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Introduction

Basic problems of information theory (IT): information
transmission

• reliably over unreliable channels (Shannon 1948)

• securely over insecure channels (Shannon 1949)

Contemporary cryptography relies mostly on computational
complexity for security. Shannon mentioned this as an alternative,
but his IT approach offers provable security even against
adversaries of unlimited computational power.

Variety of security tasks: authentication, commitment, secure
computation, watermarking, etc. We focus on generating a secret
key, using some kind of common randomness as resource.

We present mathematical techniques admitting to derive
fundamental limits called secret key capacities, expected to gain
practical relevance soon.
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Lecture based on Csiszár and Körner: Information Theory, Second
Edition, Cambridge University Press, 2011, Chapter 17.
Broader coverage: Liang, Poor and Shamai, Information Theoretic
Secrecy, Now Publishers, 2009.



Brief history

• First IT approach to secrecy: Shannon 1949

• Wiretap channel: Wyner 1975, Csiszár and Körner 1978

• Public communication as a resource for secrecy:
Bennet, Brassard and Robert 1988, Maurer 1993,
Ahlswede and Csiszár 1993

• Security against active adversaries: Maurer and Wolf 1997

• Secret key generation for multiple users:
Csiszár and Narayan 2004, 2008

In this lecture the adversary will be assumed passive: listens to the
legal parties’ communication, but unable to interfere with it.



One-time pad

Traditionally, to securely transmit a message M one encrypts it
using a key K known to the receiver but not to the adversary.

Suppose M and K are independent random variables (RVs) with
values in a finite group K. Typically K = {0, 1}`. If K is uniformly
distributed on K then encrypting M by M + K guarantees perfect
security: the ciphertext M + K is stochastically independent of the
message M. If an adversary ignorant of the key learns the
cyphertext, she learns nothing about the message.

Disadvantage: A secret key is an expensive resource. To encrypt
several messages, a new key is needed for each.



Notation
A (probability) distribution P on a finite set, say X , is a collection
of nonnegative numbers (probabilities) P(x), x ∈ X with∑

x∈X P(x) = 1. Its entropy is

H(P) , −
∑
x∈X

P(x) log P(x); 0 ≤ H(P) ≤ log |X |.

log denotes base 2 logarithm (base e logarithm is ln), entropy is
measured in bits.
Measures of difference of distributions P,Q on a set, say X :
variation distance

|P − Q| ,
∑
x∈X
|P(x)− Q(x)|; 0 ≤ |P − Q| ≤ 2

(some authors use a factor 1/2), and
I-divergence or relative entropy

D(P||Q) ,
∑
x∈X

P(x) log
P(x)

Q(x)
; D(P||Q) ≥ 0.



Random variables, their values, resp. sets of possible values
(assumed finite sets) are denoted by corresponding upper and
lower case, resp. script letters. E.g., a RV X has possible values
x ∈ X . For several RVs we often write XYZ etc. for (X ,Y ,Z ) etc.
Entropy, joint and conditional entropies of RVs are defined via
their (joint and conditional) distributions.

H(X ) , H(PX ), PX (x) , Pr{X = x}

H(X ,Y ) = H(XY ) , H(PXY ), PXY (x , y) , Pr{X = x ,Y = y}

H(Y |X ) , H(X ,Y )− H(X ) =
∑
x∈X

PX (x)H(Y |X = x)

H(Y |X = x) , H(PY |X=x), PY |X=x(y) = Pr{Y = y |X = x}



Mutual information

I (X ∧ Y ) , H(Y )− H(Y |X ) = H(X ) + H(Y )− H(X ,Y )

= D(PXY ||PX × PY )

I (X ∧ Y |Z ) , H(Y |Z )− H(Y |XZ ) = D(PXYZ ||P̃XYZ ),

P̃XYZ (x , y , z) , PX |Z=z(x)PY |Z=z(y)PZ (z).



Properties of information measures

• Invariance, monotonicity: (conditional) entropies and mutual
informations are invariant to replacing either RV by a
one-to-one function of it. For any functions f , g

H(f (X )|Z ) ≤ H(X |Z ) ≤ H(X |g(Z )),

I (f (X ) ∧ Y |Z ) ≤ I (X ∧ Y |Z ),

but I (X ∧ Y |g(Z )) may be smaller or greater than
I (X ∧ Y |Z ).

• Chain rules:

H(X1, . . . ,Xn|Z ) =
n∑

i=1

H(Xi |X1, . . . ,Xi−1Z )

I (X1, . . . ,Xn ∧ Y |Z ) =
n∑

i=1

I (Xi ∧ Y |X1, . . . ,Xi−1Z )



• Data processing: If U 
 X 
 Y 
 Z is a Markov chain then

I (U ∧ V ) ≤ I (X ∧ Y ).

• Fano inequality

H(X |Y ) ≤ Pr{X 6= Y } log |X |+ h(Pr{X 6= Y }),

h(t) , −t log t − (1− t) log(1− t)

• |H(P)− H(Q)| ≤ 1
2 |P − Q| log |X |+ h( 1

2 |P − Q|)

• Pinsker inequality |P − Q| ≤
√

2 ln 2 · D(P||Q)



Security index
Formal meaning of assumptions on one-time pad key K , where the
RV V represents the adversary’s knowledge:

H(K |V ) = H(K ) = log |K|.

Relaxation: S(K |V ) below is small.

Definition
The security index of a RV K against another RV V is

S(K |V ) , log |K| − H(K |V ).

Theorem
For M independent of (V ,K ), knowledge of M + K gives the
adversary at most S(K |V ) bits of information about M.

Proof.
I (M ∧ V ,M + K ) = H(M) + H(V ,M + K )− H(M,V ,K ) ≤
H(M)+H(V )+log |K|−H(M)−H(V ,K ) = log |K|−H(K |V ).



Comments
(i) Even if the adversary’s prior knowledge gives some information
about the message (M is not independent of V ), the new
information in M + K about M is bounded by S(K |V ):

I (M ∧ V ,M + K ) ≤ I (M ∧ V ) + S(K |V ),

whenever K is conditionally independent of M given V .
(ii) Equivalent expression of security index:

S(K |V ) =
∑
v∈V

PV (v)D(PK |V=v ||P0) = D(PKV ||P0 × PV ),

where P0 is the uniform distribution on K.
Another frequently used security index:

Svar(K |V ) , |PKV − P0 × PV | =
∑
v∈V

PV (v)|PK |V=v − P0|.

Properties of information measures imply

1
2 ln 2 S2

var(K |V ) ≤ S(K |V ) ≤ 1
2 Svar(K |V ) log |K|+h( 1

2 Svar(K |V )).



Properties of security index
• For K and K ′ with values in K, and any V

S(K ′|V ) ≤ S(K |V ) + H(K |K ′).

Follows from the definition and

H(K ′|V ) = H(KK ′|V )− H(K |K ′V ) ≥ H(K |V )− H(K |K ′)
• For uniformly distributed K0 with K0 
 K 
 V ,

S(K0|V ) = I (K0 ∧ V ) ≤ I (K ∧ V ) ≤ S(K |V )

• To given K and V , there exists uniformly distributed K0 with
K0 
 K 
 V and

Pr{K0 6= K} ≤
√

ln 2

2
S(K |V )

Indeed, to K one can construct K0 with PK0 = P0 and
Pr{K0 6= K} = 1

2 |PK − P0|, where the Markov condition is
no restriction.
Then use D(PK ||P0) ≤ S(K |V ) and Pinsker inequality.



Two-party source models
Given i.i.d. repetitions of correlated RVs (X ,Y ,Z ), Alice observes
X n , (X1, . . . ,Xn), Bob observes Y n , (Y1, . . . ,Yn) and the
eavesdropper Eve observes Zn , (Z1, . . . ,Zn).
Alice and Bob may be allowed to generate local randomness, and
to communicate errorfree . Eve has access to this communication,
but she can not interfere with it.

X n Y n Zn

f1 -

f2�

. . .
fr�

f1 = f1(X n), f2 = f2(Y n, f1), . . . , fr = fr (Y n, f1, . . . , fr−1).



”Randomized functions” (also depending on RVs QA resp. QB

generated by Alice resp. Bob, independently of each other and of
(X n,Y n,Zn)) may or may not be allowed.

Notation: ||fi || denotes the number of possible values of fi .
The rate of fi is 1

n log ||fi ||.

A source model is determined by (X ,Y ,Z ) and by specifying

(i) the permissible communication F , (f1, . . . , fr ), which may
be unrestricted, or one-way (F = f1), or restricted by rate
constraints, etc.

(ii) the allowed randomization.

