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           Information Theory 

Some seminal papers by Shannon 

• Channel Coding, 1948 

• Source Coding, 1948, 1958 

• Cryptography, 1949 
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Channel coding - example 
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Capacity: 1 bit/transmission 

Best code: Use only inputs {1 , 3} 

 

         Exercise moderation!! 

 



Typically need  larger codes,  n >>1 
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Channel coding 

Similar to sphere paching 



                   Source coding: 

Get good representation of source with few bits 
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CHANNEL CODING 

p(y|x) 
X Y 

C = max I(X;Y) 

p(x) 
X 

R(D) =     min   I(X ; X) 
^ 

p( x |x) : E d( x, x )<D ^ ^ 

SOURCE CODING 
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Source and channel coding in communication system  
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Joint source and channel coding 

Can be simple if source and channel are matched 
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                  Rate distortion theory 
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Example: Gaussian source with memory 
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RMS distortion 
Example: Gaussian source with memory 

 RMS distortion 
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“stuck-at” defects – probability  α 

Binning:  Randomly distribute all 2n sequences into 2nR “bins”  

CODING FOR MEMORIES WITH DEFECTS 
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# of sequences in each bin =  
________ 2 
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Note: 

 

If  R  <  1- α       guaranteed to have a match 

Thus Capacity = 1-α  bits per memory cell 

(same as if receiver knew defect positions) 



C =  max ( I(U;Y)  -  I(U;S) ) 

channel encoder 
W 

state  S  noise  Z 

X Y 

p(u,x|s) 

In the example:  U = Y 

General solution (Gelfand and Pinsker): 



                Writing on dirty paper: 

 

In essence , two simple ideas: 

 

1. One toothbrush in every corner 

 

 

 

2. Estimates must be orthogonal to estimate error 

 

 

 

 



                C =  max ( I(U;Y)  -  I(U;S) ) 

Encoder Decoder 

Z ~ N(0,N) S ~ N(0,Q) 

+  +  
W X 

Power P 

channel 

Y W 
^ 

Adopt  U = X + α S,   maximize over  α   

Result: 

     C = ½ log ( 1 + P / N) ,   independently of Q 

Obtained with  α  =  P / (P+N)  

p(u,x|s) 
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Geometrical explanation: 

origin Y=X+S+Z 

U=X+αS 



x x x x x 

fΔ (y) = mod (y+Δ/2 , Δ) - Δ/2  

 

Encoding:         X = fΔ (U-S) = U – S – k Δ,        k  integer 

 

Decoding:         W = fΔ (Y) = fΔ(U-S-k Δ +S+Z) = fΔ (U + Z)  

 

^ 

QIM (QUANTIZATION INDEX MODULATION) 

Y=X+S+Z 



Images for host signal  and watermark 

Images for received host signal and received watermark 



 PARTITIONED  LINEAR  BLOCK  CODES (HEEGARD, 1983) 

 

 COSET  CODES (FORNEY,  RAMCHANDRAN) 

 

 APPLICATIONS  WITH  BCH  CODES,  REED-SOLOMON  CODES 

 

 APPLICATIONS  WITH  LATTICES 

 

 APPLICATIONS  WITH  LDPC,  LDGM 

 

 

 

 

 



Encoder Decoder 
X 

X 
^ 

Y 

index 

R(D) =       min               (  I (X ; W) – I (Y ;W) ) 

p(w|x) : Ed(X,X)<D 

 

^ 



 X  and  Y vectors of size 3 

 Hamming distance ≤ 1  

 

 Case 1: Y known by all  (i.e., encoder and decoder)  

   R = H(X|Y) = 2 bits    (just send X+Y) 

 

 Case 2: Y known only by decoder – use coset codes 

Here too R = 2 bits    

Send  index of coset of X (use a repetition code) 

Decoding: Using coset of X and Y, recover X exactly 



Repetition code – standard array 

000             111 

001             110 

010             101 

100             011 

Code (coset 0) 

Coset 1 

Coset 2 

Coset 3 

Can get X from Y and coset number 



Another simple example: 

Let X and Y be unif. distributed length 7 binary sequences 

Hamming distance (X,Y) ≤ 1 

 

H(X) = H(Y) = 7 bits 

H(X|Y) = H(Y|X) = 3 bits                           Achievable  

H(X,Y) = 10 bits                                            Region 
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To encode X use coset of a Hamming (7,4) code 

Encoding: use 3 bits (8 possible cosets) 

Decoding: 

   Based on coset number and on Y, find X 



Figure credit: K. Ramchandran 



 QUANTIZATION   

   integer division resulting in quotient 

 

 BINNING   

   integer division resulting in remainder 



 DIGITAL WATERMARKING 

 

 STEGANOGRAPHY 

 

 CELLULAR TELEPHONY (DOWNLINK) 

 

 COGNITIVE RADIO 

 

 RADIO BROADCASTING  

DIGITAL-TV OVER ANALOG-TV (CHINOOK COMM., BOSTON AREA) 

DIGITAL RADIO OVER FM RADIO (ALTERNATIVE TO IBOC AND DRM) 

 

 VIDEO COMPRESSION (DISTRIBUTED SOURCE CODING) 

 

 VIDEO SYNCHRONIZATION 

 

 



Information theory is alive and well ! 


