How to Measure

Side-Channel Leakage

Aaron Wagner
School of Electrical and Computer Engineering
Cornell University

Collaborators

lbrahim Issa Sudeep Kamath
Cornell - EPFL - AUB Princeton - $%$%

ol

Ed Suh Ben Wu
Cornell Cornell

Packet-Timing Side Channel

Packet-Timing Side Channel

» ssh: keystrokes are sent as separate packets.

Packet-Timing Side Channel

» ssh: keystrokes are sent as separate packets.
» Packet timing < keystroke timing <= typed letters

Packet-Timing Side Channel

- - .9 B3 LaAnge
e -
- S— % .- . - - T -
-—— - - — - - -
- —— - - - - - - —— - — p—— -
- -~ - - L W — — - —— ——
—-—— - - - - T R —— - -
—-—— - - - — - ——— -
-— - - B @ castee s e —————— "
- - - — e ——
- - - . ww e B . - — 0 e
- — - - - - —— — - —
. - . . R e e b -
- - - - B AL ———— L ——
- ——— - - . — - ——
- | -l . o
e e - - - canes .-
—— -~

» ssh: keystrokes are sent as separate packets.
» Packet timing < keystroke timing <= typed letters

» Packet-sniffing eavesdropper can acquire information about
typed characters (e.g. passwords).

[Song, Wagner, and Tian '0O1]

Side Channels

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]
» RSA decryption time [Kocher '96]

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]
» RSA decryption time [Kocher '96]
» Cache/memory contention [Ferraiuolo et al. '16]

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]
» RSA decryption time [Kocher '96]
» Cache/memory contention [Ferraiuolo et al. '16]
» CPU power consumption [Kocher et al. '99]

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]
» RSA decryption time [Kocher '96]
» Cache/memory contention [Ferraiuolo et al. '16]
» CPU power consumption [Kocher et al. '99]

Side Channels

TECH

TECH | MOBILE | SOCIALMEDIA | ENTERPRISE | CYBERSECURITY | TECH GUIDE

Intel sells off for a second day
as massive security exploit
shakes the stock

o Newly discovered vulnerabilities could theoretically allow a hacker to steal
information stored in the memory of chips themselves.

e Although the exploits affected leading processors in many devices, Intel is
bearing most of the fallout.

e Some on Wall Street think that Intel's loss could mean gains for rivals.

Anita Balakrishnan | @MsABalakrishnan
Published 11:02 AM ET Thu, 4 Jan 2018 | Updated 1:31 PM ET Thu, 4 Jan 2018

YcnBeC

f
O
iny

» Meltdown (Lipp et al., '18)
» Spectre (Kocher et al., '18)

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]
» RSA decryption time [Kocher '96]
» Cache/memory contention [Ferraiuolo et al. '16]
» CPU power consumption [Kocher et al. '99]

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]
» RSA decryption time [Kocher '96]
» Cache/memory contention [Ferraiuolo et al. '16]
» CPU power consumption [Kocher et al. '99]

How to measure leakage in this context?

Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]
» RSA decryption time [Kocher '96]
» Cache/memory contention [Ferraiuolo et al. '16]
» CPU power consumption [Kocher et al. '99]

Given RVs X and Y, how much does Y leak about X?

Existing Possibilities

Existing Possibilities

» Mutual information (or equivocation) between X and Y

Existing Possibilities

» Mutual information (or equivocation) between X and Y
» Eavesdroppers expected distortion in reproducing X

Existing Possibilities

» Mutual information (or equivocation) between X and Y
» Eavesdroppers expected distortion in reproducing X
» Probability of (approximately) guessing X

Existing Possibilities

» Mutual information (or equivocation) between X and Y
» Eavesdroppers expected distortion in reproducing X

» Probability of (approximately) guessing X

» Expected number of guesses to guess X correctly

Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

k-correlation between X and Y

Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

k-correlation between X and Y

Cryptographic advantage

Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

k-correlation between X and Y

Cryptographic advantage

Entropic security

Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

k-correlation between X and Y

Cryptographic advantage

Entropic security

(Local) differential privacy

Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

k-correlation between X and Y

Cryptographic advantage

Entropic security

(Local) differential privacy

Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

k-correlation between X and Y

Cryptographic advantage

Entropic security

(Local) differential privacy

Wagner and Eckhoff ('15):

Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

k-correlation between X and Y

Cryptographic advantage

Entropic security

(Local) differential privacy

Wagner and Eckhoff ('15): 81 metrics

The Threat Model

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

AN

4 N

nominal packet

timings

o J

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

\
=

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

2. The eavesdropper observes Y.

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

2. The eavesdropper observes Y.

AN

4 N

randomized/blurred

version of X

o J

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

2. The eavesdropper observes Y.

3. The eavesdropper wants to guess, and we want to
prevent the eavesdropper from guessing, U.

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

2. The eavesdropper observes Y.

3. The eavesdropper wants to guess, and we want to
prevent the eavesdropper from guessing, U.

/

[brute-force attack)

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

2. The eavesdropper observes Y.

3. The eavesdropper wants to guess, and we want to
prevent the eavesdropper from guessing, U.

4. The distribution Pyix(u|x) is unknown to us (but
known to the eavesdropper)

The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

2. The eavesdropper observes Y.

(U,X) joint
3. The eavesdropper wan| distribution is e want to

prevent the eavesdrop complicated: , U.

“future-proof”

4. The distribution Pyix(u|x) is unknown to us (but
known to the eavesdropper)

Maximal Leakage

U X Y

[sensitive info] [nominal [revealed
process] process]

Maximal Leakage

Markov U — X —> %
chain:

[sensitive info] [nominal [revealed
process] process]

Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

SUP ¢y Pr(U = u(Y))

Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

SUP ¢y Pr(U = u(Y))
supg Pr(U =)

Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

SUP ¢y Pr(U = u(Y))
supg Pr(U =)

log

Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

SUP ¢y Pr(U = u(Y))
sup log —
U:Us XY supg Pr(U = u)

Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

supgc.y Pr(U = a(y
LIX—=Y)= sup log Pac) P11 N()
U:U—XsY supg Pr(U = u)

Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

supgc.y Pr(U = a(y
LIX—=Y)= sup log Pac) P11 N()
U:U—XsY supg Pr(U = u)

[operationally interpretable]

Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

supgc.y Pr(U = a(y
LIX—=Y)= sup log Pac) P11 N()
U:U—XsY supg Pr(U = u)

[not evidently computable; Carathéodory?]

