List error-correction with information-theoretically minimal redundancy

Venkatesan Guruswami

Carnegie Mellon University

(Spring’14 @ Microsoft Research New England)

2014 European School of Information Theory
Tallinn, Estonia
April 17, 2014
Error-correcting code \(C \subseteq \Sigma^N \) with encoding map \(E : \mathcal{M} \rightarrow \Sigma^N \) (Image(\(E \)) = \(C \))

- \(\mathcal{M} \) = message space; \(\Sigma \) = alphabet; \(N \) = block length.
- To communicate message \(m \), send codeword \(E(m) \in C \).
Error-correcting code $C \subseteq \Sigma^N$
with encoding map $E : \mathcal{M} \rightarrow \Sigma^N$ \quad (\text{Image}(E) = C)

- \mathcal{M} = message space; Σ = alphabet; N = block length.
- To communicate message m, send \textbf{codeword} $E(m) \in C$.

Rate $R = \frac{\log |\mathcal{M}|}{N \log |\Sigma|}$. ($\in [0, 1]$)

- Ratio of # information bits communicated to # transmitted bits
- Identify messages $\mathcal{M} \simeq \Sigma^{RN}$; $|C| = |\Sigma|^{RN}$.
- Proportion of redundant bits = $1 - R$
We’ll be interested in correcting worst-case (adversarial) errors.

- arbitrary corruption of up to τN symbols ($\tau =$ error fraction)
- Both error locations and error values worst-case
- We count *symbol errors*, not bit errors.

Refer to τ as “decoding radius” (or error-correction radius)
Error correction

We’ll be interested in correcting **worst-case** (adversarial) errors.

- arbitrary corruption of up to τN symbols ($\tau =$ error fraction)
- Both error locations and error values worst-case
- We count *symbol errors*, not bit errors.

Refer to τ as “decoding radius” (or error-correction radius)

Decoding problem for code $C \subset \Sigma^N$ up to radius τ:

Input: “Noisy received word” $y \in \Sigma^N$

Output: Codeword $c \in C$ such that the Hamming distance

$$\Delta(c, y) \leq \tau N.$$
Goal

Would like both R and τ to be large (and alphabet Σ to be small). (Think of $R, \tau \in (0, 1)$ as fixed, and block length $N \to \infty$.)

Conflicting goals: correcting more errors requires more redundancy (lower rate).
Rate vs. error-correction radius

A trivial information-theoretic limit: \(\tau \leq 1 - R \)

- \(|\mathcal{M}| = |\Sigma|^{RN} \implies \) need at least \(RN \) correct symbols from \(\Sigma \) to have any hope of meaningfully recovering message.
- Need \textit{redundancy} \(\geq \) \textit{target error fraction}.

Question

Could we hope to approach such a nice trade-off?
Unique decoding

- $|C| = |\Sigma|^RN \implies$ some two codewords $c_1 \neq c_2 \in C$ agree in first $RN - 1$ positions, i.e., differ in $\leq (1 - R)N + 1$ positions. (Singleton Bound)

- So when $\tau \geq (1 - R)/2$, can’t unambiguously recover correct codeword (for worst-case errors).

"Unique decoding" for error fraction $\tau \approx (1 - R)/2$ achieved by Reed-Solomon (or similar) codes. Note: This is over large alphabets for larger τ, resort to list decoding.
|C| = |Σ|^RN \Rightarrow \text{some two codewords } c_1 \neq c_2 \in C \text{ agree in first } RN - 1 \text{ positions, i.e., differ in } \leq (1 - R)N + 1 \text{ positions.}
\text{(Singleton Bound)}

So when \(\tau \geq (1 - R)/2 \), can’t unambiguously recover correct codeword (for worst-case errors).

“Unique decoding” for error fraction \(\tau \approx (1 - R)/2 \) achieved by Reed-Solomon (or similar) codes.

- Note: This is over large alphabets

For larger \(\tau \), resort to \textbf{list decoding}.

List decoding code $C \subset \Sigma^N$ up to radius τ:

Input: Noisy received word $y \in \Sigma^N$

Output: A list of all codewords $c \in C$ such that the Hamming distance $\Delta(c, y) \leq \tau N$.
List decoding code $C \subset \Sigma^N$ up to radius τ:

Input: Noisy received word $y \in \Sigma^N$

Output: A list of all codewords $c \in C$ such that the Hamming distance $\Delta(c, y) \leq \tau N$.

Comments:

1. Code must guarantee that list is small for every y

2. Need to find the list in $\text{poly}(N)$ time, exploiting code structure.
Definition (List decodability)

A code \(C \subset \Sigma^N \) is said to be \((\tau, \ell)\)-list decodable if for \(\forall y \in \Sigma^N \), there are \(\leq \ell \) codewords of \(C \) within Hamming distance \(\tau N \) of \(y \).

Such a code offers potential for correcting \(\tau \) fraction worst-case errors up to ambiguity ("list-size") \(\ell \).
The model of list decoding

But how useful is a list anyway?

1. List size > 1 typically a rare event (and we don’t need to model channel stochastics precisely!)

2. In worst-case, better than decoding failure
 - Could use context/side information (or pick closest codeword) to disambiguate

3. Extensions such as list recovery & soft decoding very useful
 - decoding concatenated codes
 - practical use of channel reliability information

4. Versatile primitive
 - codes for computationally limited channels

5. Many applications beyond coding theory
 - eg. in complexity theory and cryptography
 - list decoding fits the bill as the right notion
A code $C \subset \Sigma^N$ is said to be (τ, ℓ)-list decodable if for $\forall y \in \Sigma^N$, there are $\leq \ell$ codewords of C within Hamming distance τN of y.

Theorem (Non-constructive, via random coding) For all $q \geq 2$, $\epsilon > 0$ and $p \in (0, 1 - 1/q)$, there exists a $(p, 1/\epsilon)$-list decodable code of rate $1 - h_q(p) - \epsilon$ over alphabet size q.

Binary codes: Approach "Shannon capacity" of BSC for worst-case errors ("bridge" between Shannon & Hamming).

Large q: $(1 - R - \epsilon, 1/\epsilon)$-list decodable code over alphabet size $\exp(O(1/\epsilon))$.

\Rightarrow List decoding offers the potential to approach the $\tau = 1 - R$ limit with small list-size ℓ.

