do a binary decomposition also in combination with a BW transform on the symbols? Does there exist a way of finding the c's based on only the b-counts?

Binary Decomposition: Example (1)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODE

BINARY DECOMPOSITION Problem

Example

Coding *b*-Counts Maximizing

CONCLUSION

FUTURE DIRECTIONS

SYMBOL-SIZE: 2 bits.

Suppose that the *b*-counts in the leaves of the three tree models are specified. The decoder can now compute the *b*-counts of all inner nodes.

• The decoder first computes in tree- \emptyset (corresponding to the first digit of the symbol) count a_λ^\emptyset

$$a_{\lambda}^{\emptyset} = N - b_{\lambda}^{\emptyset}.$$

Now in tree-0 and in tree-1 (corresponding to the second digit of the symbol) the decoder can compute the c's and then the a's in the root nodes

$$egin{array}{lll} c_\lambda^0 = a_\lambda^\emptyset & a_\lambda^0 = c_\lambda^0 - b_\lambda^0 \ c_\lambda^1 = b_\lambda^\emptyset & a_\lambda^1 = c_\lambda^1 - b_\lambda^1. \end{array}$$

Now all the nodes in layer 0 of the three trees are processed.

• The decoder now starts working on layer 1 (one symbol contexts). First in tree- \emptyset the decoder computes the *c*'s and then the *a*'s

Binary Decomposition: Example (2)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION Problem

Example

Coding *b*-Counts Maximizing

CONCLUSION

FUTURE DIRECTIONS

• Then in tree-0 the decoder computes the c's and then the a's

$c_{00}^0=a_{00}^{\emptyset}$	$a_{00}^0=c_{00}^0-b_{00}^0$
$c_{01}^0=a_{01}^{\emptyset}$	$a_{01}^0 = c_{01}^0 - b_{01}^0$
$c_{10}^0=a_{10}^{\emptyset}$	$a_{10}^0=c_{10}^0-b_{10}^0$
$c_{11}^0=a_{11}^{\emptyset}$	$a_{11}^0 = c_{11}^0 - b_{11}^0,$

and in tree-1 the decoder computes the c's and then the a's

 $\begin{array}{ll} c_{00}^1 = b_{00}^{\emptyset} & \quad a_{00}^1 = c_{00}^1 - b_{00}^1 \\ c_{01}^1 = b_{01}^{\emptyset} & \quad a_{01}^1 = c_{01}^1 - b_{01}^1 \\ c_{10}^1 = b_{10}^{\emptyset} & \quad a_{10}^1 = c_{10}^1 - b_{10}^1 \\ c_{11}^1 = b_{11}^{\emptyset} & \quad a_{11}^1 = c_{11}^1 - b_{11}^1. \end{array}$

Now all the nodes in layer 1 of the three trees are processed.

- Etc.
- If a leaf is encountered the corresponding subsequence is reconstructed using the index. From then on *a*-counts and *b*-counts can be found by inspection of the reconstructed subsequence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Binary Decomposition: Example (3)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

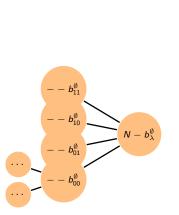
FIND BEST TREE MODEL

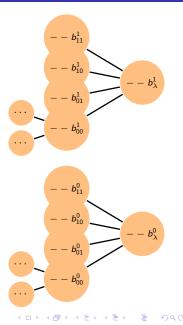
BINARY DECOMPOSITION Problem

Example

Coding *b*-Counts Maximizing

CONCLUSION





Binary Decomposition: Example (4)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

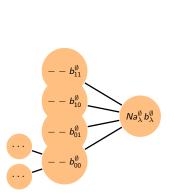
FIND BEST TREE MODEL

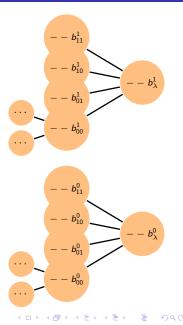
BINARY DECOMPOSITION Problem

Example

Coding *b*-Count: Maximizing

CONCLUSION





Binary Decomposition: Example (5)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

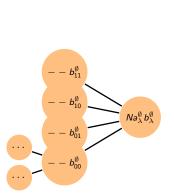
FIND BEST TREE MODEL

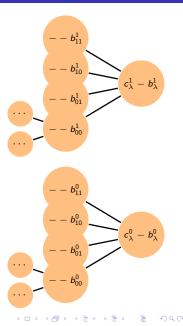
BINARY DECOMPOSITION Problem

Example

Coding *b*-Count: Maximizing

CONCLUSION





Binary Decomposition: Example (6)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