Maximal Leakage

Theorem (Issa-Kamath-Wagner): For any joint
distribution Pxy on finite alphabets

10

Maximal Leakage

Theorem (Issa-Kamath-Wagner): For any joint
distribution Pxy on finite alphabets

L(X—Y)=log Z max Pyx(y|x)

XEX:
yey Px(x)>0

10

Maximal Leakage

Theorem (Issa-Kamath-Wagner): For any joint
distribution Pxy on finite alphabets

L(X—Y)=log Z max Pyx(y|x)

XEX:
YE€Y Py (x)>0

=I(X;Y) [Sibson MI of order oo]

10

Maximal Leakage

Theorem (Issa-Kamath-Wagner): For any joint
distribution Pxy on finite alphabets

L(X—Y)=log Z max Pyx(y|x)

XEX:
YE€Y Px(x)>0

=I(X;Y) [Sibson MI of order oo]

[depends on Px only through its support]

10

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

sup;c.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) -
UesX Y supg Pr(U = u)

The Worst-Case U

supqc.y Pr(U = u(Yy
L(X—=Y)= sup log Pac) Prt N()
UesX Y supg Pr(U = u)

“shattering”
>

The Worst-Case U

supqc.y Pr(U = u(Yy
L(X—Y)= sup log Pac) Pt N()
UesX Y supg Pr(U = u)

“shattering”
>

Px Pxu

[U I1s uniform and s.t. X is a deterministic function of U]

11

Upper Bound

E , Py(y) max Pyy(uly)
ueld
yey

— Z max Pyy (U, y)
€)

uel

— Z max Z Px (X)Puix(u[x)Pyx(y|x)
SN

XEX

uetd XEX

< % max » . Px(x)Pujx(ulx) max Pyix(y1x’)
S

= Z (I’T)CIX PY|X(y‘X/)) max Z Px(x)Pux(ulx)
yey x'eX ueid xeX

= Z max Py x(y|x) maxPy(u).
- XEX ueid

12

Maximal Leakage

Theorem (Issa-Kamath-Wagner): For any joint
distribution Pxy on finite alphabets

L(X—Y)=log Z max Pyx(y|x)

XEX:
YE€Y Py (x)>0

=I(X;Y) [Sibson MI of order oo]

13

Properties of Max. Leakage

Properties of Max. Leakage

Corollary: For any joint distribution Pxy on finite
alphabets

Properties of Max. Leakage

Corollary: For any joint distribution Pxy on finite
alphabets

» Data processing inequality: If X «— Y «— Z then
L(X—Z2) < mMIn{L(X->Y), L(Y—=Z2)}

14

Properties of Max. Leakage

Corollary: For any joint distribution Pxy on finite
alphabets

» Data processing inequality: If X «— Y «— Z then
L(X—=Z) < mMIn{L(X=Y), L(Y-=2)}

» Self-leakage
L(X—=X)=log|{x :Px(x) > 0}

14

Properties of Max. Leakage

Corollary: For any joint distribution Pxy on finite
alphabets

» Data processing inequality: If X «— Y «— Z then
L(X—Z2) < mMIn{L(X->Y), L(Y—=Z2)}

» Self-leakage
L(X—=X)=log|{x :Px(x) > 0}

» Cardinality bound
L(X—=Y) <min{log|X]|, log|V|}

14

Properties of Max. Leakage

Properties of Max. Leakage

> Independence: £L(X—Y) =0 iff X and Y are indep.

Properties of Max. Leakage

> Independence: £L(X—Y) =0 iff X and Y are indep.
> Asymmetry: £(X—=Y) # L(Y—X) In general.

Properties of Max. Leakage

> Independence: £L(X—Y) =0 iff X and Y are indep.
> Asymmetry: £(X—=Y) # L(Y—X) In general.
> Additivity: if (X;, Y;)_, are independent over

n
LX"-YM) = > LXi—Y)
(=1

15

Properties of Max. Leakage

> Independence: £L(X—Y) =0 iff X and Y are indep.
> Asymmetry: £(X—=Y) # L(Y—X) In general.
> Additivity: if (X;, Y;)_, are independent over

n
LX"-YM) = > LXi—Y)
(=1

» Convexity: exp(L£(X—Y)) is convex in Pyx

15

Properties of Max. Leakage

> Independence: £L(X—Y) =0 iff X and Y are indep.
> Asymmetry: £(X—=Y) # L(Y—X) In general.
> Additivity: if (X;, Y;)_, are independent over

n
LX"-YM) = > LXi—Y)
i=1
» Convexity: exp(L(X—Y)) Is convex in Pyx
» Maximal leakage upper bounds mutual info.
p(X, y)

p(x)p(y)

LX = Y)ZI(X;Y) = D p(x,y)log
X,y

15

Variations and Extensions

» Multiple guesses

» Approximate guesses

» General gains

» Opportunistic choice of U

» Conditional version

» Formula for general measure spaces
» Guessing X itself

16

Extension: Multiple Guesses

Def (Issa-Kamath-Wagner): For any positive integer Kk,

SUP g, (... ac () PLU{U = Gi(Y) })
i, P(Ui{U=4;})

Lik(X—Y)= sup log

lllll

17

Extension: Multiple Guesses

Def (Issa-Kamath-Wagner): For any positive integer Kk,

SUP g, (... ac () PLU{U = Gi(Y) })

lllll

Lik(X—Y)= sup log "
UesX Y supg, ... a, P(Ui{U = 0;})

lllll

Theorem (Issa-Kamath-Wagner): If X and Y are
discrete then for any positive integer K,

L(X—=Y)=L1(X=Y)=L(X->Y).

17

Conditional Form

Definition: The conditional maximal leakage from
XtoYqgivenZis

sup;. yPr(U = a(Y, Z
LIX—=Y|Z)= sup log Pac,) P ~()

18

Conditional Form

Definition: The conditional maximal leakage from
XtoYqgivenZis

sup;. yPr(U = a(Y, Z
LIX—=Y|Z)= sup log Pac,) P ~()

VS. UHXH(@

18

Conditional Form

Definition: The conditional maximal leakage from
XtoYqgivenZis

sup;. yPr(U = a(Y, Z
LIX—=Y|Z)= sup log Pac,) P ~()

18

Conditional Form

Definition: The conditional maximal leakage from
XtoYgivenZis

supqc. N Pr(U=0a(Y,Z
LIX—=Y|Z)= sup log Pac,) PIe N()

Theorem (Issa-Wagner):

LX—=Y|Z)= mZCtXL(X — Y|Z =2Zz)

18

Properties of Cond. Max. Leakage

Corollary: For any joint distribution Pxyz on finite
alphabets

» Data processing inequality: If X «— Y «— V|Z then
L(X-=V|Z) £ mIn{L(X-=Y|2Z2), L(Y-V|Z2)}
» Cond. independence: L(X—=Y|Z) =0 iff
Xe— LY
» Mutual information:
LIX—>Y|Z2)=I(X;Y|Z)