Venkat Guruswami (CMU)
Optimal rate list decoding
April 2014 10 / 45
The potential of list decoding

A code $C \subset \Sigma^N$ is said to be (τ, ℓ)-list decodable if for $\forall y \in \Sigma^N$, there are $\leq \ell$ codewords of C within Hamming distance τN of y.

Theorem (Non-constructive, via random coding)

For all $q \geq 2$, $\varepsilon > 0$ and $p \in (0, 1 - 1/q)$, there exists a $(p, 1/\varepsilon)$-list decodable code of rate $1 - h_q(p) - \varepsilon$ over alphabet size q.
The potential of list decoding

A code $C \subset \Sigma^N$ is said to be (τ, ℓ)-list decodable if for $\forall y \in \Sigma^N$, there are $\leq \ell$ codewords of C within Hamming distance τN of y.

Theorem (Non-constructive, via random coding)

For all $q \geq 2$, $\varepsilon > 0$ and $p \in (0, 1 - 1/q)$, there exists a $(p, 1/\varepsilon)$-list decodable code of rate $1 - h_q(p) - \varepsilon$ over alphabet size q.

- Binary codes: Approach “Shannon capacity” of BSC$_p$ for worst-case errors (“bridge” between Shannon & Hamming)
The potential of list decoding

A code $C \subset \Sigma^N$ is said to be (τ, ℓ)-list decodable if for $\forall y \in \Sigma^N$, there are $\leq \ell$ codewords of C within Hamming distance τN of y.

Theorem (Non-constructive, via random coding)

*For all $q \geq 2$, $\varepsilon > 0$ and $p \in (0, 1 - 1/q)$, there exists a $(p, 1/\varepsilon)$-list decodable code of rate $1 - h_q(p) - \varepsilon$ over alphabet size q.***

- Binary codes: Approach “Shannon capacity” of BSC$_p$ for worst-case errors (“bridge” between Shannon & Hamming)
- Large q: $(1 - R - \varepsilon, 1/\varepsilon)$-list decodable code over alphabet size $\exp(O(1/\varepsilon))$.
The potential of list decoding

A code $C \subset \Sigma^N$ is said to be (τ, ℓ)-list decodable if for $\forall y \in \Sigma^N$, there are $\leq \ell$ codewords of C within Hamming distance τN of y.

Theorem (Non-constructive, via random coding)

For all $q \geq 2$, $\varepsilon > 0$ and $p \in (0, 1 - 1/q)$, there exists a $(p, 1/\varepsilon)$-list decodable code of rate $1 - h_q(p) - \varepsilon$ over alphabet size q.

- Binary codes: Approach “Shannon capacity” of BSC$_p$ for worst-case errors (“bridge” between Shannon & Hamming)
- Large q: $(1 - R - \varepsilon, 1/\varepsilon)$-list decodable code over alphabet size $\exp(O(1/\varepsilon))$.

\Rightarrow List decoding offers the potential to approach the $\tau = 1 - R$ limit with small list-size ℓ
Random coding argument

Theorem

For all $q \geq 2$, $\varepsilon > 0$ and $p \in (0, 1 - 1/q)$, there exists a $(p, 1/\varepsilon)$-list decodable code of rate $1 - h_q(p) - \varepsilon$ over alphabet size q.

($h_q(x) = x \log_q(q - 1) - x \log_q x - (1 - x) \log_q(1 - x)$ is q-ary entropy function)

Proof sketch.

Let $R = 1 - h_q(p) - \varepsilon$ and $\ell = \frac{1}{\varepsilon} + 1$.

Pick q^{Rn} codewords at random from $\{1, 2, \ldots, q\}^n$.

Prob. that code is not $(p, \ell - 1)$-list decodable is at most

$$q^n \cdot q^{Rn\ell} \cdot \left(\frac{q^{h_q(p)n}}{q^n}\right)^\ell$$
Random coding argument

Theorem

For all \(q \geq 2, \varepsilon > 0 \) and \(p \in (0, 1 - 1/q) \), there exists a \((p, 1/\varepsilon)\)-list decodable code of rate \(1 - h_q(p) - \varepsilon \) over alphabet size \(q \).

\[h_q(x) = x \log_q(q - 1) - x \log_q x - (1 - x) \log_q(1 - x) \text{ is } q\text{-ary entropy function} \]

Proof sketch.

Let \(R = 1 - h_q(p) - \varepsilon \) and \(\ell = \frac{1}{\varepsilon} + 1 \).

Pick \(q^{Rn} \) codewords at random from \(\{1, 2, \ldots, q\}^n \).

Prob. that code is not \((p, \ell - 1)\)-list decodable is at most

\[
q^n \cdot q^{Rn\ell} \cdot \left(\frac{q^{h_q(p)n}}{q^n} \right)^\ell = q^{n(1 + \ell(R + h_q(p) - 1))} = q^{n(1 - \varepsilon \ell)} = q^{-\varepsilon n} \]
Explicit list decoding

Challenges: Realize this constructively

1. List decode error fraction τ with an explicit binary code of rate $\approx 1 - h(\tau)$

2. List decode error fraction $\tau = 1 - R - \varepsilon$ with an explicit code of rate R
Explicit list decoding

Challenges: Realize this constructively

1. List decode error fraction τ with an *explicit binary* code of rate $\approx 1 - h(\tau)$
2. List decode error fraction $\tau = 1 - R - \varepsilon$ with an *explicit* code of rate R

The goal for binary codes is wide open. But the second challenge over large alphabets has been met:
Explicit list decoding

Challenges: Realize this constructively

1. List decode error fraction τ with an explicit binary code of rate
 $\approx 1 - h(\tau)$
2. List decode error fraction $\tau = 1 - R - \varepsilon$ with an explicit code of
 rate R

The goal for binary codes is wide open.
But the second challenge over large alphabets has been met:

Theorem (G.-Rudra’08)

For all $R \in (0, 1)$ and $\varepsilon > 0$, explicit codes (“folded Reed-Solomon”)
of rate R with efficient list decoding up to radius $\tau = 1 - R - \varepsilon$.

Plus, subsequent improvements to other parameters (alphabet size,
list-size).
(List) decoding Reed-Solomon codes (see Powerpoint slides)

Folded Reed-Solomon codes: Linear-algebraic list decoding

Subspace-evasive pre-coding
 - Extensions to algebraic-geometric & rank-metric codes

Concluding remarks, Open challenges
Talk plan

1. (List) decoding Reed-Solomon codes

2. Folded Reed-Solomon codes: Linear-algebraic list decoding

3. Subspace-evasive pre-coding
 - Extensions to algebraic-geometric & rank-metric codes

4. Concluding remarks, Open challenges
Definition (Reed-Solomon codes)

Messages = polynomials \(f \in \mathbb{F}_q[X] \) of degree < \(k \). Encoding:

\[f \mapsto (f(1), f(\gamma), f(\gamma^2), \ldots, f(\gamma^{n-1})) \]

where \(\gamma \) is a primitive element of \(\mathbb{F}_q \) (and \(n < q \)).

