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» ssh: keystrokes are sent as separate packets.
» Packet timing < keystroke timing <= typed letters

» Packet-sniffing eavesdropper can acquire information about
typed characters (e.g. passwords).

[Song, Wagner, and Tian '0O1]
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Intel sells off for a second day
as massive security exploit
shakes the stock

o Newly discovered vulnerabilities could theoretically allow a hacker to steal
information stored in the memory of chips themselves.

e Although the exploits affected leading processors in many devices, Intel is
bearing most of the fallout.

e Some on Wall Street think that Intel's loss could mean gains for rivals.

Anita Balakrishnan | @MsABalakrishnan
Published 11:02 AM ET Thu, 4 Jan 2018 | Updated 1:31 PM ET Thu, 4 Jan 2018
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» Meltdown (Lipp et al., '18)
» Spectre (Kocher et al., '18)
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How to measure leakage in this context?



Side Channels

» Side channel: a mechanism that conveys information
inadvertently

» Examples:

» Packet-timing based:
» typed characters (ssh) [Song et al. '01]
» routing [Chaum '81]
» spoken phrases (VolP) [Wright et al. '08]
» RSA decryption time [Kocher '96]
» Cache/memory contention [Ferraiuolo et al. '16]
» CPU power consumption [Kocher et al. '99]

Given RVs X and Y, how much does Y leak about X?
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Existing Possibilities

Mutual information (or equivocation) between X and Y
Eavesdroppers expected distortion in reproducing X
Probability of (approximately) guessing X

Expected number of guesses to guess X correctly
Maximal correlation between X and Y

k-correlation between X and Y

Cryptographic advantage

Entropic security

(Local) differential privacy

Wagner and Eckhoff ('15): 81 metrics
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The Threat Model

1. The eavesdropper is interested in a possibly
randomized function of X called U.

2. The eavesdropper observes Y.

(U,X) joint
3. The eavesdropper wan| distribution is e want to

prevent the eavesdrop complicated: , U.

“future-proof”

4. The distribution Pyix(u|x) is unknown to us (but
known to the eavesdropper)



Maximal Leakage

U X Y

[sensitive info] [nominal [revealed
process] process]



Maximal Leakage

Markov U — X —> %
chain:

[sensitive info] [nominal [revealed
process] process]



Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

SUP ¢y Pr(U = u(Y))



Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

SUP ¢y Pr(U = u(Y))
supg Pr(U = )




Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

SUP ¢y Pr(U = u(Y))
supg Pr(U = )

log



Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

SUP ¢y Pr(U = u(Y))
sup log —
U:Us XY supg Pr(U = u)




Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

supgc.y Pr(U = a(y
LIX—=Y)= sup log Pac) P11 N( )
U:U—XsY supg Pr(U = u)




Maximal Leakage

Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

supgc.y Pr(U = a(y
LIX—=Y)= sup log Pac) P11 N( )
U:U—XsY supg Pr(U = u)

[operationally interpretable]
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Markov U — X —> %
chain;
[sensitive info] [nominal [revealed
process] process]

Def (Issa-Kamath-Wagner): Given Pxy, the maximal
leakage from X to Y Is

supgc.y Pr(U = a(y
LIX—=Y)= sup log Pac) P11 N( )
U:U—XsY supg Pr(U = u)

[not evidently computable; Carathéodory?]
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Maximal Leakage

Theorem (Issa-Kamath-Wagner): For any joint
distribution Pxy on finite alphabets

L(X—Y)=log Z max Pyx(y|x)

XEX:
YE€Y Px(x)>0

=I(X;Y) [Sibson MI of order oo]

[depends on Px only through its support]

10
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The Worst-Case U

supqc.y Pr(U = u(Yy
L(X—Y)= sup log Pac) Pt N( )
UesX Y supg Pr(U = u)

“shattering”
>

Px Pxu

[U I1s uniform and s.t. X is a deterministic function of U]
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Upper Bound

E , Py(y) max Pyy(uly)
ueld
yey

— Z max Pyy (U, y)
€)

uel

— Z max Z Px (X)Puix(u[x)Pyx(y|x)
SN

XEX

uetd XEX

< % max » . Px(x)Pujx(ulx) max Pyix(y1x’)
S

= Z (I’T)CIX PY|X(y‘X/)) max Z Px(x)Pux(ulx)
yey x'eX ueid xeX

= Z max Py x(y|x) maxPy(u).
- XEX ueid
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Properties of Max. Leakage

Corollary: For any joint distribution Pxy on finite
alphabets

» Data processing inequality: If X «— Y «— Z then
L(X—Z2) < mMIn{L(X->Y), L(Y—=Z2)}

» Self-leakage
L(X—=X)=log|{x :Px(x) > 0}

» Cardinality bound
L(X—=Y) <min{log|X]|, log|V|}

14
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Properties of Max. Leakage