Special case Z = const: Eve has no side information, i.e., no other
information than the communication F.



Common randomness (CR)

Definition
A RV K represents ε-CR for two or more parties, achievable under
a given model, if K is ε-accessible to the parties, i.e., each can
compute a RV equal to K with probability ≥ 1− ε.

In a two-party source model, a permissible protocol lets Alice or
Bob compute those RVs KA or KB which are functions of (X n,F)
[or of (QA, X n, F)], respectively of (Y n,F) [or of (QB , Y n, F)].
A RV K is ε-CR for Alice and Bob if for some such KA and KB

Pr{K 6= KA} ≤ ε, Pr{K 6= KB} ≤ ε.



Secret key (SK)

Definition
A RV K with values in a finite set K, which is ε-CR for two or
more parties, represents (ε, δ)-SK against an eavesdropper whose
knowledge is represented by a RV V (called her view), if

S (K | V ) , log |K| − H (K | V ) ≤ δ.

The key length is log |K|, having in mind K = {0, 1}`.
In a two-party source model, the eavesdropper’s view, after
communication has been completed, is V = (F,Zn). Thus K is
an (ε, δ)-SK if K is ε-CR and

S(K | F,Zn) = log |K| − H(K | F,Zn) ≤ δ.



SK capacity

Definition
A number RS is an achievable SK rate for a given model if for each
η > 0 suitable protocols provide (εn, δn)-SK Kn with

1

n
log |Kn| ≥ RS − η , εn → 0, δn → 0, as n→∞.

The supremum of achievable SK rates is the SK-capacity CS .

Remark
In the literature, first a weaker definition of SK capacity was used,
requiring 1

nS(Kn|F,Zn)→ 0, rather than S(Kn|F,Zn)→ 0.
Maurer 1994 pointed out that this was too weak for cryptographic
purposes. A still stronger definition requires εn → 0, δn → 0
exponentially fast.
For a large class of models, either definition gives the same value
of SK capacity (Maurer-Wolf 2000, Csiszár 2011).



SK capacity, continued
An (ε, δ)-SK K need not be errorfree accessible to Alice (Bob).
Still, due to S(K ′|V ) ≤ S(K |V ) + H(K |K ′) and Fano’s inequality,
KA and KB errorfree accessible to Alice and Bob are (ε′, δ′)-SKs
with ε′ = 2ε, δ′ = δ + ε log |K|+ h(ε).

It follows that under either of the “weak” or “exponential” versions
of SK capacity, attention may be restricted to K = KA. This need
not always hold under our definition, but it does if εn = o(n) can
be assumed.

Recall also the existence of a uniformly distributed K0 with

K0 
 K 
 V , Pr{K0 6= K} ≤
√

ln 2

2
S(K |V ).

It follows that attention could be restricted to uniformly distributed
SK in the definition of SK capacity, both under our defnition and
the stronger, exponential version, but not necessarily under the
”weak” version.



From CR to SK

Typical scheme to obtain achievable SK rates:

(i) generate ε-CR for the involved parties, perhaps non-secret

(ii) find a function of this CR that has security index close to 0.

Step (i) is sometimes called information reconciliation
Step (ii) is called privacy amplification.

Example: Find achievable SK rate for two-party source model with
only Alice admitted to communicate.
(i) CR generation: By Slepian-Wolf theorem, for any R > H(X |Y )
and sufficiently large n there exists f : X n → {1, . . . , 2nR} such
that a suitable function of (Y n, f (X n)) is equal to X n with
probability ≥ 1− εn where εn → 0 exponentially fast as n→∞.
Then, if Alice sends Bob F = f (X n), this one-way communication
makes X n an εn-CR for Alice and Bob.



(ii) Privacy amplification. As X n is εn-CR, achieved by (one-way)
communication F = f (X n), a function κ(X n) of X n will be
(εn, δn)-SK if it satisfies

S(κ(X n)|f (X n),Zn) < δn.

By a general result, to any β > 0 there exists ξ > 0 such that if F
is any RV with at most 2nR possible values and
|K| = b2n(H(X |Z)−R−β)c then a randomly selected mapping
κ : X n → K satisfies

S(κ(X n)|F ,Zn) < 2−nξ

except with probability going to 0 doubly exponentially fast.
As R in the Slepian-Wolf theorem can be arbitrarily close to
H(X |Y ), it follows that

RS = H(X |Z )− H(Y |X ) = I (X ∧ Y )− I (X ∧ Z )

is an achievable SK rate.



Private key (PK)

Modified version of source model: Eve reveals Zn to Alice and
Bob. Reasonable if Eve is not the adversary but the adversary can
access her observations; or if Eve represents a ”trusted center” who
helps Alice and Bob to generate SK concealed also from herself.
A corresponding SK will be called a private key (PK).

An (ε, δ)-PK is defined as (ε, δ)-SK in the case when Alice and
Bob observe Zn, in addition to X n resp. Y n, formally when X ,Y
in the definition are replaced by XZ ,YZ .

Achievable PK rates and PK capacity CP are defined accordingly.
The previous remark on different possible definitions of SK
capacity applies to PK capacity, as well.

The mathematical problem of determining PK capacity is less hard
than that of determining SK capacity in general.



SK theorems, two-party source
models

Theorem (Gács and Körner 1973)

If Alice and Bob are not admitted to communicate, they can not
generate CR, let alone SK, at a positive rate, except in trivial cases.

Theorem (Maurer 1993, Ahlswede and Csiszár 1993)

When either unrestricted or one-way communication is allowed,
with or without randomization,

I (X ∧ Y )− I (X ∧ Z ) ≤ CS ≤ CP = I (X ∧ Y |Z ).

If X 
 Y 
 Z form a Markov chain then the equalities hold.

Proof: (i) We have seen that I (X ∧Y )− I (X ∧ Z ) is an achievable
SK rate, even with one-way communication. Substituting X and Y
by (X ,Z ) and (Y ,Z ), this implies that I (X ∧ Y |Z ) is an
achievable PK rate.



(ii) It remains to show that CP ≤ I (X ∧ Y |Z ). Suppose K is an
(εn, δn)-PK, achieved by communication F = (f1, . . . , fr ), i.e.,

S(K |Zn,F) = log |K| − H(K |Zn,F) ≤ δn

and K equals with probability ≥ 1− εn some function KA of
(QA,X

n,Zn,F) as well as some function KB of (QB ,Y
n,Zn,F).

Here εn → 0, but only δn
n → 0 is assumed, to cover also ”weak

secrecy”.
We may take K = KA, then

H(KA|Zn,F ) ≤ H(KA|KB) + I (KA ∧ KB |Zn,F)
≤ H(KA|KB) + I (QAX n ∧ QBY n|Zn,F).

A crucial observation is that the conditional mutual information
does not decrease by omitting F, hence it is ≤ I (X n ∧ Y n|Zn).
This can be verified, recalling that F = (f1, . . . , fr ), by checking
that successive removal of fr , . . . , f1 causes no decrease in either
step.

Hence the claim follows, using Fano’s inequality.



Special case of the Theorem: When Eve has no side information
(Z = const), the SK capacity is equal to the mutual information
I (X ∧ Y ). This provides a new operational meaning of mutual
information.
Moreover, the result that when Eve has side information, the PK
capacity equals I (X ∧ Y |Z ), gives the first explicit operational
meaning of conditional mutual information.

For unrestricted communication the secrecy capacity CS is
unknown, in general, so is even the condition for CS > 0.
The last theorem implies (Ahlswede and Csiszár 1993)

CS ≤ inf
V :(X ,Y )
Z
V

I (X ∧ Y |V ).

An improved bound was given by Renner and Wolf 2003 but as
Gohari and Anantharam 2010 showed, it is not always tight, either.



Extractors
Task: generate ` ”pure random” bits.
Available resource: a drawing from an unknown member of a
family P of distributions on a (finite) set U .

Definition
An (`, δ)-extractor for a family P of distributions on U is a
mapping κ : U → K with |K| = 2` such that for any RV U with
PU ∈ P, the distribution of κ(U) is δ-close in variation distance to
the uniform distribution on K :∑

k∈K

∣∣∣Pr{κ(U) = k} − 2−`
∣∣∣ ≤ δ if PU ∈ P.

Remark
In the literature, this concept is called deterministic extractor, as
opposed to seeded extractors.

Relevance for SK: For any RVs U and V , an extractor κ for the
family P = {PU|V=v : v ∈ V} yields a SK K = κ(U).