Rate = \(k/n \); alphabet size = \(q \).
Definition (Reed-Solomon codes)

Messages = polynomials $f \in \mathbb{F}_q[X]$ of degree $< k$. Encoding:

$$f \mapsto (f(1), f(\gamma), f(\gamma^2), \ldots, f(\gamma^{n-1}))$$

where γ is a primitive element of \mathbb{F}_q (and $n < q$).

Rate = k/n; alphabet size = q.

Definition (m-Folded Reed-Solomon codes)

Same rate; alphabet size q^m; block length = n/m

$$f \mapsto \left(\begin{bmatrix} f(1) \\ f(\gamma) \\ \vdots \\ f(\gamma^{m-1}) \end{bmatrix}, \begin{bmatrix} f(\gamma^m) \\ f(\gamma^{m+1}) \\ \vdots \\ f(\gamma^{2m-1}) \end{bmatrix}, \ldots, \begin{bmatrix} f(\gamma^{n-m}) \\ f(\gamma^{n-m+1}) \\ \vdots \\ f(\gamma^{n-1}) \end{bmatrix} \right).$$
Folded Reed-Solomon list decoding

Theorem (G.-Rudra; based on root-finding in extension fields, building on Parvaresh-Vardy)

For any $s, 1 \leq s \leq m$, the m-folded RS code can be list decoding from error fraction
\[\tau \approx 1 - \left(\frac{mR}{m-s+1} \right)^{s/(s+1)} \]
with list-size q^s.

- $s = m = 1$ is the $1 - \sqrt{R}$ bound for RS codes.
- Picking $s \approx 1/\varepsilon$, $m \approx 1/\varepsilon^2$, $\tau \geq 1 - R - \varepsilon$.

Venkat Guruswami (CMU) Optimal rate list decoding April 2014 16 / 45
Folded Reed-Solomon list decoding

Theorem (G.-Rudra; based on root-finding in extension fields, building on Parvaresh-Vardy)

For any s, $1 \leq s \leq m$, the m-folded RS code can be list decoded from error fraction $\tau \approx 1 - \left(\frac{mR}{m-s+1} \right)^{s/(s+1)}$ with list-size q^s.

- $s = m = 1$ is the $1 - \sqrt{R}$ bound for RS codes.
- Picking $s \approx 1/\varepsilon$, $m \approx 1/\varepsilon^2$, $\tau \geq 1 - R - \varepsilon$.

Theorem (Linear-algebra approach (G.-Wang’13))

For any s, $1 \leq s \leq m$, the m-folded RS code can be list decoded from error fraction $\tau = \frac{s}{s+1} \left(1 - \frac{mR}{m-s+1} \right)$ with list-size q^{s-1}.

- $s = m = 1$: $(1 - R)/2$ unique decoding bound for RS codes.
- Picking $s \approx 1/\varepsilon$, $m \approx 1/\varepsilon^2$, again $\tau \geq 1 - R - \varepsilon$.
Following Reed-Solomon list decoder, two steps: (i) interpolation, and (ii) solution/root finding.
Following Reed-Solomon list decoder, two steps: (i) interpolation, and (ii) solution/root finding.

For folded codes, *multivariate* interpolation is used. In linear-algebraic version, interpolate a polynomial of following form [Vadhan] (for some \(s \in \{1, 2, \ldots, m\} \))

\[
A_0(X) + A_1(X)Y_1 + A_2(X)Y_2 + \cdots + A_s(X)Y_s
\]
Following Reed-Solomon list decoder, two steps: (i) interpolation, and (ii) solution/root finding.

For folded codes, *multivariate* interpolation is used. In linear-algebraic version, interpolate a polynomial of following form [Vadhan] (for some $s \in \{1, 2, \ldots, m\}$)

$$A_0(X) + A_1(X)Y_1 + A_2(X)Y_2 + \cdots + A_s(X)Y_s$$

Algebraic crux is to find all degree k solutions $f \in \mathbb{F}_q[X]$ to

$$A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) + \cdots + A_s(X)f(\gamma^{s-1}X) = 0$$
Following Reed-Solomon list decoder, two steps: (i) interpolation, and (ii) solution/root finding.

For folded codes, multivariate interpolation is used. In linear-algebraic version, interpolate a polynomial of following form [Vadhan] (for some \(s \in \{1, 2, \ldots, m\} \))

\[
A_0(X) + A_1(X)Y_1 + A_2(X)Y_2 + \cdots + A_s(X)Y_s
\]

Algebraic crux is to find all degree \(k \) solutions \(f \in \mathbb{F}_q[X] \) to

\[
A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) + \cdots + A_s(X)f(\gamma^{s-1}X) = 0
\]

Next: details of these steps

- \(s = 1 \) corresponds to unique decoding: \(f(X) = -A_0(X)/A_1(X) \).
Interpolation

\[
\begin{pmatrix}
 f(1) \\
 f(\gamma) \\
 \vdots \\
 f(\gamma^{m-1})
\end{pmatrix},
\begin{pmatrix}
 f(\gamma^m) \\
 f(\gamma^{m+1}) \\
 \vdots \\
 f(\gamma^{2m-1})
\end{pmatrix}, \ldots \sim
\begin{pmatrix}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{m-1}
\end{pmatrix}, \ldots,
\begin{pmatrix}
 y_{n-m} \\
 y_{n-m+1} \\
 \vdots \\
 y_{n-1}
\end{pmatrix}
\]

Find \(A_0, A_1, \ldots, A_s \in \mathbb{F}_q[X] \) such that

\[
Q(X, Y_1, \ldots, Y_s) = A_0(X) + A_1(X)Y_1 + \cdots + A_s(X)Y_s
\]
satisfies

\[
Q(\gamma^i, y_i, y_{i+1}, \ldots, y_{i+s-1}) = 0 \quad \forall \ i, i \mod m \in \{0, 1, \ldots, m - s\}.
\]
Interpolation

\[
\begin{bmatrix}
 f(1) \\
 f(\gamma) \\
 \vdots \\
 f(\gamma^{m-1})
\end{bmatrix},
\begin{bmatrix}
 f(\gamma^m) \\
 f(\gamma^{m+1}) \\
 \vdots \\
 f(\gamma^{2m-1})
\end{bmatrix}, \ldots \Rightarrow
\begin{bmatrix}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{m-1}
\end{bmatrix}, \ldots, \begin{bmatrix}
 y_{n-m} \\
 y_{n-m+1} \\
 \vdots \\
 y_{n-1}
\end{bmatrix}
\]