19

Properties of Cond. Max. Leakage

Properties of Cond. Max. Leakage

» Conditioning reduces max. leakage: If Z = X «—Y
then

L(X=Y|Z) < L(X=Y)

20

Properties of Cond. Max. Leakage

» Conditioning reduces max. leakage: If Z = X «—Y
then

L(X=Y|Z) < L(X=Y)

» Chain rule:
LX—(Y,Z)) < L(X=Z2)+ L(X-=Y]|Z)

20

Properties of Cond. Max. Leakage

» Conditioning reduces max. leakage: If Z = X «—Y
then

L(X=Y|Z) < L(X=Y)

» Chain rule:
L(X—(Y,Z2)) < LX=Z)+ L(X—=Y|Z)

» Composition theorem: if £ «= X <« Y then

LX—=(Y,Z2)) < L(X-Z)+ L(X-=Y)

20

Def:

maxsg.y P(X = x(Y
Li(X —=Y)=suplog x() P A()
Py maxx P(X = X)

Def:

maxsgy P(X = x(Y
Li(X —=Y)=suplog x0) Pl A()
Py maxx P(X = X)

Theorem:

LIX—=Y)=]o[=L(X—Y)]

Def: [Braun et al. '09; Kopf and Smith "10]:

maxx.y P(X = X(Y))
Li1(X —Y)=suplog X0 —
Py maxx P(X = X)

Theorem: [Braun et al. '09; Kopf and Smith '10]:

LIX—=Y)=]o[=L(X—Y)]

21

Def: [Braun et al. '09; Kopf and Smith "10]:

maxxe.y P(X = X(Y))
Li(X —=Y)=suplog X0 ~
Py maxx P(X = X)

Theorem: [Braun et al. '09; Kopf and Smith '10]:

LIX—=Y)=lo[=LX—=Y)]

[maximal leakage: not in Wagner and Eckhoff ('15)]

21

Discrete Examples: BSC

>< L(X —Y)=109(2(1 - q))
p 1 1

Discrete Examples: BSC

>< LX —Y)=109(2(1 -q))
1

[p = 1/3]

bits

22

Continuous Example

Theorem (Issa-Kamath-Wagner): If fx(x) and fyix(y|x)
are continuous then:

L(X—Y) = log f sup fyix(yIx) dy
X:fx(x)>0

23

Continuous Example

Theorem (Issa-Kamath-Wagner): If fx(x) and fyix(y|x)
are continuous then:

L(X—Y)=log f sup fyix(ylx) dy
X:fx(x)>0

If X and Y are jointly Gaussian then

0 ifX, Y indep.
oo otherwise

- =

23

Continuous Example

Theorem (Issa-Kamath-Wagner): If fx(x) and fyix(y|x)
are continuous then:

L(X—Y) = log f sup fyix(yIx) dy
X:fx(x)>0

If X and Y are jointly Gaussian then

0 ifX, Y indep.
oo otherwise

- =

[“adding noise” (as opposed to quantizing) leaks]

23

Continuous Example

Theorem (Issa-Kamath-Wagner): If fx(x) and fyix(y|x)
are continuous then:

L(X—Y)=log f sup fyix(ylx) dy
X:fx(x)>0

If X and Y are jointly Gaussian then

0 ifX, Y indep.
oo otherwise

- =

23

Other Metrics

» Mutual information (or equivocation)

» EXxpected distortion at eavesdropper

» Probability of (approximately) guessing X

» Expected number of guesses to guess X correctly
» Maximal correlation

» Kk-correlation

» Cryptographic advantage

» Entropic security

» (Local) differential privacy

24

Other Metrics

» EXxpected distortion at eavesdropper
» Probability of (approximately) guessing X
» Expected number of guesses to guess X correctly

» Maximal correlation

» Kk-correlation

» Cryptographic advantage
» Entropic security

> ...

24

Telg
Mutual Informatio

PXY(X; y)
Px(x)-Py(y)

= > Pxy(x, y)log
10X; Y) >

Mutual Information

PXY(X; y)
Px(x)-Py(y)

I(X;Y) = ZPXY(Xr y)log
X,y

«— H(X]Y), first used by Shannon ('49)

Mutual Information

PXY(X; y)
Px(x)-Py(y)

I(X;Y) = ZPXY(Xr y)log
X,y

«— H(X]Y), first used by Shannon ('49)

solution concept vs. problem formulation

25

Mutual Information

PXY(X; y)
YY= D P V)
I(X;Y) ny: (Y08 o S A)

| Shannon ('49):

From the point of view of the cryptanalyst, a secrecy system is almost
identical with a noisy communication system. The message (transmitted
signal) is operated on by a statistical element, the enciphering system, with
its statistically chosen key. The result of this operation is the cryptogram
(analogous to the perturbed signal) which is available for analysis. The
chief differences in the two cases are: first, that the operation of the en-
ciphering transformation is generally of a more complex nature than the
perturbing noise in a channel; and, second, the key for a secrecy system is
usually chosen from a finite set of possibilities while the noise in a channel
1s more often continually introduced, in effect chosen from an infinite set.

With these considerations in mind it is natural to use the equivocation
as a theoretical secrecy index. It may be noted that there are two signifi-
cant equivocations, that of the key and that of the message. These will be

i e S —

26

Shannon ('49)

Message
—_—

Secrecy System

. key

Signal available
to eavesdropper

27

Shannon ('49)

Secrecy System

Message

Signal available
—_—

to eavesdropper

A

. key

Noisy Communication System

Transmitted Signal available
Signal to decoder

: phy. layer noise

27

Shannon ('49)

Secrecy System

Message

—_— Signal available
to eavesdropper

© key

Noisy Communication System

Transmitted Signal available
Signal to decoder

. phy. layer noise

28

Shannon ('49)

4 Secrecy System A
Message . .
—_— Signal available
to eavesdropper
© key
_ /
4 . . N
Noisy Communication System
Transmitted Signal available
Signal to decoder

9 phy. layer noise)

» “Chief” differences: in secrecy system:

28

>

Sh

annon ('49)

4 Secrecy System
Message . .
—_— Signal available
to eavesdropper
© key
_
4 . .
Noisy Communication System
Transmitted Signal available
Signal to decoder
9 phy. layer noise

“Chief” differences: in secrecy system:

Injected randomness is of “more complex nature”

28

Shannon ('49)

4 Secrecy System h
Message . .
—_— Signal available
to eavesdropper
© key
_ . /
4 . . R
Noisy Communication System
Transmitted Signal available
Signal to decoder

L phy. layer noise)

» “Chief” differences: in secrecy system:
- Injected randomness is of “more complex nature”
- Injected randomness is discrete

28

Shannon ('49)