Information spectrum
An (`, δ)-extractor for a family P can be expected to exist only if
each P ∈ P consists of probabilities P(u) ≤ 2−`, perhaps with
exceptions of small total probability:∑

u:P(u)>2−`

P(u) ≤ η (∗)

Intuition: An outcome u ∈ U of a drawing from a distribution P
provides − log P(u) bits of information. Its expected value is the
entropy H(P), and its minimum is

Hmin(P) , − log
(

max
u∈U

P(u)
)

min-entropy.

The distribution function of − log P(u) is

FP(t) , P
(
{u : − log P(u) < t}

)
=

∑
u:P(u)>2−t

P(u).

It is called the information spectrum of the distribution P.



Smooth min-entropy

Condition (∗) on previous slide is equivalent to

l ≤ Hmin,η(P) , max{t : FP(t) ≤ η}.

Hmin,η(P) is sometimes called smooth min-entropy.
It equals the η-quantile of the information spectrum FP(t).

Conditional information spectrum of RVs U conditioned on V :

FU|V (t) , PUV

(
{(u, v) : − log PU|V=v (u) < t}

)
.

Its η-quantile is the smooth conditional min-entropy

Hmin,η(U|V ) , max{t : FU|V (t) ≤ η}.



Extractor lemma

Extractor lemma (Ahlswede and Csiszár 1998)

Suppose for some η ≥ 0, β > 0

` ≤ Hmin,η(P)− β for each P ∈ P.

Then a random mapping κ : U → K with |K| = 2` is an
(`, δ + 2η)-extractor for the family P with probability

≥ 1− 2`+1 |P| e−ξ 2β , where ξ = δ2(1−η)
2(1+δ) , δ > 0 arbitrary.

Corollary

For any RVs U,V , a random mapping κ : U → K with
log |K| = ` ≤ Hmin,η2(U|V )− β gives

S(κ(U)|V ) ≤ (α + 2η)`+ h(α + η)

with probability ≥ 1− 2`+1 |V| e−α22β , where 0 ≤ α ≤ 1/6 is
arbitrary.



Extractor lemma, proof

Random mapping κ : U → K : the values κ(u) are randomly
chosen from K, independently for each u ∈ U , with equal
probabilities 1

|K| = 2−`.
Also called random binning: each u ∈ U is randomly assigned to
one of |K| = 2` bins. Random binning is a standard technique in
IT, the Slepian–Wolf theorem is also proved in this way.

Proof (sketch). For fixed P and k ∈ K,

P({u : κ(u) = k}) =
∑
u∈U

P(u)1{κ(u)=k}

is a RV, a weighted sum of i.i.d. RVs 1{κ(u)=k} equal to 1 or 0

with probabilities 2−` and 1− 2−`. Assume first that P satisfies
Hmin(P) ≥ `+ β, i.e., P(u) ≤ 2−`−β for each u ∈ U .



Proof continued
Then Chernoff bounding gives by routine calculation

Pr
{∣∣P({u : κ(u) = k})− 2−`

∣∣ > δ
K

}
≤ 2 e−

δ2

1+δ
·2β .

It follows that if Hmin(P) ≥ `+ β holds for each P ∈ P (i.e., η = 0
in the Lemma), then

max
k∈K

∣∣∣P({u : κ(u) = k})− 2−`
∣∣∣ ≤ δ

K

for each P ∈ P with probability ≥ 1− 2`+1 |P| 2−
δ2

1+δ
2β , a stronger

result than claimed.
If only ` ≤ Hmin,η(P)− β is assumed for all P ∈ P, apply this to
the distributions P ′ obtained by conditioning each P ∈ P on
{u : P(u) ≤ 2−`−β}. Note that |P ′ − P| ≤ 2η.

Corollary: apply the Extractor Lemma to P = {PU|V=v : v ∈ V ′},

V ′ , {v : Hmin,η(PU|V=v ) ≥ Hmin,η2(U|V )}.



Proof continued
This gives that with probability ≥ 1− 2`+1 |V| 2−ξ 2β

∑
k∈K

∣∣∣Pr{κ(u) = k |V = v} − 2−`
∣∣∣ ≤ δ + 2η, v ∈ V ′.

Bound the I-divergences D(Pκ(U)|V=v ||P0), v ∈ V ′ via these
variation distances. Noting that PV (V ′) ≥ 1− η, the Corollary
follows by simple algebra.

Supplement If B ⊂ U × V is a set with

PUV (B) ≥ 1− (η2 − α2), PUV (u, v) <
1

α|B|
for (u, v) ∈ B

then, denoting Bv = {u : (u, v) ∈ B},

Hmin,η2(U|V ) ≥ log min
v :Bv 6=∅

|Bv |+ 3 logα.

This follows by simple algebra, the details are omitted.



Memoryless sources

Lemma
Let X n = X1 . . .Xn and Zn = Z1 . . .Zn be i.i.d. repetitions of a
pair of RVs (X ,Z ). To any β > 0 there exists ξ > 0 such that for
n sufficiently large
(i) some mapping κ : X n → Kn with 1

n log |Kn| = H(X |Z )− β
satisfies S(κ(X n)|Zn) < e−ξn

(ii) if F (n) is any RV jointly distributed with (X n,Zn) that has at
most 2nr possible values, some κ : X n → Kn with
1
n log |Kn| = H(X |Z )− r − β satisfies S(κ(X n)|Zn,F (n)) < e−ξn.
Indeed, a random mapping κ : X n → Kn is suitable except with
probability approaching 0 doubly exponentially.

Proof: By Corollary of the Extractor Lemma.



Intuitive interpretations

Slepian and Wolf 1973: The infimum of rates R for which, when n
is large, an encoder f : X n → {1, . . . , 2nR} exists such that X n can
be decoded from f (X n) and Y n with small probability of error,
equals the conditional entropy H(X |Y ).
In addition, for R > H(X |Y ) the probability of error can be made
exponentially small, even with a universal decoder not depending
on PXY .
The SW theorem and (i) of the last Lemma (writing there Y
instead of Z ) admit complementary interpretations of H(X |Y ): it
is a measure of the amount of information needed to specify X
when Y is known, as well as of that part of the information in X
which is independent of Y .



These intuitive concepts coincide only in limiting sense: the coding
rate can be arbitrarily close to H(X |Y ) from above, random bits
independent of Y n can be extracted from X n at rate arbitrarily
close to H(X |Y ) from below.
Interpretation of the result on SK capacity for Z =const: The
amount of information in X that can be shared with a party
knowing Y , with no leak to a third party (who has no side
information), is the mutual information I (X ∧ Y ).
Attractive intuitive interpretation of the identity
H(X ) = H(X |Y ) + I (X ∧ Y ).



Restricted one-way communication

Only Alice communicates, assume randomization is not allowed:
F = Fn = f (X n).
Rate constraint: lim supn→∞

1
n log ||Fn|| ≤ R.

First, address CR without secrecy.
Goal: construct f (X n), g(X n) such that if Alice sends Bob f (X n),
this makes g(X n) εn-accessible to him, i.e., some function of
(Y n, f (X n)) equals g(X n) with probability ≥ 1− εn.
Random construction will be used that refines the following
rate-distortion theory result.
Given RVs U,X , if N = 2n[I (U∧X )+δ] sequences ui ∈ Un are
randomly drawn from the distribution PU , each typical x ∈ X n is
jointly typical with some ui with probability → 1 as n→∞.



Typical sequences
Given RVs U,X ,Y , and ξ > 0, sequences u = u1 . . . un ∈ Un or
x ∈ X n, y ∈ Yn or their pairs, triples are called (strongly) typical
if the relative frequencies

1
n |{i : ui = u}|, 1

n |{i : ui = u, xi = x}|, 1
n |{i : ui = u, xi = x , yi = y}|

differ from the probabilities PU(u), PUX (u, x), PUXY (u, x , y) by no
more than ξ, and are equal to 0 if the probabilities are.
The typical sets T n

U,ξ, T n
UX ,ξ, T n

UXY ,ξ consist of all typical sequences
or pairs or triples. The upper index n is often omitted.
Further notation: T n

UX ,ξ(u) ,
{

x : (u, x) ∈ T n
UX ,ξ

}
.

For i.i.d. repetitions of (X ,Y ), the probabilities

Pr{X n /∈ T n
X ,ξ}, Pr{(X n,Y n) /∈ T n

XY ,ξ}, Pr{Y n /∈ T n
XY ,ξ(x) | X n = x},

and when U 
 X 
 Y then also Pr{Y n /∈ T n
UXY ,ξ(u, x) | X n = x}

go to 0 exponentially fast, the last two at least when x ∈ T n
X ,ζ ,

resp. (u, x) ∈ T n
UY ,ζ for some 0 < ζ < ξ.