Find \(A_0, A_1, \ldots, A_s \in \mathbb{F}_q[X]\) such that

\[
Q(X, Y_1, \ldots, Y_s) = A_0(X) + A_1(X)Y_1 + \cdots + A_s(X)Y_s
\]
satisfies

\[
Q(\gamma^i, y_i, y_{i+1}, \ldots, y_{i+s-1}) = 0 \quad \forall \ i, \ i \mod m \in \{0, 1, \ldots, m - s\}.
\]

- Restrict \(\text{deg}(A_0) < D + k, \text{deg}(A_j) \leq D\) for \(1 \leq j \leq s\).
Interpolation

\[
\begin{pmatrix}
 f(1) \\
 f(\gamma) \\
 \vdots \\
 f(\gamma^{m-1})
\end{pmatrix},
\begin{pmatrix}
 f(\gamma^m) \\
 f(\gamma^{m+1}) \\
 \vdots \\
 f(\gamma^{2m-1})
\end{pmatrix}, \ldots \sim \begin{pmatrix}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{m-1}
\end{pmatrix}, \ldots, \begin{pmatrix}
 y_{n-m} \\
 y_{n-m+1} \\
 \vdots \\
 y_{n-1}
\end{pmatrix}
\]

Find \(A_0, A_1, \ldots, A_s \in \mathbb{F}_q[X] \) such that

\[Q(X, Y_1, \cdots, Y_s) = A_0(X) + A_1(X)Y_1 + \cdots + A_s(X)Y_s \]

satisfies

\[Q(\gamma^i, y_i, y_{i+1}, \ldots, y_{i+s-1}) = 0 \quad \forall \ i, i \mod m \in \{0, 1, \ldots, m - s\} \, . \]

- Restrict \(\deg(A_0) < D + k, \deg(A_j) \leq D \) for \(1 \leq j \leq s \).
- \(> (s + 1)D + k \) degrees of freedom/unknowns
- \(n' := N(m - s + 1) \) constraints (\(N = n/m \) is block length of folded code)
Linear interpolation step

Received word
\[
\begin{bmatrix}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{m - 1}
\end{bmatrix}, \ldots, \begin{bmatrix}
 y_{n - m} \\
 y_{n - m + 1} \\
 \vdots \\
 y_{n - 1}
\end{bmatrix}
\]

When \(D = (n' - k)/(s + 1) \), can find \(A_0, A_1, \ldots, A_s \in \mathbb{F}_q[X] \), not all zero, such that
\[
Q(X, Y_1, \ldots, Y_s) = A_0(X) + A_1(X)Y_1 + \cdots + A_s(X)Y_s
\]
satisfies

1. \(Q(\gamma^i, y_i, y_{i+1}, \ldots, y_{i+s-1}) = 0 \) for \(i \mod m \leq m - s \).

2. For any degree \(< k\) polynomial \(f \),
\[
Q(X, f(X), f(\gamma X), \ldots, f(\gamma^{s-1}X))
\]
has degree \(< D + k = (n' + sk)/(s + 1)\)

Second fact follows from degree restrictions on \(A_i \)'s.
Lemma

If \(t \geq \frac{n' + sk}{(m-s+1)(s+1)} \) values of \(j \in \{0, 1, \ldots, N - 1\} \) satisfy
\[
f(\gamma^jm), f(\gamma^jm+1), \ldots, f(\gamma^jm+m-1)) = (y_jm, \ldots, y_{jm+m-1}),
\]
then
\[
A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) + \cdots + A_s(X)f(\gamma^{s-1}X) = 0.
\]
Algebraic handle on message polynomials

Lemma

If \(t \geq \frac{n' + sk}{(m-s+1)(s+1)} \) values of \(j \in \{0, 1, \ldots, N - 1\} \) satisfy
\[
(f(\gamma^j), f(\gamma^{j+1}), \ldots, f(\gamma^{j+m-1})) = (y_{jm}, \ldots, y_{jm+m-1}),
\]
then
\[
A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) + \cdots + A_s(X)f(\gamma^{s-1}X) = 0.
\]

Key Fact: If codeword and \(y \) agree on \(t \) columns, then
\[
(f(\gamma^i), f(\gamma^{i+1}), \ldots, f(\gamma^{i+s-1})) = (y_i, y_{i+1}, \ldots, y_{i+s-1})
\]
for at least \((m - s + 1)t\) values of \(i \).
The decoding radius

\[N = n/m \] is block length of \(m \)-folded code.
\[t = (1 - \tau)N \] is the number of correct columns.

Decoding condition is \((1 - \tau)N \geq \frac{N(m-s+1)+sk}{s+1)(m-s+1)} \).
The decoding radius

\[N = n/m \] is block length of \(m \)-folded code.

\[t = (1 - \tau)N \] is the number of correct columns.

Decoding condition is \((1 - \tau)N \geq \frac{N(m-s+1)+sk}{s+1}(m-s+1)\).

Since degree \(k = R \cdot n = R \cdot Nm \), above is met for

\[\tau \leq \frac{s}{s + 1} \left(1 - \frac{m}{m - s + 1}R\right). \]
The decoding radius

\[N = n/m \] is block length of \(m \)-folded code.

\[t = (1 - \tau)N \] is the number of correct columns.

Decoding condition is \((1 - \tau)N \geq \frac{N(m-s+1)+sk}{s+1}(m-s+1) \).