> Independence: £L(X—Y) =0 iff X and Y are indep.
> Asymmetry: £(X—=Y) # L(Y—X) In general.
> Additivity: if (X;, Y;)_, are independent over

n
LX"-YM) = > LXi—Y)
i=1
» Convexity: exp(L(X—Y)) Is convex in Pyx
» Maximal leakage upper bounds mutual info.
p(X, y)

p(x)p(y)

LX = Y)ZI(X;Y) = D p(x,y)log
X,y

15



Variations and Extensions

» Multiple guesses

» Approximate guesses

» General gains

» Opportunistic choice of U

» Conditional version

» Formula for general measure spaces
» Guessing X itself

16



Extension: Multiple Guesses

Def (Issa-Kamath-Wagner): For any positive integer Kk,

SUP g, (... ac () PLU{U = Gi(Y) })
i, P(Ui{U=4;})

Lik(X—Y)= sup log

lllll
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Extension: Multiple Guesses

Def (Issa-Kamath-Wagner): For any positive integer Kk,

SUP g, (... ac () PLU{U = Gi(Y) })

lllll

Lik(X—Y)= sup log "
UesX Y supg, ... a, P(Ui{U = 0;})

lllll

Theorem (Issa-Kamath-Wagner): If X and Y are
discrete then for any positive integer K,

L(X—=Y)=L1(X=Y)=L(X->Y).

17



Conditional Form
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Conditional Form

Definition: The conditional maximal leakage from
XtoYgivenZis

supqc. N Pr(U=0a(Y,Z
LIX—=Y|Z)= sup log Pac,) PIe N( )

Theorem (Issa-Wagner):

LX—=Y|Z)= mZCtXL(X — Y|Z =2Zz)

18



Properties of Cond. Max. Leakage

Corollary: For any joint distribution Pxyz on finite
alphabets

» Data processing inequality: If X «— Y «— V|Z then
L(X-=V|Z) £ mIn{L(X-=Y|2Z2), L(Y-V|Z2)}
» Cond. independence: L(X—=Y|Z) =0 iff
Xe— LY
» Mutual information:
LIX—>Y|Z2)=I(X;Y|Z)

19
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Properties of Cond. Max. Leakage

» Conditioning reduces max. leakage: If Z = X «—Y
then

L(X=Y|Z) < L(X=Y)

» Chain rule:
L(X—(Y,Z2)) < LX=Z)+ L(X—=Y|Z)

» Composition theorem: if £ «= X <« Y then

LX—=(Y,Z2)) < L(X-Z)+ L(X-=Y)

20
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Def: [Braun et al. '09; Kopf and Smith "10]:

maxx.y P(X = X(Y))
Li1(X —Y)=suplog X0 —
Py maxx P(X = X)

Theorem: [Braun et al. '09; Kopf and Smith '10]:
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Def: [Braun et al. '09; Kopf and Smith "10]:

maxxe.y P(X = X(Y))
Li(X —=Y)=suplog X0 ~
Py maxx P(X = X)

Theorem: [Braun et al. '09; Kopf and Smith '10]:

LIX—=Y)=lo[=LX—=Y)]

[maximal leakage: not in Wagner and Eckhoff ('15)]
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>< LX —Y)=109(2(1 -q))
1

[p = 1/3]

bits

22



Continuous Example

Theorem (Issa-Kamath-Wagner): If fx(x) and fyix(y|x)
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X:fx(x)>0
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Theorem (Issa-Kamath-Wagner): If fx(x) and fyix(y|x)
are continuous then:

L(X—Y) = log f sup fyix(yIx) dy
X:fx(x)>0

If X and Y are jointly Gaussian then

0 ifX, Y indep.
oo otherwise

- =

[“adding noise” (as opposed to quantizing) leaks ]
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Other Metrics
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» EXxpected distortion at eavesdropper
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Other Metrics

» EXxpected distortion at eavesdropper
» Probability of (approximately) guessing X
» Expected number of guesses to guess X correctly

» Maximal correlation

» Kk-correlation

» Cryptographic advantage
» Entropic security

> ...

24
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Mutual Information

PXY(X; y)
Px(x)-Py(y)

I(X;Y) = ZPXY(Xr y)log
X,y

«— H(X]Y), first used by Shannon ('49)

solution concept vs. problem formulation

25



Mutual Information

PXY(X; y)
YY= D P V)
I(X;Y) ny: (Y08 o S A )

| Shannon ('49):

From the point of view of the cryptanalyst, a secrecy system is almost
identical with a noisy communication system. The message (transmitted
signal) is operated on by a statistical element, the enciphering system, with
its statistically chosen key. The result of this operation is the cryptogram
(analogous to the perturbed signal) which is available for analysis. The
chief differences in the two cases are: first, that the operation of the en-
ciphering transformation is generally of a more complex nature than the
perturbing noise in a channel; and, second, the key for a secrecy system is
usually chosen from a finite set of possibilities while the noise in a channel
1s more often continually introduced, in effect chosen from an infinite set.