CR construction

Suppose U 
 X 
 Y , fix δ > 0, let

N1 = 2n[I (U∧X |Y )+3δ], N2 = 2n[I (U∧Y )−2δ]

Lemma
If N1N2 sequences uij , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 are randomly drawn
from the distribution PU , for sufficiently small σ > 0 and
0 < ζ < ξ < σ there exist, with probability approaching 1 as
n→∞, mappings f : X n → {1, . . . ,N1}, g : X n → {1, . . . ,N2}
such that
(i) (uf (x),g(x), x) ∈ TUX ,ξ whenever x ∈ TX ,ζ
(ii) except for (x, y) in a set of exponentially small Pn

XY -probability,
(uf (x),g(x), x, y) ∈ TUXY ,σ, and only j = g(x) satisfies
(uf (x),j , y) ∈ TUY ,|X |σ.

By the last property, g(X n) is εn-accessible to Bob, with
exponentially small εn.



Sketch of proof

(i) Standard, as N1N2 = 2n[I (U∧X )+δ]

(ii) Joint typicality part: implied by last stated property of typical
sequences
Last part: it suffices to show that only with exponentially small
probability can such i ∈ {1, . . . ,N1} and j 6= ` in {1, . . . ,N2} exist
for which uij ∈ TUX (x), ui` ∈ TUY (y).
Now, for fixed i , j , `

Pr{uij ∈ TUX (x), ui` ∈ TUY (y)} ≤ 2−n[I (U∧X )−τ ] 2−n[I (U∧Y )−τ ′],

with τ > 0, τ ′ > 0 arbitrary small if the typicality constants are.
Multiplying this bound by N1N2

2 gives 2−n(δ−τ−τ ′).



Achievable SK rates

Proposition

For one-way communication with rate constraint R, the maximum
of I (U ∧ Y )− I (U ∧ Z ) for auxiliary RVs U with

U 
 X 
 YZ , I (U ∧ X |Y ) ≤ R

is an achievable SK rate. The maximum is attained for some U
with |U| ≤ |X |+ 1. Moreover, achievability holds with εn → 0,
δn → 0 exponentially fast.

Proof (sketch). Apply privacy amplification to the CR g(X n)
constructed before (with Alice’s public message f (X n) of rate
I (U ∧ X |Y ) + 3δ). The Extractor Lemma is employed, using its
supplement with g(X n) and (f (X n),Zn) in the role of U and V .
One can check that the set



Proof continued

B = {(j , (i , z)) : (uij , x, z) ∈ TUXZ for some x ∈ X n}

meets the conditions of the supplement, and for v = (i , z)

|Bv | ≥ |{j : uij ∈ TUZ (z)}| ≥ 2n[I (U∧Y )−I (U∧Z)−2δ−τ ].

The bound on |U| is an essential part of the Proposition.
The Caratheodory-Fenchel theorem implies, as standard in IT
(details omitted): Any RV U as in the Proposition may be
substituted by some Ũ with Ũ 
 X 
 YZ and |Ũ | ≤ |X |+ 1,
without changing I (U ∧ X |Y ) and I (U ∧ Y )− I (U ∧ Z ).
The bound on |U| ensures, by continuity, that the maximum in the
Proposition is attained, and also that it is computable, at least in
principle.



Intuitive considerations

In previous construction, the public message f (X n) and the CR
g(X n) are nearly independent and uniformly distributed, in the
weak sense:

1

n
H(f (X n), g(X n)) ≈ 1

n
log N1N2 = I (U ∧ X ) + δ

(intuitively plausible, easily proved formally).
The full CR achieved is (f (X n), g(X n)), though only g(X n) can
contribute to SK. If Eve has no side information (Z = const) then
g(X n) itself qualifies as weak SK, and privacy amplification yields
strong SK of effectively the same rate I (U ∧ Y ). This is best
possible when Z = const. Then (see below) the SK capacity is

CS(R) = max{I (U ∧ Y ) : U 
 X 
 Y , I (U ∧ X |Y ) ≤ R}.



CR capacity

Not hard to show optimality also for constructing CR via one-way
communication of rate R (Ahlswede and Csiszár 1998): This
model has CR capacity (largest entropy rate of εn-CR with εn → 0)

CCR(R) = max{I (U ∧ X ) : U 
 X 
 Y , I (U ∧ X |Y ) ≤ R},

for all R when randomization is not allowed, and for R ≤ H(X |Y )
when it is. When randomization is allowed, the CR capacity equals
I (X ∧ Y ) + R if R ≥ H(X |Y ). Intuitive identity:

CCR(R) = CS(R) + R if R ≤ H(X |Y ).

Remark

lim
R→0

CCR(R) = max{I (U ∧ X ) : U 
 X 
 Y ,U 
 Y 
 X}.

This equals 0 unless there exists a common function of X and Y .
Sharpens the Gács-Körner non-existence theorem.



CR and SK capacities for one-way
communication, Z=const



SK capacity, Bob silent

The achievable SK rates in the last Proposition may be improved
in some cases, though not when Z = const. The general result
involves two auxiliary RVs.

Theorem
For the source model with arbitrary X ,Y ,Z , when only Alice is
admitted to communicate, at most with rate R, the SK capacity
equals (whether randomization is allowed or not)

max [I (U ∧ Y |V )− I (U ∧ Z |V )] ,

subject to UV 
 X 
 YZ , I (UV ∧ X |Y ) ≤ R, |U|, |V| ≤ |X |+ 1.

[Ahlswede and Csiszár 1993 in unrestricted case (R = +∞),
Csiszár and Narayan 2000 in general]



Achievability

If the maximum is attained for V = const, the last Proposition
suffices for achievability. Otherwise, a more complex two-step
random construction is needed (omitted).

Simple achievability proof for the unconstrained case R = +∞
with randomization allowed (Renner and Wolf 2003):

Alice generates i.i.d. Un,V n, and reveals V n. By previous theorem
applied to U,YV ,ZV in the role of X ,Y ,Z it follows that

I (U ∧ YV )− I (U ∧ ZV ) = I (U ∧ Y |V )− I (U ∧ Z |V )

is an achievable SK rate.



Technical lemma

Lemma (Csiszár and Körner 1978)

For arbitrary RVs S ,T and Y n = Y1 . . .Yn, Zn = Z1 . . .Zn

I (S ∧ Y n|T )− I (S ∧ Zn|T )

=
n∑

j=1

[I (S∧Yj |Y1 . . .Yj−1Zj+1 . . .ZnT )−I (S∧Zj |Y1 . . .Yj−1Zj+1 . . .ZnT )]

= n[I (S ∧ YJ |V )− I (S ∧ ZJ |V )]

where J denotes a RV independent of the others, uniformly
distributed on {1, . . . , n}, and V = JY1 . . .YJ−1ZJ+1 . . .ZnT .

Proof. The j ’th term of the sum equals

H(S |Y1 . . .Yj−1Zj+1 . . .ZnT )− H(S |Y1 . . .YjZj+1 . . .ZnT )

−H(S |Y1 . . .Yj−1Zj+1 . . .ZnT ) + H(S |Y1 . . .Yj−1Zj . . .ZnT ).

After cancellations, the sum of the n terms is

H(S |ZnT )− H(S |Y nT ) = I (S ∧ Y n|T )− I (S ∧ Zn|T ).



Converse proof
Suppose K = Kn, a function of X n,QA, is an (εn, δn)-SK achieved
via communication F = F (X n,QA).

δn > S(K |Zn,F ) = log |K| − H(K |ZnF )

≥ log |K| − H(K |ZnF ) + H(K |Y nF )− εn log |K| − h(εn)

= (1− εn) log |K| − [I (K ∧ Y n|F )− I (K ∧ Zn|F )]− h(εn).

Using technical lemma to K ,F in the role of S ,T :

1

n
log |K| ≤ 1

1− εn
[I (K ∧ YJ |V )− I (K ∧ ZJ |V )] +

δn + h(εn)

n(1− εn)
,

where J is uniformly distributed on {1, . . . , n}, independent of
QA,X

n,Y n,Zn, and V = JY1 . . .YJ−1ZJ+1 . . .ZnF .
This already proves the converse for R = +∞, if the Markov
relation KV 
 XJ 
 YJZJ is checked. Note that δn → 0 is not
needed, δn/n→ 0 suffices.
For full converse, 1

n log ||F || has to be bounded below.