Since degree \(k = R \cdot n = R \cdot Nm \), above is met for

\[\tau \leq \frac{s}{s+1} \left(1 - \frac{m}{m-s+1}R \right) . \]

- Error fraction approaches \(\frac{s}{s+1} (1 - R) \) for large \(m \gg s \).
- Can achieve \(\tau = 1 - R - \varepsilon \) by taking \(s \gtrsim 1/\varepsilon \) and \(m \gtrsim 1/\varepsilon^2 \).
Recovering list of messages

Following interpolation step, algebraic crux is to find all degree $< k$ solutions $f \in \mathbb{F}_q[X]$ to the equation

$$A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) + \cdots + A_s(X)f(\gamma^{s-1}X) = 0$$
Recovering list of messages

Following interpolation step, algebraic crux is to find all degree $< k$ solutions $f \in \mathbb{F}_q[X]$ to the equation

$$A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) + \cdots + A_s(X)f(\gamma^{s-1}X) = 0$$

[G.’11] Observe that the above is an \mathbb{F}_q-linear system (in the coefficients of f)

- So we can solve for f and pin down possibilities to an affine subspace!
- To control list size, need to bound dimension of solution space.
Solving for f

Illustrate with $s = 2$

$$A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) = 0 \quad (♣)$$

Let $A_i(X) = a_{i0} + a_{i1}X + a_{i2}X^2 + \cdots$ (wlog, not all $a_{i0} = 0$), and let $f = f_0 + f_1X + \cdots, + f_{k-1}X^{k-1}$.

Solving for f

Illustrate with $s = 2$

$$A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) = 0 \quad (\heartsuit)$$

Let $A_i(X) = a_{i0} + a_{i1}X + a_{i2}X^2 + \cdots$ (wlog, not all $a_{i0} = 0$), and let $f = f_0 + f_1X + \cdots + f_{k-1}X^{k-1}$.

(\heartsuit) is the lower-triangular linear system:

\begin{align*}
a_{00} + (a_{10} + a_{20}) \cdot f_0 &= 0 \\
a_{01} + (\cdots) \cdot f_0 + (a_{10} + a_{20}\gamma) \cdot f_1 &= 0 \\
a_{02} + (\cdots) \cdot f_0 + (\cdots) \cdot f_1 + (a_{10} + a_{20}\gamma^2) \cdot f_2 &= 0 \\
&\vdots
\end{align*}
Solving for f

Illustrate with $s = 2$

$$A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) = 0 \quad \text{(♣)}$$

Let $A_i(X) = a_{i0} + a_{i1}X + a_{i2}X^2 + \cdots$ (wlog, not all $a_{i0} = 0$), and let $f = f_0 + f_1X + \cdots, +f_{k-1}X^{k-1}$.

(♣) is the lower-triangular linear system:

$$a_{00} + (a_{10} + a_{20}) \cdot f_0 = 0$$

$$a_{01} + (\cdots) \cdot f_0 + (a_{10} + a_{20}\gamma) \cdot f_1 = 0$$

$$a_{02} + (\cdots) \cdot f_0 + (\cdots) \cdot f_1 + (a_{10} + a_{20}\gamma^2) \cdot f_2 = 0$$

$$:$$

At most one i s.t. $a_{10} + a_{20}\gamma^i = 0 \implies$ soln. space dimension ≤ 1.
Solving for f

Illustrate with $s = 2$

$$
A_0(X) + A_1(X)f(X) + A_2(X)f(\gamma X) = 0 \quad (♣)
$$

Let $A_i(X) = a_{i0} + a_{i1}X + a_{i2}X^2 + \cdots$ (wlog, not all $a_{i0} = 0$), and let $f = f_0 + f_1X + \cdots, +f_{k-1}X^{k-1}$.

$(♣)$ is the lower-triangular linear system:

\[
\begin{align*}
 a_{00} + (a_{10} + a_{20}) \cdot f_0 &= 0 \\
 a_{01} + (\cdots) \cdot f_0 + (a_{10} + a_{20}\gamma) \cdot f_1 &= 0 \\
 a_{02} + (\cdots) \cdot f_0 + (\cdots) \cdot f_1 + (a_{10} + a_{20}\gamma^2) \cdot f_2 &= 0 \\
 &\vdots
\end{align*}
\]

At most one i s.t. $a_{10} + a_{20}\gamma^i = 0 \implies$ soln. space dimension ≤ 1.

For general s, solns. lie in dim. $\leq s - 1$ subspace $(\therefore$ list size $\leq q^{s-1})$
Folded RS decoding

For folded RS code of rate R, can list decode up to radius
\[\approx \frac{s}{s+1}(1 - R) \]
pinning down candidate messages to an affine subspace of dimension \(\leq s - 1 \).

List size bound is \(q^{s-1} \), or \(q^{\Omega(1/\varepsilon)} \) when \(s \approx 1/\varepsilon \).

Decoding complexity also similar, dominated by sifting through the \(s - 1 \)-dimensional subspace for close-by codewords.

Also \(q > N \) (inherent to Reed-Solomon)

Analogous results for “derivative/multiplicity codes” [G.-Wang] [Kopparty]
Definition (Order-m Derivative codes)

a_1, a_2, \ldots, a_n distinct elements of \mathbb{F}_q, $\text{char}(\mathbb{F}_q) > k$. Message $f \in \mathbb{F}_q[X]_{<k}$ is mapped to codeword

$$
\begin{bmatrix}
 f(a_1) \\
 f'(a_1) \\
 \vdots \\
 f^{(m-1)}(a_1)
\end{bmatrix},
\begin{bmatrix}
 f(a_2) \\
 f'(a_2) \\
 \vdots \\
 f^{(m-1)}(a_2)
\end{bmatrix},
\ldots,
\begin{bmatrix}
 f(a_n) \\
 f'(a_n) \\
 \vdots \\
 f^{(m-1)}(a_n)
\end{bmatrix}.
$$

Alphabet size q^m; block length $= n$; rate $R = k/(nm)$

For large $m \approx 1/\varepsilon^2$, can be list decoded from $1 - R - \varepsilon$ error fraction.
Explicit (folded Reed-Solomon, or derivative) codes of rate R list-decodable up to error fraction $1 - R - \varepsilon$.

- Alphabet size $> N^{1/\varepsilon^2}$, and list-size $N^{1/\varepsilon}$.

Algorithm also gives soft decodability. Using this in a concatenation scheme followed by expander graph based symbol redistribution:

\Rightarrow reduce alphabet size $\exp(1/\varepsilon^4)$ (independent of block length)

$\exp(1/\varepsilon)$ is a lower bound on alphabet size.

But decoding complexity and list-size high (inherited from outer folded RS code).
Optimal rate list decoding

Explicit (folded Reed-Solomon, or derivative) codes of rate R list-decodable up to error fraction $1 - R - \varepsilon$.

- Alphabet size $> N^{1/\varepsilon^2}$, and list-size $N^{1/\varepsilon}$.

Algorithm also gives soft decodability.