4 Secrecy System A
Message . .
—_— Signal available
to eavesdropper
© key
_ /
4 . . N
Noisy Communication System
Transmitted Signal available
Signal to decoder

9 phy. layer noise)

» Other differences: in conventional comm.,

28

Shannon ('49)

4 Secrecy System A
Message . .
—_— Signal available
to eavesdropper
© key
_ . /
4 . . N
Noisy Communication System
Transmitted Signal available
Signal to decoder

9 phy. layer noise)

» Other differences: in conventional comm.,
- Encoder is a willing participant (coding)

28

Shannon ('49)

4 Secrecy System h
Message . .
—_— Signal available
to eavesdropper
© key
_ . /
4 . . R
Noisy Communication System
Transmitted Signal available
Signal to decoder

L phy. layer noise)

» Other differences: in conventional comm.,
- Encoder is a willing participant (coding)
- Communication must be reliable

28

Shannon ('49)

4 Secrecy System h
Message . .
—_— Signal available
to eavesdropper
© key
_ . /
4 . . R
Noisy Communication System
Transmitted Signal available
Signal to decoder

L phy. layer noise)

» Other differences: in conventional comm.,
- Encoder is a willing participant (coding)
- Communication must be reliable
» Unclear motivation for using Ml in secrecy applications

28

Shannon ('49)

4 Secrecy System h
Message . .
—_— Signal available
to eavesdropper
© key
_ . /
4 . . R
Noisy Communication System
Transmitted Signal available
Signal to decoder

L phy. layer noise)

» Other differences: in conventional comm.,
- Encoder is a willing participant (coding)
- Communication must be reliable
» Unclear motivation for using Ml in secrecy applications
» But isn’t capacity an upper bound? .

But iIs Capacity an Upper Bound?

Folk Theorem: Any reasonable measure of
“leakage” from X to Y should be upper bounded by
the Shannon capacity of the channel Pyx:

"LIX—>Y)' < C=maxI(X;Y).
p(x)

29

But iIs Capacity an Upper Bound?

Folk Theorem: Any reasonable measure of
“leakage” from X to Y should be upper bounded by
the Shannon capacity of the channel Pyx:

"LIX—>Y)' < C=maxI(X;Y).
p(x)

“Proof:”

29

But iIs Capacity an Upper Bound?

Folk Theorem: Any reasonable measure of
“leakage” from X to Y should be upper bounded by
the Shannon capacity of the channel Pyx:

"LIX—>Y)' < C=maxI(X;Y).
p(x)

“Proof:” "£(X R Y)n S n})ax "[:(X s Y)n
X

29

But iIs Capacity an Upper Bound?

Folk Theorem: Any reasonable measure of
“leakage” from X to Y should be upper bounded by
the Shannon capacity of the channel Pyx:

"L(X = Y)”" < C=maxI(X;Y).

p(x)
"PI"OOf:" H£(X — Y)" S I'T})C[X H£(X — Y)"
X
1

< lim max ="£(X" - Y™)"
n— 00 PXn n

29

But iIs Capacity an Upper Bound?

Folk Theorem: Any reasonable measure of
“leakage” from X to Y should be upper bounded by
the Shannon capacity of the channel Pyx:

"L(X = Y)”" < C=maxI(X;Y).

p(x)
"PI"OOf:" H£(X — Y)" S I'T})C[X H£(X — Y)"
X
1

< lim max ="£(X" - Y™)"
n— 00 PXn n

< C=maxI(X;Y).
p(x)

29

But iIs Capacity an Upper Bound?

Folk Theorem: Any reasonable measure of
“leakage” from X to Y should be upper bounded by
the Shannon capacity of the channel Pyx:

"L(X = Y)”" < C=maxI(X;Y).

p(x)
“PI"OOf:" IIL(X _) Y)II S rT]PaX ’lﬁ(X _) Y)"
X
4) - 1 n n
< llm max—="£(X" — Y")"
C is the maximum M= Pxn N

amortized rate of
information transfer —— < ¢ = maxI(X;Y).

p(x)
over a channel.

29

But iIs Capacity an Upper Bound?

Folk Theorem: Any reasonable measure of
“leakage” from X to Y should be upper bounded by
the Shannon capacity of the channel Pyx:

"L(X = Y)”" < C=maxI(X;Y).

p(x)
“PI"OOf:" IIL(X _) Y)II S rT]PaX ’lﬁ(X _) Y)"
X
4) - 1 n n
< llm max—="£(X" — Y")"
C is the maximum M= Pxn N

amortized rate of
information transfer —— < ¢ = maxI(X;Y).

p(x)
over a channel.
. / [Yet L(X = Y) > C]

29

But iIs Capacity an Upper Bound?

Folk Theorem: Any reasonable measure of
“leakage” from X to Y should be upper bounded by
the Shannon capacity of the channel Pyx:

"LIX—>Y)' < C=maxI(X;Y).
p(x)

"PFOOf:" HL:(X — Y)n S n})ax "£(X — Y)H
X
d . . A < lim max 1”£(X” — Y™)”
C Is the maximum ~n-w popon
amortized rate of
| reliable — < C =maxI(X;Y).
InNnformation transfer p(x)

over a channel.
. J [Yet L(X —=Y) > C]

29

Leakage vs. Capacity

If X has full support:

supc.y Pr(U = a(Y))
LIX—=Y)= sup log Pag) Pre —
Ue— XY Supa PF(U — U)

Leakage vs. Capacity

If X has full support:

supc.y Pr(U = a(Y))
LIX—=Y)= sup log Pac) -
Ue— XY Supa PF(U — U)
Pr(U = U)
= sup log .

30

Leakage vs. Capacity

If X has full support:

supc.y Pr(U = a(Y))
LIX—=Y)= sup log Pac) -
Ue— XY Supa PF(U — U)
Pr(U = U)
= sup log .

| 1 Pr(U = U)
= |im sup —log -
n—00 U(_,Xn<_,yn<_,0 I Supa Pr(U — U)

30

Leakage vs. Capacity

If X has full support:
supc.y Pr(U = a(Y))
L(X—=Y)= sup log Pac) Prt

Ue— XY Supa PF(U — Cl)
Pr(U = U)
= sup log -

| 1 Pr(U = U)
= |im sup —log -
n—00 U(_,Xn<_,yn<_,0 I Supa Pr(U — U)

| 1 Pr(U = U)
= |iIm sup sup —log -
=L PXn U<—>Xn<—>Yn<—>0 I SU.pa Pr(U — U) .