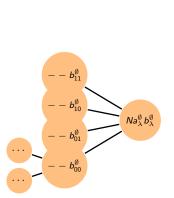
FIND BEST TREE MODEL

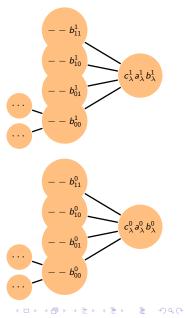
BINARY DECOMPOSITION Problem

Example

Coding *b*-Count: Maximizing

CONCLUSION





Binary Decomposition: Example (7)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

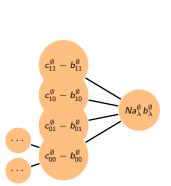
FIND BEST TREE MODEL

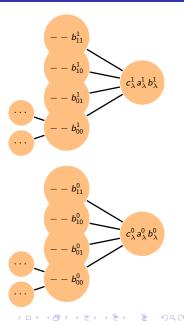
BINARY DECOMPOSITION Problem

Example

Coding *b*-Counts Maximizing

CONCLUSION





Binary Decomposition: Example (8)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

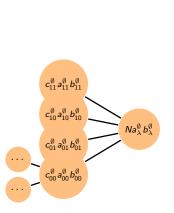
FIND BEST TREE MODEL

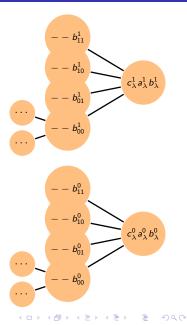
BINARY DECOMPOSITION Problem

Example

Coding b-Counts Maximizing

CONCLUSION





Binary Decomposition: Example (9)

Frans Willem

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

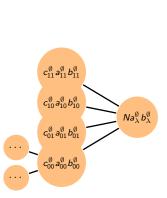
FIND BEST TREE MODEL

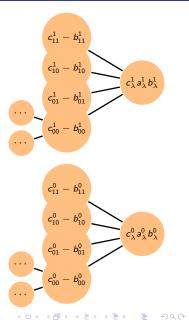
BINARY DECOMPOSITION Problem

Example

Coding b-Counts Maximizing

CONCLUSION





Binary Decomposition: Example (10)

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

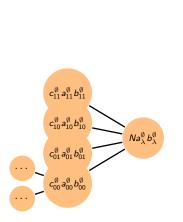
FIND BEST TREE MODEL

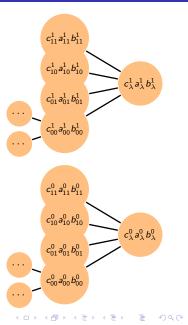
BINARY DECOMPOSITION Problem

Example

Coding b-Counts Maximizing

CONCLUSION





BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODE

BINARY DECOMPOSITION

Problem

Example

Coding *b*-Counts, Maximizing

CONCLUSION

FUTURE DIRECTIONS

• Coding the *b*-counts costs more bits now. It can be shown that we loose at most 6 bit per internal node (quaternary splitting can be accomplished with three binary splits). Fortunately this is at most 2 bit per parameter again.

• Maximizing formula exists again.

Conclusion

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEL

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

- The BW transform method does not need $\log_2(N)$ bits to specify a transition.
- The FSM closure is not needed. Specifying the maximizing tree model $\widehat{\mathcal{M}}$ and the *b*-counts in the leaves is enough.
- A loss comes from the fact that these *b*-counts are specified recursively. This loss is upper-bounded by 2 bit per leaf.
- Maximizing methods exist that match perfectly with the BW transform.
- There exist also binary decomposition techniques that combine with the BW transform.

Also KT-coding of weights can be analysed.

Future Directions

BWT and CTW

Frans Willems

INTRODUCTION

IID SOURCES, PREFIX CODES, REDUNDANCY

ENUMERATIVE CODING

ARITHMETIC CODING

CONTEXT-TREE WEIGHTING

BURROWS WHEELER

CODING BW-SEQUENCES

CODING B-COUNTS

FIND BEST TREE MODEI

BINARY DECOMPOSITION

CONCLUSION

FUTURE DIRECTIONS

Software?

• Suppose that the data have left-right symmetry hence P(a, b) = P(b, a), P(a, b, c) = P(c, b, a), P(a, b, c, d) = P(d, c, b, a), etc. This reduces the number of

parameters. Algorithm? Important for image-compression.

- CTW can handle side-information by considering it as context (e.g. Cai, Kulkarni, and Verdu, 2005). BW-version?
- Can BW-techniques be used to achieve CT-weighting performance. Here BW-techniques are described that achieve CT-maximizing performance.
- What if the side-information is not-properly aligned? LZ is more robust now. Important for reference-based genome compression (Chern et al., 2012).

• Can also Lempel-Ziv be boosted? Context connection via Herschkovitz-Ziv (1998).