Using this in a concatenation scheme followed by expander graph based symbol redistribution:

\Rightarrow reduce alphabet size $\exp(1/\varepsilon^4)$ (independent of block length)

- $\exp(1/\varepsilon)$ is a lower bound on alphabet size.

- But decoding complexity and list-size high (inherited from outer folded RS code)
Talk plan

1. (List) decoding Reed-Solomon codes
2. Folded Reed-Solomon codes: Linear-algebraic list decoding
3. Subspace-evasive pre-coding
 - Extensions to algebraic-geometric & rank-metric codes
4. Concluding remarks, Open challenges
Pre-coding idea

In linear-algebraic list decoding, the list of candidate messages are contained within a \(s\)-dimensional subspace.

Simple yet influential idea: *Instead of all degree \(k\) polys as messages, only allow a carefully chosen subset which doesn't intersect any low-dimensional subspace too much.*

Subspace-evasive sets

A subset \(S \subset \mathbb{F}_q^k\) is said to be \((s, \ell)\)-subspace evasive if for all \(s\)-dimensional subspaces \(W\) of \(\mathbb{F}_q^k\), \(|S \cap W| \leq \ell\).

Observation: Restricting (coefficients of) message polynomials to belong to such a subspace-evasive set brings down list size to \(\ell\).

But how much does this cost in terms of rate?
Pre-coding idea

In linear-algebraic list decoding, the list of candidate messages are contained within a s-dimensional subspace.

Simple yet influential idea: *Instead of all degree k polys as messages, only allow a carefully chosen subset which doesn’t intersect any low-dimensional subspace too much.*

Subspace-evasive sets

A subset $S \subset \mathbb{F}_q^k$ is said to be (s, ℓ)-subspace evasive if for all s-dimensional subspaces W of \mathbb{F}_q^k, $|S \cap W| \leq \ell$.

Observation: Restricting (coefficients of) message polynomials to belong to such a subspace-evasive set brings down list size to ℓ.

But how much does this cost in terms of rate?
Pre-coding idea

In linear-algebraic list decoding, the list of candidate messages are contained within a s-dimensional subspace.

Simple yet influential idea: Instead of all degree k polys as messages, only allow a carefully chosen subset which doesn’t intersect any low-dimensional subspace too much.

Subspace-evasive sets

A subset $S \subset \mathbb{F}_q^k$ is said to be (s, ℓ)-subspace evasive if for all s-dimensional subspaces W of \mathbb{F}_q^k, $|S \cap W| \leq \ell$.

Observation: Restricting (coefficients of) message polynomials to belong to such a subspace-evasive set brings down list size to ℓ.

But how much does this cost in terms of rate?
Subspace-evasive sets

Natural notion (in pseudorandomness, geometry).

Considered in work on bipartite Ramsey problem [Pudlák-Rödl’05]
Subspace-evasive sets

Natural notion (in pseudorandomness, geometry).

Considered in work on bipartite Ramsey problem [Pudlák-Rödl’05]

Easy application of probabilistic method gives:

Lemma

A random subset of \mathbb{F}_q^k of size $q^{(1-\varepsilon)k}$ is $(s, O(s/\varepsilon))$-subspace evasive w.h.p. (for $s \lesssim \varepsilon k$).

Factor $(1 - \varepsilon)$ loss in rate suffices for significant pruning of the solution subspaces!

How to represent and encode into the subspace-evasive set?
Good subcodes of folded RS code

Prob. method works even for $O(s/\varepsilon)$-wise independent subsets, which admit compact representation and efficient encoding.

Via a pseudorandom construction of subspace-evasive sets, can get

- Monte Carlo construction of a subcode of folded RS codes with list size $O(1/\varepsilon)$ (matching existential random coding bound!)

Upshot
Monte Carlo construction of efficiently $(1 - R - \varepsilon, O(1/\varepsilon))$-list decodable subcodes of folded Reed-Solomon codes.

Explicit construction?
Explicit subspace-evasive sets

Theorem (Dvir-Lovett’12)

Explicit construction of a \((s, (s/\varepsilon)^{O(s)})\)-subspace evasive subset of \(\mathbb{F}_q^k\) of size \(q^{(1-\varepsilon)k}\).

Approach: An algebraic variety cut out by \(s\) polynomial equations such that the intersection with every \(s\)-dimensional affine space is a zero-dimensional variety. (Intersection size bound via Bézout’s theorem.)
Explicit subspace-evasive sets

Theorem (Dvir-Lovett’12)

Explicit construction of a $(s, (s/\varepsilon)^{O(s)})$-subspace evasive subset of \mathbb{F}_q^k of size $q^{(1-\varepsilon)k}$.

Approach: An algebraic variety cut out by s polynomial equations such that the intersection with every s-dimensional affine space is a zero-dimensional variety. (Intersection size bound via Bézout’s theorem.)

Upshot

Explicit construction of efficiently $(1 - R - \varepsilon, \exp(\tilde{O}(1/\varepsilon)))$-list decodable codes.
Explicit subspace-evasive sets

Theorem (Dvir-Lovett’12)

Explicit construction of a \((s, (s/\varepsilon)^{O(s)})\)-subspace evasive subset of \(\mathbb{F}_q^k\) of size \(q^{(1-\varepsilon)k}\).

Approach: An algebraic variety cut out by \(s\) polynomial equations such that the intersection with every \(s\)-dimensional affine space is a zero-dimensional variety. (Intersection size bound via Bézout’s theorem.)

Upshot

Explicit construction of efficiently \((1 - R - \varepsilon, \exp(\tilde{O}(1/\varepsilon)))\)-list decodable codes.

Beautiful challenge: Explicit construction of subspace evasive set with \(\exp(o(s))\) intersection bound?
Subcodes of folded Reed-Solomon codes with rate R, list decoding radius $1 - R - \varepsilon$, list-size constant depending only on ε.

But the alphabet size in $N^{\Omega(1/\varepsilon^2)}$.

- Extensions to *algebraic-geometric codes* (Garcia-Stichtenoth) gives alphabet size $\approx \exp(O(1/\varepsilon^2))$. [G.-Xing’12,’13]
Subcodes of folded Reed-Solomon codes with rate R, list decoding radius $1 - R - \varepsilon$, list-size constant depending only on ε.

But the alphabet size is $N^{\Omega(1/\varepsilon^2)}$.