With these considerations in mind it is natural to use the equivocation
as a theoretical secrecy index. It may be noted that there are two signifi-
cant equivocations, that of the key and that of the message. These will be

i e S —
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Leakage vs. Capacity

If X has full support:

| 1 Pr(U = U)
LX—Y)= lim sup sup —log -
fi=ree PXn U<—>X”<—>Yn<—>0 I Supa Pr(U — U)
Theorem (Issa-Wagner): )
- 1 Pr(U = U)
C=Ilim lim sup sup —log

Sl = Pyn UesXNeYn—(J: N SUpPg PF(U — a)

P(U=U)>1-¢€
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(Local) Differential Privacy

Theorem (cf. Dwork et al. '06):

. (P(f(X) = 1\Y=Y))
P(f(X) =1)

LDP(X — Y) = sup |lo
f.Px,y

Theorem (Issa-Wagner):

sup, sup; Pr(U=ulY =y)

LDP(X — Y)=sup sup log .
Px Ue—sXe—Y SU.pa PF(U — U)
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Formulation as an LP

min ZCIy
py|x).qy Y

subject to Zp(x)p(ylx)c(x, y)<C
X,y

D.pyX)=1 Vx
y

p(ylx)=0 Vx,y

plylx)<qy VXx,y
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A Structural Assumption

_ y —
nondecreasing >
nondecreasing >
nondecreasing >
: nondecreasing >
c(x,y): x

OO

» Examples:
- Execution time [RSA], power consumption
- "“Staircase increasing”
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Deterministic Mechanisms Are Optimal

Theorem (Wu, Wagner, Suh):
If c(-,-) Is staircase increasing, then for any a and Pk,

D maxPyix(y) +a- > > PxOOPyix(yX)e(x, ¥)
y x Y

IS minimized by a deterministic (0-1) Pyx.

00— T E——————————=—=——————_—_——_—

Fails for the cost matrix:

RN O
N O -
ORFrrN
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Corollary

Corollary (Wu, Wagner, Suh):

The optimal cost/exp-leakage curve is piecewise linear with
kink points only at integer exp-leakage values.

*

cost

>
exp-leakage
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» Do not require randomness (obviously)
» Easier to describe and store
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p(x): uniform

minimize {E[c(X,Y])] : leakage = 1}

p(ylx) =

Mutual Information:

coo
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© oo
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B~ U1 d

~
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Local Diff. Privacy:

p(ylx) =
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Maximal Leakage: Other Results

Shannon cipher system (lssa, Kamath, Wagner '16)
Privacy-utility tradeoffs (Liao, Sankar, Calmon, Tan, '17)
Sibson MI of other orders (Liao, Kosut, Sankar, Calmon, '18)

Learning ML from trace data (Issa and Wagner, '18)
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Three Takeaways

Def (Issa-Kamath-Wagner): Given Pxy, the maximal leakage
from XtoYis

supqc.y Pr(U = a(Y
LIX—Y)= sup log Pac) Pr{ N( )
U: U X Y supg Pr(U = a)

Maximal leakage ...
1. ... captures the increase in guessing probability of secrets
... IS well suited for side channels with keys, passwords.
2. ... 1s robust to modeling assumptions

3. ... favors deterministic mechanisms (quantization) over
“adding noise” in many contexts.

43



Extra Slides




A Different Question



A Different Question

How many secrecy measures do we need?




A Different Question

How many secrecy measures do we need?

- Probably more than one ...

45



A Different Question

How many secrecy measures do we need?

- Probably more than one ...

- ML ill-suited for e.g., medical databases

45



A Different Question

How many secrecy measures do we need?
- Probably more than one ...

- ML ill-suited for e.g., medical databases

- DP ill-suited for side channels

45



A Different Question

How many secrecy measures do we need?
- Probably more than one ...

- ML ill-suited for e.g., medical databases

- DP ill-suited for side channels

- Both ML and DP ill-suited for computationally-bounded
eavesdroppers

45



A Different Question

How many secrecy measures do we need?
- Probably more than one ...

- ML ill-suited for e.g., medical databases

- DP ill-suited for side channels

- Both ML and DP ill-suited for computationally-bounded
eavesdroppers

- ... but probably not 80+ either.

R — e
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A Greedy Algorithm

» Start with a singleton A that minimizes the cost of Pa.
1

e e el el
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A Greedy Algorithm

» Start with a singleton A that minimizes the cost of Pa.