Leakage vs. Capacity

If X has full support:
1 Pr(U = U)
LX—>Y)= I|m sup sup —log -
P Pin UeorXNesynes) N supg Pr(U = 1)

Leakage vs. Capacity

If X has full support:

| 1 Pr(U = U)
LX—Y)= lim sup sup —log -
fi=ree PXn U<—>X”<—>Yn<—>0 I Supa Pr(U — U)
Theorem (Issa-Wagner):)
- 1 Pr(U = U)
C=Ilim lim sup sup —log

Sl = Pyn UesXNeYn—(J: N SUpPg PF(U — a)

P(U=U)>1-¢€

31

(Local) Differential Privacy

PYIX(y‘X) [Warner '65;
LDP(X — Y) := sup log L : "
Xy Ple(y‘X/) Evfimievski et al. '03]

(Local) Differential Privacy

PYIX(y‘X) [Warner '65;
LDP(X — Y) := sup log L : "
Xy Ple(y‘X/) Evfimievski et al. '03]

Operational interpretation?

32

(Local) Differential Privacy

PYIX(y‘X) [Warner '65;
LDP(X — Y) := sup log L - "
X'y Ple(y‘X,) Evfimievski et al. '03]

Operational interpretation?

Theorem (cf. Dwork et al. '06):

g(P(I‘(X) = 1\Y=Y))

LDP(X —=Y) = |
K== 20 109 T rroo =1

f.Px,y

32

(Local) Differential Privacy

Theorem (cf. Dwork et al. '06):

g(P(f(X) = 1\Y=y))
P(F(X) = 1)

LDP(X — Y) = sup |lo
f.Px,y

(Local) Differential Privacy

Theorem (cf. Dwork et al. '06):

. (P(f(X) = 1\Y=Y))
P(f(X) =1)

LDP(X — Y) = sup |lo
f.Px,y

Theorem (Issa-Wagner):

sup, sup; Pr(U=ulY =y)

LDP(X — Y)=sup sup log .
Px Ue—sXe—Y SU.pa PF(U — U)

33

Optimal Mechanisms

» Given p(x) and c(x,y), solve

min ZmQXP(HX)
ply|x) vy

subject to Zp(x)p(ylx)c(x, y)<C
X,y

>plylx)=1 V x
Yy

p(ylx)=0 VXx,y

B4

Optimal Mechanisms

> Given p(x) and C(X,Y)Qp-leakaD

min ZmQXP(HX)
plylx) vy

subject to Zp(x)p(ylx)c(x, y)<C
X,y

>plylx)=1 V x
Yy

plylx)=0 V X,y

B4

Formulation as an LP

min ZCIy
py|x).qy Y

subject to Zp(x)p(ylx)c(x, y)<C
X,y

D.pyX)=1 Vx
y

p(ylx)=0 Vx,y

plylx)<qy VXx,y

B5

A Structural Assumption

y —

c(x,y): x

A Structural Assumption

y —

nondecreasing

nondecreasing

nondecreasing

C(X y). v nondecreasing

OO

B6

A Structural Assumption

_ y —
nondecreasing >
nondecreasing >
nondecreasing >
: nondecreasing >
c(x,y): x

OO

» Examples:

B6

A Structural Assumption

_ y —
nondecreasing >
nondecreasing >
nondecreasing >
: nondecreasing >
c(x,y): x

OO

» Examples:
- Execution time [RSA], power consumption

B6

A Structural Assumption

_ y —
nondecreasing >
nondecreasing >
nondecreasing >
: nondecreasing >
c(x,y): x

OO

» Examples:
- Execution time [RSA], power consumption
- "“Staircase increasing”

B6

Deterministic Mechanisms Are Optimal

Deterministic Mechanisms Are Optimal

Theorem (Wu, Wagner, Suh):
If c(-,-) Is staircase increasing, then for any a and Pk,

D maxPyix(y) +a- > > PxOOPyix(yX)e(x, ¥)
y x Y

IS minimized by a deterministic (0-1) Pyx.

00— T E——————————=—=——————_—_——_—

B7

Deterministic Mechanisms Are Optimal

Theorem (Wu, Wagner, Suh):
If c(-,-) Is staircase increasing, then for any a and Pk,

D maxPyix(y) +a- > > PxOOPyix(yX)e(x, ¥)
y x Y

IS minimized by a deterministic (0-1) Pyx.

00— T E——————————=—=——————_—_——_—

Fails for the cost matrix:

RN O
N O -
ORFrrN

B7

Corollary

Corollary (Wu, Wagner, Suh):

The optimal cost/exp-leakage curve is piecewise linear with
kink points only at integer exp-leakage values.

*

cost

>
exp-leakage

B8

Advantages of Deterministic Mechanisms

39

Advantages of Deterministic Mechanisms

» Do not require randomness (obviously)

39

Advantages of Deterministic Mechanisms

» Do not require randomness (obviously)
» Easier to describe and store

39

Advantages of Deterministic Mechanisms

» Do not require randomness (obviously)
» Easier to describe and store
» Immune to averaging attacks

39

cf. Other Metrics

c(x,y)= p(x): uniform

8~ N W

2
1
0o
0o

8 8 38+

minimize {E[c(X,Y])] : leakage = 1}

A0

cf. Other Metrics

2
1
0o
0o

1
0.0)
cxy)=| «
0.0

ol SV

p(x): uniform

minimize {E[c(X,Y])] : leakage = 1}

Maximal Leakage:

p(ylx) =

ololele
o O OO0
R P OO

OOmrH

~

210

cf. Other Metrics

c(x,y)= p(x): uniform

8~ N W

2
1
0o
0o

8 8 38+

minimize {E[c(X,Y])] : leakage = 1}

Al

cf. Other Metrics

1 2
co 1
CXY)=| o oo
oo OO

8~ N W

p(x): uniform

minimize {E[c(X,Y])] : leakage = 1}

p(ylx) =

Mutual Information:

coo

Co N
O O s

© oo
P wrko

B~ U1 d

~

Al

cf. Other Metrics

1 2
co 1
CXY)=| o oo
oo OO

8~ N W

p(x): uniform

minimize {E[c(X,Y])] : leakage = 1}

p(ylx) =

Mutual Information:

coo

Co N
O O s

© oo
P wrko

B~ U1 d

~

-

Local Diff. Privacy:

p(ylx) =

O O OO
O O OO
O O OO
ol

Maximal Leakage: Other Results

Maximal Leakage: Other Results

» Shannon cipher system (Issa, Kamath, Wagner '16)

42

Maximal Leakage: Other Results

» Shannon cipher system (Issa, Kamath, Wagner '16)

» Privacy-utility tradeoffs (Liao, Sankar, Calmon, Tan, '17)

42

Maximal Leakage: Other Results

» Shannon cipher system (lssa, Kamath, Wagner '16)
» Privacy-utility tradeoffs (Liao, Sankar, Calmon, Tan, '17)

» Sibson MI of other orders (Liao, Kosut, Sankar, Calmon, '18)

42

Maximal Leakage: Other Results

Shannon cipher system (lssa, Kamath, Wagner '16)
Privacy-utility tradeoffs (Liao, Sankar, Calmon, Tan, '17)
Sibson MI of other orders (Liao, Kosut, Sankar, Calmon, '18)

Learning ML from trace data (Issa and Wagner, '18)

42

Three Takeaways

Def (Issa-Kamath-Wagner): Given Pxy, the maximal leakage
from XtoYis

supqc.y Pr(U = a(Y
LIX—Y)= sup log Pac) Pr{ N()
U: U X Y supg Pr(U = a)

43

Three Takeaways

Def (Issa-Kamath-Wagner): Given Pxy, the maximal leakage
from XtoYis

supgc.y Pr(U = u(Y))
LIX—Y)= sup log Pac) Pl -
U:UeX Y supg Pr(U = a)

Maximal leakage ...