- Extensions to algebraic-geometric codes (Garcia-Stichtenoth) gives alphabet size $\approx \exp(O(1/\varepsilon^2))$. [G.-Xing’12,’13]

- Can also construct explicit rank-metric codes of rate R efficiently list-decodable up to $1 - R - \varepsilon$ fraction of rank-metric errors. [G.-Xing’13], [G.-Wang’14]
Summary

Optimal rate list decoding

Subcodes of folded Reed-Solomon codes with rate R, list decoding radius $1 - R - \varepsilon$, list-size constant depending only on ε.

But the alphabet size in $N^{\Omega(1/\varepsilon^2)}$.

- Extensions to *algebraic-geometric codes* (Garcia-Stichtenoth) gives alphabet size $\approx \exp(O(1/\varepsilon^2))$. [G.-Xing’12,’13]
- Can also construct *explicit rank-metric codes* of rate R efficiently list-decodable up to $1 - R - \varepsilon$ fraction of rank-metric errors. [G.-Xing’13], [G.-Wang’14]
- Based on *subspace designs* (a variant of subspace-evasive sets)

Next: Illustrate emergence of the subspace design notion in decoding Reed-Solomon codes themselves.
Reed-Solomon codes again

Definition (RS codes with evaluation points in a subfield)

Messages = polynomials $f \in \mathbb{F}_{q^m}[X]$ of degree $< k$. Encoding:

$$f \mapsto (f(\alpha_1), f(\alpha_2), \cdots, f(\alpha_q))$$

where α_i are all the elements of \mathbb{F}_q.

Rate $R = k/q$; block length = q; alphabet size = q^m.
Reed-Solomon codes again

Definition (RS codes with evaluation points in a subfield)

Messages = polynomials $f \in \mathbb{F}_{q^m}[X]$ of degree $< k$. Encoding:

$$f \mapsto (f(\alpha_1), f(\alpha_2), \cdots, f(\alpha_q))$$

where α_i are all the elements of \mathbb{F}_q.

Rate $R = k/q$; block length $= q$; alphabet size $= q^m$.

- Being a RS code, we can list decode above up to radius $\tau = 1 - \sqrt{R}$ [G.-Sudan]
- [G.-Xing] A subcode of above code can be efficiently list decoded up to radius $1 - R - \varepsilon$ when $m \approx 1/\varepsilon^2$.
For $f \in \mathbb{F}_{q^m}[X]$ equal to $f_0 + f_1 X + \cdots + f_{k-1} X^{k-1}$, define the polynomial $f^\sigma \in \mathbb{F}_{q^m}[X]$ as

$$f_0^q + f_1^q X + f_2^q X^2 + \cdots + f_{k-1}^q X^{k-1}.$$

Key fact

For $\alpha \in \mathbb{F}_q$, $f^\sigma(\alpha) = f(\alpha)^q$.
For \(f \in \mathbb{F}_{q^m}[X] \) equal to \(f_0 + f_1X + \cdots + f_{k-1}X^{k-1} \), define the polynomial \(f^\sigma \in \mathbb{F}_{q^m}[X] \) as
\[
f_0^q + f_1^qX + f_2^qX^2 + \cdots + f_{k-1}^qX^{k-1}.
\]

Key fact

For \(\alpha \in \mathbb{F}_q \), \(f^\sigma(\alpha) = f(\alpha)^q \).

Proof.

\[
f(\alpha)^q = \left(\sum_{j=0}^{k-1} f_j \alpha^{j-1}\right)^q = \sum_{j=0}^{k-1} f_j^q \alpha^{(j-1)q}
= \sum_{j=0}^{k-1} f_j^q \alpha^{j-1} = f^\sigma(\alpha).
\]
Decoding idea

One can “manufacture” evaluations of f^σ on \mathbb{F}_q given those of f.

- In folded RS case, evaluations of $f(\gamma X)$ given those of $f(X)$.
Decoding idea

One can “manufacture” evaluations of f^σ on \mathbb{F}_q given those of f.

- In folded RS case, evaluations of $f(\gamma X)$ given those of $f(X)$.

Similar multivariate interpolation approach can decode up to radius $\frac{s}{s+1}(1 - R)$, pinning down message polynomials f to solutions of

\[
A_0(X) + A_1(X)f(X) + A_2(X)f^\sigma(X) + \cdots + A_s(X)f^{\sigma^{s-1}}(X) = 0
\]
One can “manufacture” evaluations of f^σ on \mathbb{F}_q given those of f.

- In folded RS case, evaluations of $f(\gamma X)$ given those of $f(X)$.

Similar multivariate interpolation approach can decode up to radius $\frac{s}{s+1}(1 - R)$, pinning down message polynomials f to solutions of

$$A_0(X) + A_1(X)f(X) + A_2(X)f^\sigma(X) + \cdots + A_s(X)f^{\sigma^{s-1}}(X) = 0$$

Again, solutions $f \in \mathbb{F}_{q^m}[X]$ form an \mathbb{F}_q-affine subspace!

- Can show $(s - 1)k$ bound on overall dimension (non-trivially smaller than mk, but still too large).
Periodic subspaces

The solution subspace has additional \(s \)-periodic structure:

- \(\exists \) a subspace \(\mathcal{W} \subset \mathbb{F}_{q^m} \) of dimension \(< s \) such that \(f_j \) belongs to a coset of \(\mathcal{W} \) (that only depends on \(f_0, f_1, \ldots, f_{j-1} \)).

Key idea: Exploit fact that each \(f_j \) is in coset of the same subspace \(\mathcal{W} \).

- Restrict \(f_j \in H_j \) for subspaces \(H_j \) that are “well spread out” (so they don’t intersect \(\mathcal{W} \) too often)
Subspace designs

Definition (Subspace design (G.-Xing’13))

A collection of subspaces $H_0, H_2, \ldots, H_{k-1} \subset \mathbb{F}_q^m$ is an (s, d)-subspace design if \forall s-dimensional subspaces $W \subset \mathbb{F}_q^m$,

$$\sum_{j=0}^{k-1} \dim(H_j \cap W) \leq d.$$
Subspace designs

Definition (Subspace design (G.-Xing’13))
A collection of subspaces $H_0, H_2, \ldots, H_{k-1} \subset \mathbb{F}_q^m$ is an (s, d)-subspace design if \forall s-dimensional subspaces $W \subset \mathbb{F}_q^m$,
\[
\sum_{j=0}^{k-1} \dim(H_j \cap W) \leq d.
\]

Theorem
For H_j’s from an (s, d)-subspace design, intersection of an s-periodic subspace with $H_0 \times H_1 \times \cdots \times H_{k-1}$ is an affine space of dimension at most d.