Proof continued

1

n
log ||F || ≥ 1

n
H(F |Y n) ≈ 1

n
H(KF |Y n)

≥ 1

n
[H(KF |Y n)− H(KF |X n)] =

1

n
[I (KF ∧ X n)− I (KF ∧ Y n)]

This can be bounded below by I (KV ∧ XJ |YJ) with V as above,
using the technical lemma and calculations omitted here.
To check KV 
 XJ 
 YJZJ , we have to show that the conditional
distribution of YJZJ given the values of
K , J,Y1, . . . ,YJ−1,ZJ+1, . . . ,Zn,F and XJ depends only on the
value of XJ , say x . When J = j , this conditional distribution equals
that of YjZj given the values of K ,Y1, . . . ,Yj−1,Zj+1, . . . ,Zn,F
and Xj = x . Since X n,Y n,Zn are i.i.d. repetitions of (X ,Y ,Z ),
this conditional distribution equals PYZ |X=x .



Channel model with public
communication



Channel model with public
communication



Two-party channel models

Main resource: a noisy channel over which Alice may transmit
information to Bob, with partial leakage to Eve.
Alice and Bob may be also allowed to communicate, perhaps,
interactively, over a noiseless public channel. This public
communication is fully accessible to Eve but she can not interfere
with it.
The noisy channel is a discrete memoryless channel (DMC) with
matrix W = {W (y , z |x) : x ∈ X , y ∈ Y, z ∈ Z} of transition
probabilities. At each instant when Alice sends input symbol
x ∈ X , Bob and Eve receive outputs y ∈ Y and z ∈ Z with
probability W (y , z |x), independently of all prior communication.



Model defined by W and the permissible public communication.
Essential that Alice is permitted to randomize.
For 1 ≤ i ≤ n, Alice sends DMC input Xi , a function of her
randomizing RV QA and of F i−1 = (F1, . . . ,Fi−1); Bob and Eve
receive Yi ,Zi .
Fi = (fi1, . . . , fir ), fij function of QA or Y i−1QB (for j odd or even)
and of the previous communication F i−1fi1 . . . fi(j−1).



SK capacity, channel model

CR, SK: as for source model, but now
X n = X1 . . .Xn, Y n = Y1 . . .Yn, Zn = Z1 . . .Zn

denote sequences of input and output RVs of the DMC, not i.i.d.
in general.
A RV K is ε-CR achievable by (permissible) communication F if
there exist KA = KA(QA,F), KB = KB(Y n,QB ,F) with

Pr{K 6= KA} ≤ ε, Pr{K 6= KB} ≤ ε.

(ε, δ)-SK: an ε-CR K with S(K |Zn,F) ≤ δ.
SK capacity: same definition as for source model.
PK capacity: like for source model, the variant of SK capacity for
the case when Eve reveals Zn (she reveals each Zi immediately
upon receipt).



Source emulation

Simple but useful technique to obtain achievable SK rates for
channel models from those for source models.

Suppose the given DMC is used in the simple way of Alice
generating and transmitting i.i.d. channel inputs X1, . . . ,Xn.
Public communication (if any) is performed only after completing
this transmission, including receipt of the corresponding outputs.
Thereby a source model is emulated, given by i.i.d. repetitions of
RVs X ,Y ,Z with PXYX (x , y , z) = PX (x)W (y , z |x), and
permissible public communication as in the channel model.

The supremum over PX of the SK capacities of the emulated
source models is a lower bound to the SK capacity of the channel
model.



Channel model SK capacity theorem

Analogue of previous source model theorem. also due to
Maurer 1993 and Ahlswede and Csiszár 1993.

Theorem
For two-party channel model with unrestricted public
communication,

max
PX

[I (X ∧ Y )− I (X ∧ Z )] ≤ Cs ≤ CP ≤ max
PX

I (X ∧ Y |Z ),

where PXYZ (x , y , z) = PX (x)W (y , z |x). The lower bound is
achievable without any public communication. The lower bound
is tight if W is a physically degraded channel, i.e. of form
W (y , z |x) = W1(y |x)W̃ (z |y).

The lower bound holds also replacing I (X ∧ Z ) by I (Y ∧ Z ), and
that bound is tight if the channel W has independent components,
i.e. W (y , z |x) = W1(y |x)W2(z |x).



Proof
Achievability: immediate via source emulation, except for
achievability of the lower bound without public communication,
which will be verified later.

Converse: One has to prove CP ≤ maxPX
I (X ∧ Y |Z ). Key step is

similar to that for source models, to verify the bound

I (QA ∧ Y nQB |ZnF) ≤
n∑

i=1

I (Xi ∧ Yi |Zi )

for public communication
F = F n = (F1, . . . ,Fn), Fi = (fi1, . . . ,Fir ).

This is done by repeating n times the bounding

I (QA ∧ Y nQB |ZnF n) ≤ I (QA ∧ Y nQB |ZnF n−1)

≤ I (QA ∧ Y n−1QB |Zn−1F n−1) + I (Xn ∧ Yn|Zn).

The first inequality follows by the argument used for source
models, the calculation yielding the second one is on the next slide.



Calculation

I (QA ∧ Y nQB |ZnF n−1)

= I (QA ∧ Y nQBZn|F n−1)− I (QA ∧ Zn|F n−1)

= I (QA ∧ Y n−1QBZn−1|F n−1) + I (QA ∧ YnZn|Y n−1QBZn−1F n−1)

−I (QA ∧ Zn−1|F n−1)− I (QA ∧ Zn|Zn−1F n−1)

= I (QA ∧ Y n−1QB |Zn−1F n−1) + A

A = H(YnZn|Y n−1QBZn−1F n−1)−H(YnZn|QAY n−1QBZn−1F n−1)

−H(Zn|Zn−1F n−1) + H(Zn|QAZn−1F n−1)

≤ H(Zn|Yn)− H(YnZn|Xn) + H(Zn|Xn) = I (Xn ∧ Yn|Zn)



Wiretap channel, Wyner 1975, Cs-K 1978

message M

channel input
x = x1 . . . xn

W n
1 (y|x) W n

2 (z|x)

legitimate receiver
can decode M

M remains secret from
eavesdropper



Wiretap channel

Original formulation unrelated to SK.
Wyner’s seminal discovery was that secure transmission over an
insecure channel does not necessarily require a key. Nevertheless,
the problem turns out equivalent to that of SK capacity of a
channel model where public communication is not allowed.
The DMCs W1, W2 of the wiretap model are conveniently regarded
as component channels of a two-output DMC W : X → Y ×Z:

W1(y |z) =
∑
z∈Z

W (y , z |x), W2(z |x) =
∑
y∈Y

W (y , z |x).

This physical channel W does not enter the mathematical problem
formulated below, only W1 and W2 matter.
Wyner (1975) considered the case when a physically degraded W ,

i.e., W (y , z |x) = W1(y |x)W̃ (z |y) could be chosen.
Then W2 is called a (stochastically) degraded version of W1.



Secure transmission problem

Random message Mn uniformly distributed over Mn

Stochastic encoder assigns to Mn length-n channel input
X n = ϕ(Mn,QA) where QA denotes a RV generated by Alice for
randomization.
Bob and Eve receive channel outputs Y n, Zn, Bob tries to recover
the message via a (deterministic) decoder: M̂n = ψ(Y n).
Error probability: Pr{M̂n 6= Mn}.
Information leakage: I (Mn ∧ Zn).

Achievable rate of transmission: number R such that one can
achieve for each η > 0, as n→∞

1

n
log |Mn| ≥ R − η, Pr{M̂n 6= Mn} → 0, I (Mn ∧ Zn)→ 0.

Secrecy capacity: supremum of achievable rates.



Better channel?

Intuitively, positive secrecy capacity is expected if Bob’s channel
W1 is better than Eve’s channel W2.

Wyner (1975) assumed
(i) W2 is a degraded version of W1.
Other concepts of ”better channel” (Körner and Marton 1977):
(ii) W1 more capable than W2: I (X ∧ Y ) ≥ I (X ∧ Z ) for all PX

(iii) W1 less noisy than W2: I (V ∧ Y ) ≥ I (V ∧ Z ) whenever
V 
 X 
 (Y ,Z ), PY |X=x(y) = W1(y |x), PZ |X=x(z) =
W2(z |x).
Clearly, (i)⇒ (iii)⇒ (ii).

We will see that wiretap channel secrecy capacity is positive if and
only if Eve’s channel is not less noisy than Bob’s.
Does not mean that Bob’s channel has to be better, for two
channels need not be comparable (in either sense).



Wiretap channel and secret key

The random message Mn for the wiretap channel can be regarded
as SK for the channel model without public communication,
defined by any two-output channel DMC that has component
channels W1 and W2. Its security index is
S(Mn|Zn) = I (Mn ∧ Zn).
Conversely, an (εn, δn)-SK K = Kn for that channel model qualifies
as message Mn for the wiretap channel, providing K is uniformly
distributed and equals KA in the definition of SK. Indeed, then the
joint distribution of Kn,X

n can be recovered applying a suitable
stochastic encoder to a uniformly distributed RV.