43

Three Takeaways

Def (Issa-Kamath-Wagner): Given Pxy, the maximal leakage
from XtoYis

supqc.y Pr(U = a(Y
LIX—Y)= sup log Pac) Pl N()
U: U X Y supg Pr(U = a)

Maximal leakage ...
1. ... captures the increase in guessing probability of secrets

43

Three Takeaways

Def (Issa-Kamath-Wagner): Given Pxy, the maximal leakage
from XtoYis

supqc.y Pr(U = a(Y
LIX—Y)= sup log Pac) Pr{ N()
U: U X Y supg Pr(U = a)

Maximal leakage ...
1. ... captures the increase in guessing probability of secrets

... IS well suited for side channels with keys, passwords.

43

Three Takeaways

Def (Issa-Kamath-Wagner): Given Pxy, the maximal leakage
from XtoYis

supqc.y Pr(U = a(Y
LIX—Y)= sup log Pac) Pr{ N()
U: U X Y supg Pr(U = a)

Maximal leakage ...
1. ... captures the increase in guessing probability of secrets
... Is well suited for side channels with keys, passwords.

2. ... 1s robust to modeling assumptions

43

Three Takeaways

Def (Issa-Kamath-Wagner): Given Pxy, the maximal leakage
from XtoYis

supqc.y Pr(U = a(Y
LIX—Y)= sup log Pac) Pr{ N()
U: U X Y supg Pr(U = a)

Maximal leakage ...
1. ... captures the increase in guessing probability of secrets
... IS well suited for side channels with keys, passwords.
2. ... 1s robust to modeling assumptions

3. ... favors deterministic mechanisms (quantization) over
“adding noise” in many contexts.

43

Extra Slides

A Different Question

A Different Question

How many secrecy measures do we need?

A Different Question

How many secrecy measures do we need?

- Probably more than one ...

45

A Different Question

How many secrecy measures do we need?

- Probably more than one ...

- ML ill-suited for e.g., medical databases

45

A Different Question

How many secrecy measures do we need?
- Probably more than one ...

- ML ill-suited for e.g., medical databases

- DP ill-suited for side channels

45

A Different Question

How many secrecy measures do we need?
- Probably more than one ...

- ML ill-suited for e.g., medical databases

- DP ill-suited for side channels

- Both ML and DP ill-suited for computationally-bounded
eavesdroppers

45

A Different Question

How many secrecy measures do we need?
- Probably more than one ...

- ML ill-suited for e.g., medical databases

- DP ill-suited for side channels

- Both ML and DP ill-suited for computationally-bounded
eavesdroppers

- ... but probably not 80+ either.

R — e

45

A Greedy Algorithm

» Given AC Y, the induced deterministic mechanism, Pa, is

p(ylx) =1 if y=argmin{c(x,y’):y’ € A}

A6

A Greedy Algorithm

» Given AC Y, the induced deterministic mechanism, Pa, is

p(ylx) =1 if y=argmin{c(x,y’):y’ € A}

A6

A Greedy Algorithm

» Given AC Y, the induced deterministic mechanism, Pa, is

p(ylx) =1 if y=argmin{c(x,y’):y’ € A}

A6

A Greedy Algorithm

» Given AC Y, the induced deterministic mechanism, Pa, is

p(ylx) =1 if y=argmin{c(x,y’):y’ € A}

A= 1 1 1 1 1
- —
1
1

A6

A Greedy Algorithm

» Given AC Y, the induced deterministic mechanism, Pa, is

p(ylx) =1 if y=argmin{c(x,y’):y’ € A}

A= 1 1 1 1 1
_ . —
1
1
1
1
1

1

A6

A Greedy Algorithm

A Greedy Algorithm

» Start with a singleton A that minimizes the cost of Pa.
1

e e el el

A7

A Greedy Algorithm

» Start with a singleton A that minimizes the cost of Pa.

» lterate: A—- AU {j}, wherej €A s c

the cost of Pauy{j}.

o0

e e

e = = gy

1

=

nosen to minimize

A7

Theorem (Wu, Wagner, Suh '19):
For exp-leakage k, let

» C*(k) denote the optimum cost
» Cg(k) denote the cost obtained by the greedy algorithm
Then C*(1) = Cg(1), C*(2) Cc;(2) and

——)(C (1)—C*(k))
63(C*(1)—C"(k))

*

—1
C* (1)~ CG(k)>()(c*(l)—c*(k))
(1
> 0.

A8

Theorem (Wu, Wagner, Suh '19):
For exp-leakage k, let

» C*(k) denote the optimum cost
» Cg(k) denote the cost obtained by the greedy algorithm
Then C*(1) = Cg(1), C*(2) Cc;(2) and

—1
C*(1)— CG(k)>()(C*(l)—C*(k))

(1——)(C (1)—C* (k)
> 0.63(C*(1)— C*(k))

*

“Proof: submodularit submodularity of -cost(Pa).

A8

Theorem

Theorem (Wu, Wagner, Suh '19):
For exp-leakage k, let

» C*(k) denote the optimum cost

» Cg(k) denote the cost obtained by the greedy algorithm
Then C*(1) = Cg(1), C*(2) = Cs(2), and

k—2
k—1

k—1
C*(l)—CG(k)Z(l_())(C*(l)—C*(k))
1
> (1— g)(c*(l)—c*(k))
> 0.63(C*(1)— C*(k))

e B

Proof: submodularity of -cost(Pa).
Note: leads to a sequence of approximations. a6

How to Delay Packets?

X(t) Y(t)
_ 0o O ,(7 O,
[nominal [actual

packet packet
timings] timings]

How to Delay Packets?

X(t) Y(t)
_ 0o O ,(7 O,
[nominal [actual

packet packet
timings] timings]

» Suppose X(t) is a Poisson process with rate A

49

How to Delay Packets?