» lterate: A—- AU {j}, wherej €A s c

the cost of Pauy{j}.

o0

e e

e = = gy

1

=

nosen to minimize
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Theorem (Wu, Wagner, Suh '19):
For exp-leakage k, let

» C*(k) denote the optimum cost
» Cg(k) denote the cost obtained by the greedy algorithm
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Theorem

Theorem (Wu, Wagner, Suh '19):
For exp-leakage k, let

» C*(k) denote the optimum cost

» Cg(k) denote the cost obtained by the greedy algorithm
Then C*(1) = Cg(1), C*(2) = Cs(2), and

k—2
k—1

k—1
C*(l)—CG(k)Z(l_( ) )(C*(l)—C*(k))
1
> (1— g)(c*(l)—c*(k))
> 0.63(C*(1)— C*(k))

e B

Proof: submodularity of -cost(Pa).
Note: leads to a sequence of approximations. a6
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How to Delay Packets?

X(t) Y(t)
_ 0o O ,( 7 O,
[nominal [actual

packet packet
timings] timings]

» Suppose X(t) is a Poisson process with rate A
» How to blur the packet timings to minimize leakage?
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Try an M/M/1 Queue

M/M/1 queue
service rate u

X(t) Y (t)
_ 0O 0o, | O,
[nominal ' [actual
packet packet
timings] timings]
1

£ (XD} = {Y(D}],) =p nats

[leakage rate is at least A]
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Accumulate and Dump

T o7 ¢ 37

1 1

=L ({XMY_, = {Y(D}]_,) < —logm

[quantization leaks less than “adding noise”]

[cf. Kadloor, Kiyavash, and Venkitasubramaniam '16]
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The Shannon Cipher System

Ke{0, 1}

Me {0, 1}"R

» Shannon ('49): perfect secrecy Is possible if(f) the key rate r
exceeds the message rate R.
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The Shannon Cipher System

Ke{0, 1}

Me {0, 1}"R

» Shannon ('49): perfect secrecy Is possible if(f) the key rate r
exceeds the message rate R.

» How to design fand g to minimize leakage when r < R?
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Leakage and Shannon’s Cipher
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Leakage and Shannon’s Cipher

Theorem (Issa-Kamath-Wagner): Let R(D) denote the rate-
distortion function for the source. If

R < R(D),

then the problem is infeasible. Otherwise, the min. max.
leakage is

L=[R(D)-r]*

Notes:
» Using MI instead of leakage gives same result
- Though difference in optimal schemes...
» Large deviations (and a.s.) result

54
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Achievability for Eavesdropper

Ke{0, 1}

NnRk

4 Pick X7 uniformly at random from within
_distortion ball around X",

J




Achievability for Eavesdropper

4 )

5. Generate U from Xn.

- J
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Quantization vs. Adding Noise

Optimal scheme:
» Compress X" optimally to rate R(D), then decompress.
» Leaks R(D) bits per symbol
» Deterministic but noncausal

Memoryless scheme: Memoryless scheme is

X1— Channel; _’)A(l causal but suboptimal.

X2— Channel; — X2 [quantization is

X3—Channels — X: -&dding noise’

A [cf. mutual Iinfo.]
Xn— Channel, — X,
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Extension: Approx. Guessing

Def (Issa-Kamath-Wagner): For any metric space U,
supgcy Pr(U € B(a(Y)))
Lyu(X—=Y)= sup log Pa) Pr( L)

U: U< X Y supy Pr(U € B(1))
Ju:Pr(UeB(u))>0

Theorem (Issa-Kamath-Wagner): For any metric

space U,
Liy/(X—=Y) < L(X-=Y)

with equality iIf &4 has countably many points no two
of which are contained in the same unit ball.
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Extension: General Gains
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Extension: General Gains

Def (Issa-Kamath-Wagner): )
. supgcy E[g(U, G(Y))]
Lc(X—=Y)= sup log

U:UeX oY supy E[g(U, U)]
g(-,):UxU—[0,00):
supy E[g(U,4)]>0

Theorem (Issa-Kamath-Wagner): If X and Y are
discrete, then

LGX—=Y)=LX—=Y).
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Opportunistic Attacks

Definition: The opportunistic maximal leakage is

supg Pupy(aly) -~
Lo(X—=Y)=IlogEy| sup Pa FUl - y
UesXY SupgP(u)

Theorem (Issa-Wagner): For any joint distribution
Pxy on finite alphabets

Lo(X—=Y)=L(X—-Y)
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Corollary (IKW): If X and Y are jointly continuous
then
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Extension: General Alphabet

Corollary (IKW): If X and Y are jointly continuous
then

L(X—Y) = log f sup fyix(yIx) dy
X:fx(x)>0

Corollary (IKW): If X and Y are jointly Gaussian

then
0 ifX, Y indep.

L(X=Y) = .
( ) {oo otherwise
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