We will determine wiretap channel secrecy capacity, differently
from standard, via addressing SK capacity of the channel model
without public communication.



Channel model, no public
communication

Consider the channel model without public communication, given
by a two-output channel W : X → Y ×Z. Let V ,X ,Y ,Z be RVs
satisfying V 
 X 
 (Y ,Z ), PYZ |X=x(y .z) = W (y , z |x).

Proposition

For this channel model, RS = I (V ∧ Y )− I (V ∧ Z ) is an
achievable SK rate, even with εn → 0 and δn → 0 exponentially
fast, taking Kn = K in the definition equal to KA, i.e., a function
of Alice’s randomizing RV QA.

Proof.
(i) Modify the channel model, allowing Alice (but not Bob) to send
a public message F = F (QA).
(ii) From the modified channel model, emulate a source model
with Bob silent, with generic RVs X ,Y ,Z , by Alice generating and
transmitting over the DMC i.i.d. X n.



Proof continued

By previous source model result, all assertions of the Proposition
hold for this emulated source model.
Moreover, in the source model both Alice’s public message F and
the SK Kn = K may be taken as functions of V n, where X nV n

represent i.i.d. repetitions of (X ,V ). Note also that Bob’s
estimate KB of the SK K is a function of (Y n,F ).
These assertions carry over to the modified channel model, in
which QA = X nV n may be taken for Alice’s randomizing RV.

(iii) Eliminate public communication
For each possible value f of F , condition the joint distribution of
all RVs in (ii) on F = f . Since V n 
 X n 
 Y nZn. this conditioning
preserves the input-output relationship of X n and Y n,Zn.
Hence the joint distribution conditioned on F = f is a valid joint
distribution for the channel model, it emerges if Alice generates
X nV n with distribution PX nV n|F=f , and transmits this (non-i.i.d.)
X n over the DMC.



Completion of proof

(iv) As F is constant under the distribution conditioned on F = f ,
the latter is, in fact, a valid distribution for the channel model
without public communication.
Let Kn = K be an (εn, δn)-SK as in (ii). Security index under the
conditioned distribution: Sf (K |Zn) = log |K| − H(K |Zn,F = f ).

The proof is completed noting that from

Pr{K 6= KB} =
∑
f

Pr{F = f }Pr{K 6= KB |F = f } ≤ δn,

S(K |Zn,F ) = log |K|−H(K |Zn,F ) =
∑
f

Pr{F = f }Sf (K |Zn) ≤ εn,

it follows that there exists f for which the conditional distribution
makes K an (2δn, 2εn)-SK for the channel model without public
communication.



Wiretap secrecy theorem

Theorem (Wyner 1975, Csiszár and Körner 1978)

The wiretap channel with component channels W1, W2 has secrecy
capacity equal to the maximum of I (V ∧ Y )− I (V ∧ Z ) for RVs

V 
 X 
 (Y ,Z ), PYZ |X=x(y .z) = W (y , z |x), |V| ≤ |X |.

The same result holds for weak secrecy, as well as when requiring
exponentially fast convergence to 0 of the error probability
Pr{M̂n 6= Mn} and information leakage I (Mn ∧ Zn).

Corollary

The secrecy capacity is positive unless W2 is less noisy than W1.

Remark
If W1 is more capable than W2, the secrecy capacity equals the
maximum of I (X ∧ Y )− I (X ∧ Z ).



Wiretap channel proof

For technical purposes, introduce a “physical channel” that has
components W1,,W2. Its actual choice does not matter, may be
W (y , z |x) = W1(y |x)W2(z |x).

Achievability follows from the Proposition about achievable SK
rates for the channel model not admitting public communication.
Recall the discussion preceding that Proposition. There the SK K
has been assumed uniformly distributed, but as seen before, that
assumption does not restrict generality.

Constraint |V| ≤ |X |: Essential part of the Theorem, as in other IT
results involving auxiliartry RVs.
Standard argument via Caratheodory-Fenchel theorem (not
detailed) shows that any RV V with V 
 X 
 YZ may be
substituted by another one meeting also the range constraint,
with no change of I (V ∧ Y )− I (V ∧ Z ).



Wiretap converse proof

Suppose message M = Mn is (stochastically) encoded to channel
input X n, yields outputs Y n, Zn, Bob decodes M̂, where
Pr{M̂ 6= M} ≤ εn, I (M ∧ Zn) ≤ δn. Then

log |M| = H(M) = I (M ∧ Y n) + H(M|Y n)

≤ I (M ∧ Y n)− I (M ∧ Zn) + δn + εn log |M|+ h(εn).

Using technical lemma with S = M, T = ∅, this gives

1

n
log |M| ≤ 1

1− εn
[I (M ∧ YJ |V )− I (M ∧ ZJ |V )] +

h(εn) + δn
n(1− εn)

with J as before and V = JY1 . . .YJ−1ZJ+1 . . .Zn. One checks as
before that MV 
 XJ 
 YJZJ with PYJZJ |XJ=x(y , z) = W (y , z |x).

Finally, the maximum of I (U ∧ Y |V )− I (U ∧ Z |V ) subject to
UV 
 X 
 YZ is attained for V = const.



Multiterminal source model



Multi-terminal source models

Given i.i.d. repetitions of correlated RVs (X1, . . . ,Xm+1), the i ’th
party (1 ≤ i ≤ m) observes X n

i , n independent repetitions of Xi .
The eavesdropper Eve observes X n

m+1.
Parties 1, . . . ,m are allowed to communicate, perhaps interactively,
all communication is received errorfree by all parties, as well as by
the eavesdropper.

f1 = f1(X n
1 ), f2 = f1(X n

2 , f1), . . .

fi = fi (X n
j , f1, . . . , fi−1) where j ≡ i (mod m)

Randomized functions (i.e., fi = fi (X n
i ,Qi ) where Qi is RV

generated by party i for randomization) may or may not be allowed.
Total communication: F = (f1, . . . , fr ).
Non-interactive communication: F = (f1, . . . , fm), each fi depends
only on X n

i (possibly randomized).



Goal: Generate (ε, δ)-SK for a set of parties A ⊂ {1, . . . ,m}, that
is, a RV K that represents ε-CR for the parties i ∈ A and has
security index

S(K |F,X n
m+1) = log |K| − H(K |F,X n

m+1) ≤ δ.

The parties j ∈ {1, . . . ,m} \ A, if any, serve as ”helpers” in
generating CR.

”Trusted center” scenario: The ”eavesdropper” is a trusted center
or a compromised but cooperative party who helps in generating
CR, by revealing X n

m+1. Then, as in two-party models, we speak of
PK.
Achievable SK (PK) rates and SK (PK) capacity are defined as
before. These capacities will be denoted by CS(A) and CP(A).

We concentrate on determining CP(A).



A toy example

Let X1, . . . ,Xm be binary RVs either m − 1 of them i.i.d.
(1/2, 1/2), and X1 + · · ·+ Xm = 0 (mod 2).
Let Xm+1 = const and A = {1, . . . ,m}.
Claim: The SK (and PK) capacity equals 1/(m − 1), achievable
with perfect SK.
Protocol: Let n = m − 1, and let the parties 1 ≤ i ≤ m − 1 = n
communicate their observations X n

i = (Xi1, . . . ,Xin) excluding Xii ,
while party m communicates (Xm1 + Xm2, . . . ,Xm1 + Xmn).
This communication F makes the whole (X n

1 , . . . ,X
n
m) a perfect

CR for all parties 1 ≤ i ≤ m. As, for example, X11 is independent
of the communication, K = X11 will be a (perfect) SK. This shows
that 1/(m − 1) is an achievable SK rate. The non-achievability of
larger SK rates appears non-trivial but follows from subsequent
general results.



Case m = 5, n = 4

m = 5, n = 4

X 4
1 = (X11,X12,X13,X14) f1 = (X12,X13,X14)

X 4
2 = (X21,X22,X23,X24) f2 = (X21,X23,X24)

X 4
3 = (X31,X32,X33,X34) f3 = (X31,X32,X34)

X 4
4 = (X41,X42,X43,X44) f4 = (X41,X42,X43)

X 4
5 = (X51,X52,X53,X54) f5 = (X51 + X52,X51 + X53,X51 + X54)

Note: f5 also gives the sums X52 + X53, X52 + X54, X53 + X54

using that X5i = X1i + X2i + X3i + X4i , all parties can recover each
Xij from those they see and from the other parties’ public
communication. K = X11 is perfect SK.