X(t) Y(t)
_ 0o O ,(7 O,
[nominal [actual

packet packet
timings] timings]

» Suppose X(t) is a Poisson process with rate A
» How to blur the packet timings to minimize leakage?

49

Try an M/M/1 Queue

M/M/1 queue
service rate u

X(t) Y (t)
_ 00 mN | O,
[nominal ' [actual
packet packet

timings] timings]

50

Try an M/M/1 Queue

M/M/1 queue
service rate u

X(t) Y (t)
_ 00 mN | O,
[nominal ' [actual
packet packet
timings] timings]
1

£ (XD} = {Y(D}],) =p nats

50

Try an M/M/1 Queue

M/M/1 queue
service rate u

X(t) Y (t)
_ 0O 0o, | O,
[nominal ' [actual
packet packet
timings] timings]
1

£ (XD} = {Y(D}],) =p nats

[leakage rate is at least A]

50

Accumulate and Dump

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

Accumulate and Dump

m

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

Accumulate and Dump

T v 2T

m

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

Accumulate and Dump

T¢ 2Tv

m m

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

Accumulate and Dump

> 21-“; e

m m

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

Accumulate and Dump

T o7 ¢ 37

m m m

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

Accumulate and Dump

T o7 ¢ 37

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

[quantization leaks less than “adding noise”]

51

Accumulate and Dump

T o7 ¢ 37

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

[quantization leaks less than “adding noise”]

[cf. Kadloor, Kiyavash, and Venkitasubramaniam '16]

51

Th
e
Sh
an
no
n Ciph
er
S
yst
em

—{08)
M
<
{0, 1
’ }nR
)’en

Th
e
Sh
an
no
n Ciph
er
S
yst
em

—{08)
M
<
{0, 1
’ }nR
)’en

Th
e
Sh
an
no
n Ciph
er
S
yst
em

K
S

{0, 1}
nr

M
S
{0, 1
- ‘
)’en

Th
e
Sh
anno
N
Ci
K Ir'
e {0,1}™—_

u
"
Iform

M
S
{0, 1
- ‘
)’en

Th
e
Sh
an
no
n Ciph
er
S
yst
em

K
S

{0, 1}
nr

M
S
{0, 1
- ‘
)’en

The Shannon Cipher System

Ke{0, 1}

Me {0, 1}"R

» Shannon ('49): perfect secrecy Is possible if(f) the key rate r
exceeds the message rate R.

52

The Shannon Cipher System

Ke{0, 1}

Me {0, 1}"R

» Shannon ('49): perfect secrecy Is possible if(f) the key rate r
exceeds the message rate R.

» How to design fand g to minimize leakage when r < R?

52

Leakage and Shannon’s Cipher

~. Ke{0, 130"
.1.d.
ymdiscrete Me {0,1}"% b_)%n

Le
ak
a
ge
an
d
Shann
on’
S
Ci
Iph

er

K
S

{0, 1}
nr

M
S
{0, 1
- ‘
)’en

Leakage and Shannon’s Cipher

Ke{0, 1}

NnR

1

Lp=min— - L(X" - M) '
f.9 n

subject to
f:x"%x{0,1}" — {0, 1}""
g:{0,1}"Rx {0,1}" — X"

1 A
— > E[d(Xy, X)1 <D
niz

Leakage and Shannon’s Cipher

Ke{0, 1}

NnR

1

Lp=min— - L(X" - M) '
f.9 n

subject to
f:x"%x{0,1}" — {0, 1}""
g:{0,1}"Rx {0,1}" — X"

1 1 a [= ||m Ln
EZ E[d(X, X)]1 <D =00
(=1

Leakage and Shannon’s Cipher

Theorem (Issa-Kamath-Wagner): Let R(D) denote the rate-
distortion function for the source. If

R < R(D),

then the problem is infeasible. Otherwise, the min. max.
leakage is

L=[R(D)-r]*

54

Leakage and Shannon’s Cipher

Theorem (Issa-Kamath-Wagner): Let R(D) denote the rate-
distortion function for the source. If

R < R(D),

then the problem is infeasible. Otherwise, the min. max.
leakage is

L=[R(D)-r]*

Notes:

54

Leakage and Shannon’s Cipher

Theorem (Issa-Kamath-Wagner): Let R(D) denote the rate-
distortion function for the source. If

R < R(D),

then the problem is infeasible. Otherwise, the min. max.
leakage is

L=[R(D)-r]*

Notes:
» Using MI instead of leakage gives same result

54

Leakage and Shannon’s Cipher

Theorem (Issa-Kamath-Wagner): Let R(D) denote the rate-
distortion function for the source. If

R < R(D),

then the problem is infeasible. Otherwise, the min. max.
leakage is

L=[R(D)-r]*

Notes:
» Using MI instead of leakage gives same result
- Though difference in optimal schemes...

54

Leakage and Shannon’s Cipher

Theorem (Issa-Kamath-Wagner): Let R(D) denote the rate-
distortion function for the source. If

R < R(D),

then the problem is infeasible. Otherwise, the min. max.
leakage is

L=[R(D)-r]*

Notes:
» Using MI instead of leakage gives same result
- Though difference in optimal schemes...
» Large deviations (and a.s.) result

54

Achievability for Primary User

Achievability for Primary User

n optimal lossy nR(D) bits
8 compressor 01001011010001000011

Achievability for Primary User

n optimal lossy nR(D) bits
X 01001011010001000011
compressor
+ 11010111000 (key)

95

Achievability for Primary User

n optimal lossy nR(D) bits
X 01001011010001000011
compressor
+ 11010111000 (key)

10011100010001000011

95

Achievability for Primary User

bits

N optimal lossy nR(D)
X'— 01001011010001000011
compressor
+ 11010111000 (key)

10011100010001000011

\4

M

95

Achievability for Primary User

NnR(D) bits
01001011010001000011

+ 11010111000 (key)

optimal lossy

compressor

10011100010001000011

M

v
10011100010001000011

95

Achievability for Primary User

NnR(D) bits
01001011010001000011

+ 11010111000 (key)

optimal lossy

compressor

10011100010001000011

M

\ 4
10011100010001000011
+ 11010111000 (key)

95

Achievability for Primary User

optimal lossy

compressor

NnR(D) bits
01001011010001000011

+ 11010111000 (key)

10011100010001000011

M

\ 4
10011100010001000011
+ 11010111000 (key)

01001011010001000011

95

Achievability for Primary User

optimal lossy

compressor

NnR(D) bits
01001011010001000011

11010111000 (key)

10011100010001000011

M

\ 4
10011100010001000011
11010111000 (key)

01001011010001000011

95

Achievability for Primary User

optimal lossy

compressor

optimal lossy

decompressor

NnR(D) bits
01001011010001000011

11010111000 (key)

10011100010001000011

M

\ 4
10011100010001000011
11010111000 (key)

01001011010001000011

95

Achievability for Eavesdropper

Ke{0,1}"

Achievability for Eavesdropper

1. Consider worst-case U

Achievability for

2. Guess key randomly

-

Achievability for Eavesdropper

Ke{0,1}"

NnR
U X”i = ‘X
Gmulate g to create X"

Achievability for Eavesdropper

Ke{0, 1}

NnRk

4 Pick X7 uniformly at random from within
_distortion ball around X",

J

Achievability for Eavesdropper

4)

5. Generate U from Xn.

- J

Quantization vs. Adding Noise

Ke{0, 1}"

nR

Suppose r = 0 and R is large '

Quantization vs. Adding Noise

nR

Suppose r = 0 and R is large '

Quantization vs. Adding Noise

Quantization vs. Adding Noise

A
>

1
Then L,=min—-L(X" = XM

Xn n
subject to

1 n
—), E[d(X, X)] <D
(=1

Quantization vs. Adding Noise

-

1
Then L,=min—-L(X" = XM

Xn n
subject to

L= lim L 1S A
et =), E[dX X)1 <D
(=1

Quantization vs. Adding Noise

-

1
Then Lp,=min—-L£(X" = X"

X n
subject to [side channel]

L= limL 13 .
et —) ELd(X X)] <D
(=1

Quantization vs. Adding Noise

Quantization vs. Adding Noise

Optimal scheme:

Quantization vs. Adding Noise

Optimal scheme:
» Compress X" optimally to rate R(D), then decompress.

Quantization vs. Adding Noise

Optimal scheme:
» Compress X" optimally to rate R(D), then decompress.
> Leaks R(D) bits per symbol

58

Quantization vs. Adding Noise

Optimal scheme:
» Compress X" optimally to rate R(D), then decompress.
» Leaks R(D) bits per symbol
» Deterministic but noncausal

58

Quantization vs. Adding Noise

Optimal scheme:
» Compress X" optimally to rate R(D), then decompress.
» Leaks R(D) bits per symbol
» Deterministic but noncausal

Memoryless scheme:
X1— Channel; — X;
X2— Channel, — X2
X3— Channelz — X3

Xn— Channel, — X,

58

Quantization vs. Adding Noise

Optimal scheme:
» Compress X" optimally to rate R(D), then decompress.
» Leaks R(D) bits per symbol
» Deterministic but noncausal

Memoryless scheme: Memoryless scheme is

X1— Channel; _’)A(l causal but suboptimal.

X2— Channel, — X2
X3— Channels — X3

N

Xn— Channel, — X,

58

Quantization vs. Adding Noise

Optimal scheme:
» Compress X" optimally to rate R(D), then decompress.
» Leaks R(D) bits per symbol
» Deterministic but noncausal

Memoryless scheme: Memoryless scheme is

X1— Channel; _’)A(l causal but suboptimal.

X2— Channel; — X2 [quantization is

X3—Channels — X: -&dding noise’

N

Xn— Channel, — X,

58

Quantization vs. Adding Noise

Optimal scheme:
» Compress X" optimally to rate R(D), then decompress.
» Leaks R(D) bits per symbol
» Deterministic but noncausal

Memoryless scheme: Memoryless scheme is

X1— Channel; _’)A(l causal but suboptimal.

X2— Channel; — X2 [quantization is

X3—Channels — X: -&dding noise’

A [cf. mutual Iinfo.]
Xn— Channel, — X,

58

Extension: Approx. Guessing

Def (Issa-Kamath-Wagner): For any metric space U,
supg ¢y Pr(U € B(a(Y))
Lyu(X—=Y)= sup log Pa) P L(r)))

U: U< X Y supy Pr(U € B(1))
Ju:Pr(UeB(u))>0

Extension: Approx. Guessing

Def (Issa-Kamath-Wagner): For any metric space U,
supgcy Pr(U € B(a(Y)))
Lyu(X—=Y)= sup log Pa) Pr(L)

U: U< X Y supy Pr(U € B(1))
Ju:Pr(UeB(u))>0

Theorem (Issa-Kamath-Wagner): For any metric

space U,
Liy/(X—=Y) < L(X-=Y)

with equality iIf &4 has countably many points no two
of which are contained in the same unit ball.

59

Extension: General Gains

Def (Issa-Kamath-Wagner): .
. supacy EL(U, A(Y))]
Lc(X—=Y)= sup log

U:UeX oY supy E[g(U, U)]
g(-,-):UxU—[0,00):
supg E[9(U,d)]>0

60

Extension: General Gains

Def (Issa-Kamath-Wagner):)
. supgcy E[g(U, G(Y))]
Lc(X—=Y)= sup log

U:UeX oY supy E[g(U, U)]
g(-,):UxU—[0,00):
supy E[g(U,4)]>0

Theorem (Issa-Kamath-Wagner): If X and Y are
discrete, then

LGX—=Y)=LX—=Y).

60

Opportunistic Attacks

Definition: The opportunistic maximal leakage is

[supg Pujpv (aly) -
Lo(X—=Y)=IlogEy| sup Pa FUl - y
UesXsY SupgP(u)

Opportunistic Attacks

Definition: The opportunistic maximal leakage is

supg Pupy(aly) -~
Lo(X—=Y)=IlogEy| sup Pa FUl - y
UesXY SupgP(u)

Theorem (Issa-Wagner): For any joint distribution
Pxy on finite alphabets

Lo(X—=Y)=L(X—-Y)

61

Extension: General Alphabet

Corollary (IKW): If X and Y are jointly continuous
then

L(X—Y) = log f sup fyix(y|x) dy
X:fx(x)>0

Extension: General Alphabet

Corollary (IKW): If X and Y are jointly continuous
then

L(X—Y) = log f sup fyix(yIx) dy
X:fx(x)>0

Corollary (IKW): If X and Y are jointly Gaussian

then
0 ifX, Y indep.

L(X=Y) = .
() {oo otherwise

62

Extension: General Alphabet

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).

63

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

63

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

63

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

63

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

63

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

63

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

o |f then

63

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

e [f Pxy X Px x Py then
LX—>Y)=0

63

Extension: General Alphabet

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).

64

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

64

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

64

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

64

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

64

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

64

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

o |f then

64

Extension: General Alphabet

Theorem (IKW '17): Let(X x), oxxy, Pxy) be a
prob. space with associated prob. spaces (&, ox, Px)
and (Y, oy, Py).
e If Pxy < Px x Py and Ox is generated by a
countable set then

(dPxy)

LIX—=Y)=Il0 ess sup, - X,V)r dP
() gL Px LdPxdey(y)J Y

e [f Pxy X Px x Py then
LX—>Y)=0

64