PK-capacity and omniscience

Steps of determining PK capacity of multiterminal source models:

• Generate CR, in this case equal to (X n
1 , . . . ,X

n
m) (omniscience)

• Privacy amplification to obtain PK

• Proof of optimality of the achieved PK rate

Definition
The omniscience rate ROS(A) is the smallest number R for which,
assuming Eve reveals X n

m+1, the whole X n
1 , . . . ,X

n
m can be made

εn-CR for the parties i ∈ A, with εn → 0, via communication
F = (f1, . . . , fr ) of total rate 1

n

∑r
i=1 log ||fi || → R.

First, non-interactive communication without randomization,
F = (f1(X n

1 ), . . . , fm(X n
m)) is addressed that makes X n

1 , . . . ,X
n
m an

ε-CR for the parties i ∈ A, i.e., some function of (F,X n
i ,X

n
m+1)

equals (X n
1 , . . . ,X

n
m) with probability ≥ 1− ε, for each i ∈ A.



A classical source coding result

Lemma (Wyner, Wolf and Willems 2002)

For an m-tuple (R1, . . . ,Rm), there exists for each ε > 0, δ > 0
and sufficiently large n, communication with rates

1

n
log ||fi || ≤ Ri + δ, 1 ≤ i ≤ m,

if and only if for all sets B ⊂ {1, . . . ,m} not containing A∑
i∈B

Ri ≥ H(XB |XBc ).

Notation: XB , {Xi , i ∈ B}, Bc , {1, . . . ,m + 1} \ B.

Corollary

The omniscience rate ROS(A) is bounded above by the minimum
of R1 + · · ·+ Rm subject to the inequalities in the Lemma.

Moreover, under these conditions, the error probability can be
made exponentially small.



PK-capacity of multiterminal model
Recall the general result that for n independent repetitions of RVs
(X ,Z ), any β > 0, and RV F with at most 2nr possible values, for
sufficiently large n there exist mappings κ : X n → K with

1

n
log |K| = H(X |Z )− r − β, S(κ(X n)|F ,Zn) < 2−nξ.

This, applied to (X1, . . . ,Xm) and Xm+1 in the roles of X and Z ,
implies the CP(A) ≥ . . . part of the next Theorem.

Theorem (Csiszár-Narayan 2004)

CP(A) = H(X1, . . . ,Xm|Xm+1)− ROS(A),

where ROS(A) is equal to the upper bound in the last Corollary.
This PK-capacity can be achieved via non-interactive
communication without randomization, and with PK equal to a
function of X n

i , for either i ∈ A.

Remark: This theorem holds, with the same proof, under either
version of the definition of PK capacity.



PK capacity, completion of proof

The still missing part of the theorem follows from the next Lemma,
applied to the case when the ε-CR K is actually (ε, δ)-PK.

Lemma (Csiszár and Narayan 2004)

If K represents ε-CR for the parties i ∈ A ⊂ {1, . . . ,m}, achievable
with (perhaps interactive) communication F = (f1, . . . , fr ), then

1

n
H(K |F,X n

m+1) = H(X1, . . . ,Xm|Xm+1)−
m∑
i=1

R
′
i ,

with (R
′
i , . . . ,R

′
m) such that the Slepian-Wolf inequalities in the

previous Lemma hold for Ri = R
′
i + ε log |K|+1

n .

Proof of Lemma: We claim that a suitable choice for R ′i is

1

n

∑
l≡i(mod m)

H(fl |f1 . . . fl−1X n
m+1) +

1

n
H(X n

i |F,K ,X n
[i+1,m+1]).



Proof of Lemma continued
For any B ⊂ {1, . . . ,m}

nH(XB |XBc ) = H(X n
B |X n

Bc ) = H(F,K ,X n
B |X n

Bc )

=
r∑

ν=1

H(fν |f1 . . . fν−1 X n
Bc ) + H(K |F,X n

Bc )

+
∑
j∈B

H(X n
j |F,K ,X n

B∩[i+1,m]X
n
Bc ).

Taking B = {1, . . . ,m}, this gives the claimed identity. For any
B = {1, . . . ,m},

H(fν |f1 . . . fν−1 X n
Bc ) = 0 if ν ≡ i ∈ Bc .

If B does not contain A then additionally

H(K |F,X n
Bc ) ≤ ε log |K|+ 1.

hence in this case

nH(XB |XBc ) ≤ n
∑
i∈B

R
′
i + ε log |K|+ 1.



Toy example: optimality
X1, . . . ,Xm binary, Xm+1 = const, A = {1, . . . ,m}.
Pr{X1 = x1, . . . ,Xm = xm} = 2−(m−1) if x1 + · · ·+ xm = 0,
otherwise 0.
For B ⊂ {1, . . . ,m}, H(XB |XBc ) = |B| − 1.
Slepian-Wolf condition for B = {1, . . . ,m} \ {j}:∑

i 6=j

Ri ≥ m − 2

Summation for j ∈ {1, . . . ,m} implies

ROS ≥
m(m − 2)

m − 1
= m − 1− 1

m − 1
.

This proves that

CS = H(X1, . . . ,Xm)− ROS ≤
1

m − 1
.



Three sources

Let m = 3, and X4 = const (Eve has no side information).
The omniscience rates ROS({1, 2, 3}) and ROS({1, 2}) equal the
maximum of R1 + R2 + R3 subject to

R1 ≥ H(X1|X2,X3), R2 ≥ H(X2|X1,X3), R3 ≥ H(X3|X1,X2),

R1+R2≥H(X1,X2|X3), R1+R3≥H(X1,X3|X2), R2+R3≥H(X2,X3|X1)

or same constraints omitting R1 + R2 ≥ H(X1X2|X3).
Then CS({1, 2, 3}) = H(X1X2X3)− ROS({1, 2, 3}) equals, by
simple algebra, the smallest one of I (X1 ∧ X2X3), I (X2 ∧ X1X3),
I (X3 ∧ X1X2) and 1

2 [H(X1) + H(X2) + H(X3)− H(X1X2X3)].

Similarly, CS({1, 2}) = min[I (X1 ∧ X2X3), I (X2 ∧ X1X3)].
Recall: CS({1, 2}) is the largest SK rate achievable for parties 1
and 2, with help of party 3 from whom the key need not be secret.



Intuitive interpretation

If parties 2 and 3 were merged, the largest SK rate achievable for
party 1 and ”party 23” would be I (X1 ∧ X2X3); similarly for
I (X2 ∧ X1X3) and I (X3 ∧ X1X2).
This makes intuitive the formula of CS({1, 2, 3}), and that the
three mutual informations are upper bounds to CS({1, 2, 3}). The
emergence of multiinformation (divided by 2) appears, however,
less intuitive.
Interpretation of the identity

CS({1, 2}) = I (X1 ∧ X2|X3) + min[I (X1 ∧ X3), I (X2 ∧ X3)] :

First term is achievable with additional secrecy from party 3
(two-user PK capacity). Second term achievable for the three
parties with 1 and 2 silent.



Markov chain

Let X1 
 X2 
 · · ·
 Xm be Markov chain, Xm+1 = const.
Claim: CS({1, . . . ,m}) = min1≤i≤m I (Xi ∧ Xi+1).
(i) CS({1, . . . , n}) ≤ I (X1 . . .Xi ∧ Xi+1 . . .Xm) = I (Xi ∧ Xi+1)
(ii) For t minimizing I (Xi ∧ Ii+1) take

Ri =

{
H(Xi |Xi+1) if i ≤ t
H(Xi |Xi−1) if i > t.

It can be verified that this (R1, . . . ,Rm) satisfies the constraints∑
i∈B

Ri ≥ H(XB |XBc ), B ⊂ {1, . . . ,m} proper



Due to

H(X1, . . . ,Xm) =
t∑

i=1

H(Xi |Xi+1)+I (Xt∧Xt+1)+
n∑

i=t+1

H(Xi |Xi−1)

it follows that

CS({1, . . . ,m}) = H(X1, . . . ,Xm)−ROS({1, . . . ,m}) ≥ I (Xt∧Xt+1)

Similarly, if X1 
 X2 
 · · ·
 Xm 
 Xm+1 is Markov,

CP({1, . . . ,m}) = min
1≤i≤m

I (Xi ∧ Xi−1|Xm+1).



Alternate formula for omniscience
rate

Notation:
B(A): family of all sets B ⊂ {1, . . . ,m} that do not contain A
Λ(A): set of all vectors λ = {λB ,B ∈ B(A)} with non-negative
components satisfying∑

B∈B(A),i∈B

λB = 1, i = 1, . . . ,m

(such vector λ is called a fractional partition of {1, . . . ,m}.)
In other words, denoting by A the matrix whose rows are the
incidence vectors of the sets B ∈ B(A),

Λ(A) = {λ : λA = (1, . . . , 1), λ ≥ 0}

Proposition (Csiszár and Narayan 2004)

ROS(A) = max
λ∈Λ(A)

∑
B∈B(A)

λBH(XB |XBc ).



Proof of alternate formula

Proof.
By Duality Theorem of Linear Programing, for a row vector c,
matrix A, and a column vector b, the minimum of cx subject to
Ax ≥ b, if finite, equals the maximum of yb subject to yA = c,
y ≥ 0.
Take c = (1, . . . , 1), A the matrix on previous side, and
b = {H(XB |XBc ),B ∈ B(A)}. Then the minimum in the Duality
Theorem equals ROS(A), the minimum of R1 + · · ·+ Rm subject to
the conditions

∑
i∈B Ri ≥ H(XB |XBc ), B ∈ B(A). The maximum

in the Duality Theorem is that in the Proposition.

Example. For a partition (D1, . . . ,Dk) of {1, . . . ,m}, let

λB ,

{
1

k−1 if B = {1, . . . ,m} \ Di for some 1 ≤ i ≤ k,

0 otherwise



SK capacity and multi-information
If each Di intersects A, the last equation defines a vector
λ ∈ Λ(A). Supposing Xm+1 = const,∑
B∈B(A)

λBH(XB |XBc ) =
k∑

i=1

1

k − 1
[H(X1, . . . ,Xm)− H(Xi )]

= H(X1, . . . ,Xm)− 1

k − 1
I (XD1 ∧ . . . ∧ XDk

),

where I denote multi-information: for RVs Y1, . . . ,Yk

I (Y1 ∧ Y2 ∧ . . . ∧ Yk) ,
k∑

i=1

H(Yi )− H(Y1, . . . ,Yk).

It follows that for each (D1, . . . ,Dk) as above

CSK (A) ≥ 1

k − 1
I (XD1 ∧ . . . ∧ XDk

)

(Csiszár and Narayan 2004). If A = {1, . . . ,m}, this bound is tight
for some (D1, . . . ,Dk), but not necessarily otherwise (Chan 2008).



Multi-terminal channel models

Given a DMC with one input and m output terminals

W = {W (x2, . . . , xm+1|x1) : xi ∈ Xi , i = 1, . . . ,m + 1}.

Party 1 controls the input, parties 2, . . . ,m and the eavesdropper
m + 1 observe the corresponding outputs. Parties 1, . . . ,m may
also communicate publicly, errorfree accessible to all parties
including the eavesdropper.
Assume unrestricted public communication is allowed.

Goal: generate SK or PK for a set of parties A ⊂ {1, . . . ,m}, while
those in {1, . . . ,m} \ A (if any) help by taking part in the
communication but are not required to learn the key, neither to
remain ignorant of it. As before, the term PK refers to an
”eavesdropper” (rather, a compromised but cooperative party)
who reveals her channel outputs immediately upon receipt.
Same as SK when eavesdropper lacks side information
(|Xm+1| = 1), otherwise we focus on PK capacities CP(A).



PK capacity theorem

Recall: Λ(A) denotes the set of all vectors (fractional partitions)

λ = {λB : B ∈ B(A) with λB ≥ 0,
∑
B:i∈B

λB = 1, i = 1, . . . ,m}

where B(A) is the family of subsets of {1. . . . ,m} not containing A.

For λ ∈ Λ(A) and distribution P on X1 denote

G (P,W , λ) , H(X1 . . .Xm|Xm+1)−
∑

B∈B(A)

λBH(XB |XBc )

where PX1...Xm+1(x1 . . . , xm+!) = P(x1)W (x2, . . . , xm+1|x1).

Theorem (Csiszár and Narayan 2008)

CP(A) = max
P

min
λ∈Λ(A)

G (P,W , λ) = min
λ∈Λ(A)

max
P

G (P,W , λ).

This PK capacity is achievable with parties 2, . . . ,m each sending
at most one public message, and party 1 not sending or listening to
any public message.



Proof
Achievability of maxmin: Immediate via source emulation from
multiterminal source PK theorem.

Equality of maxmin and minmax: by minimax theorem, since
G (P,W , λ) is concave in P and affine in λ. Concavity check:
H(XB |XBc ) is affine in P when B does not contain 1, and

H(X1 . . .Xm|Xm+1)−
∑

B:1∈B
λBH(XB |XBc )

=
∑

B:1∈B
λB [H(X1 . . .Xm|Xm+1)− H(XB |XBc )]

is concave, for the terms in bracket simplify to H(XBc |Xm+1).

Converse proof is based on the minmax expression, and a technical
lemma on the next slide. The details are cumbersome and omitted.

Final assertions: from multiterminal source PK theorem. Public
message of party 1 is dispensed with by a conditioning argument
exactly as in the two users case.



Lemma and Remark

Lemma (Csiszár and Narayan 2008)

Let X1, . . . ,Xm,Y and K be any RVs such that for each i ∈ A
some function of (Xi ,Y ) is equal to K with probability ≥ 1− ε.
Then for each λ ∈ Λ(A)

H(K |Y ) ≥ H(X1, . . . ,Xm|Y )−
∑

B∈B(A)

λBH(XB |XBc Y ) + η

where η = (m + 2)(ε log |K|+ h(ε)).

Remark The PK capacity theorem also gives a fundamental limit of
secure transmission to several receivers. Suppose party 1 sends a
message M over a DMC to m − 1 receivers who, in order to
decode M, may communicate publicly but not leaking information
about M to an eavesdropper (suppose she does not have side
information). Then the secure transmission capacity (largest
achievable rate 1

n log |M|) is equal to CP({1, . . . ,m}), in the
special case |Xm+1| = 1.



Eve controls DMC inputs

As PK is associated with scenarios in which Eve is regarded a
cooperative but compromised party rather than the adversary, it is
not unreasonable to consider a model where she controls the DMC
inputs, and parties 1, . . . ,m observe the outputs.

In this modified model, the DMC is given by transition probabilities
W (x1, . . . , xm|xm+1). The PK capacity is still given by the previous
maxmin or minmax, the only difference is that the joint distribution
of X1, . . . .Xm+1 is now given by W (x1, . . . , xm|xm+1)P(xm+1).

In this model, the PK capacity can be attained by Eve transmitting
a suitable deterministic sequence over the DMC.

Example Binary alphabets, m = 3, outputs X1,X2 by coin-tossing,
X3 = X1 or X2 according as Eve sent 0 or 1. For blocklength n = 2,
perfect PK of 1 bit is achievable if Eve sends 01 and party 3 reveals
the mod 2 sum of his bits. This achieves CP({1, 2, 3}) = 1/2.



Biometric secrecy system

Two stages (i) enrollment (ii) authentication
(i) Biometric features of the person are measured and suitably
processed, yielding biometric sequence X n = X1 . . .Xn.
A key K is generated, as well as helper data F . Both are stored in
the system, K securely, F publicly.
(ii) In authentication stage, another biometric sequence
Y n = Y1 . . .Yn is taken, differs from X n due to measurement noise
and elapsed time. The person is authenticated if his key K can be
reconstructed from Y n and F .
Goals: possibly large key, secret from public helper data F ,
possibly small information in F about the personal data X n.



Information theoretic approach

IT approach: Ignatenko and Willems 2009, Lai, Ho and Poor 2011.
Different model versions, we focus on the ”unconditional” versions
of the ”generated” and ”chosen secret” models.
Actually, source models of SK with one-way communication,
without or with randomization. The role of Alice’s public
communication is played by the helper data F .
Rate constraint on F : for current problem not relevant per se but
enters via limiting the information F provides about X n.



Key length and privacy leakage

”Generated secret” model: no randomization, K and F are
functions of X n

In general, a randomizing QA may also be used. ”Chosen secret”
refers to K independent of X n, actually identifying K with QA.

In ”generated secret” case, the information in F about X n (called
privacy leakage) is I (F ∧ X n) = H(F ). Constraining this privacy
leakage is tantamount to constraining communication rate in the
SK model. With CS(R) denoting the corresponding SK capacity
(determined previously), it follows that the optimal ratio of key
length to privacy leakage is sup 1

R CS(R).
Note: this is attained in the limit R → 0.



Generalizations

In ”chosen secret” model, in general I (F ∧ X n) < H(F ), and to
find the best ratio of key length to privacy leakage is less
straightforward. Still, the result remains true.
So far, secrecy of the key K of the biometric system has been
required from adversaries knowing the public helper data. More
generally, adversaries might have also side information such as
biometric data of relatives of the person in question. The above
results easily extend, employing SK capacity for the case when
Eve has side information.