Note: Now even the pruning is linear-algebraic! (impose additional linear constants $f_j \in H_j$ on top of interpolation equation)
Constructing subspace designs

Spreads

Explicit construction of a large collection \(\{ H_j \} \) of \(m/2 \)-dimensional subspaces of \(\mathbb{F}_q^m \) are known such that \(H_j \cap H_{j'} = \{0\} \) for \(j \neq j' \).

- These give a \((s, s)\)-subspace design.
Constructing subspace designs

Spreads

Explicit construction of a large collection \(\{ H_j \} \) of \(m/2 \)-dimensional subspaces of \(\mathbb{F}_q^m \) are known such that \(H_j \cap H_{j'} = \{0\} \) for \(j \neq j' \).

- These give a \((s, s)\)-subspace design.
- But factor 1/2 loss in rate.

We need a design with subspaces of dimension \((1 - \varepsilon)m\).
Lemma (Probabilistic method)

For dimension \((1 - \varepsilon)m\), random collection of size \(\approx q^{\varepsilon m}\) is an \((s, s/\varepsilon)\)-subspace design w.h.p.
Subspace designs of large dimension

Lemma (Probabilistic method)

For dimension \((1 - \varepsilon)m\), random collection of size \(\approx q^{\varepsilon m}\) is an \((s, s/\varepsilon)\)-subspace design w.h.p.

Theorem (G.-Kopparty’13)

Explicit construction of \((s, s/\varepsilon)\)-subspace design of size \(q\) (with subspaces of dimension \((1 - \varepsilon)m\).

Also explicit \((s, s^2/\varepsilon)\)-subspace design of larger size \(q^{\varepsilon m/s}\).

Yields explicit subcodes of these RS codes that are list-decodable up to radius \(1 - R - \varepsilon\).

Similar idea works for Gabidulin codes in rank-metric setting.
Upshot

There is an \mathbb{F}_q-linear subcode of RS code over \mathbb{F}_{q^m} with evaluation points in \mathbb{F}_q that is decodable up to optimal radius $(1 - R - \varepsilon)$.

(list contained in a subspace of dimension $1/\varepsilon^2$)
Subspace design construction

Curiously, the subspace design construction is itself based on (variants of) Reed-Solomon codes.

Recall, we want many dimension $(1 - \varepsilon)m$ subspaces H_1, \ldots, H_M of \mathbb{F}_q^m such that for every W, $\dim(W) = s$, the number of H_i's such that $H_i \cap W \neq \{0\}$ is small.
Curiously, the subspace design construction is itself based on (variants of) Reed-Solomon codes.

Recall, we want many dimension \((1 - \varepsilon)m\) subspaces \(H_1, \ldots, H_M\) of \(\mathbb{F}_q^m\) such that for every \(W\), \(\dim(W) = s\), the number of \(H_i\)'s such that \(H_i \cap W \neq \{0\}\) is small.

Baby case: \(s = 1\).

- Identity \(\mathbb{F}_q^m\) with \(\mathbb{F}_q[X]_{<m}\) (degree < \(m\) polynomials over \(\mathbb{F}_q\)).
- For \(a \in \mathbb{F}_q\), define \(H_a = \{f \in \mathbb{F}_q[X]_{<m} \mid \text{mult}(f, a) \geq \varepsilon m\}\) (which has dimension \((1 - \varepsilon)m\)).
Curiously, the subspace design construction is itself based on (variants of) Reed-Solomon codes.

Recall, we want many dimension $(1 - \varepsilon)m$ subspaces H_1, \ldots, H_M of \mathbb{F}_q^m such that for every W, $\dim(W) = s$, the number of H_i's such that $H_i \cap W \neq \{0\}$ is small.

Baby case: $s = 1$.

- Identity \mathbb{F}_q^m with $\mathbb{F}_q[X]_{<m}$ (degree $< m$ polynomials over \mathbb{F}_q).
- For $a \in \mathbb{F}_q$, define $H_a = \{ f \in \mathbb{F}_q[X]_{<m} \mid \text{mult}(f, a) \geq \varepsilon m \}$ (which has dimension $(1 - \varepsilon)m$).
- Let $W = \text{span}(\{g\})$ for some nonzero $g \in \mathbb{F}_q[X]_{<m}$.
- $W \cap H_a \neq \{0\}$ iff g has $\geq \varepsilon m$ zeroes at a. Happens at most $1/\varepsilon$ times!
Subspace design construction

Same construction works for larger dimensional subspaces W. If $W = \text{span}(g_1, g_2, \ldots, g_s)$, proof via Wronskian:

$$\begin{vmatrix} g_1(X) & g_2(X) & \cdots & g_s(X) \\ g_1'(X) & g_2'(X) & \cdots & g_s'(X) \\ \vdots & \vdots & \ddots & \vdots \\ g_1^{(s-1)}(X) & g_2^{(s-1)}(X) & \cdots & g_s^{(s-1)}(X) \end{vmatrix}.$$

This is based on “derivative codes”; requires large characteristic.

Better construction via folded Reed-Solomon codes.
Talk plan

1. (List) decoding Reed-Solomon codes
2. Folded Reed-Solomon codes: Linear-algebraic list decoding
3. Subspace-evasive pre-coding
 • Extensions to algebraic-geometric & rank-metric codes
4. Concluding remarks, Open challenges
Variants of Reed-Solomon codes enable list decoding up to radius approaching optimal $1 - R$ bound with rate R.

Linear-algebraic approach pins down candidates to a low-dimensional (or structured) subspace.
Variants of Reed-Solomon codes enable list decoding up to radius approaching optimal $1 - R$ bound with rate R.

Linear-algebraic approach pins down candidates to a low-dimensional (or structured) subspace.

Decoding approach versatile and applies to variants of
- Algebraic-geometric codes (achieving constant alphabet size)
- Gabidulin codes (optimal radius decoding in rank metric)
- Koetter-Kschischang subspace codes
Variants of Reed-Solomon codes enable list decoding up to radius approaching optimal $1 - R$ bound with rate R.

Linear-algebraic approach pins down candidates to a low-dimensional (or structured) subspace.

Decoding approach versatile and applies to variants of
- Algebraic-geometric codes (achieving constant alphabet size)
- Gabidulin codes (optimal radius decoding in rank metric)
- Koetter-Kschischang subspace codes

Reduce list size by pruning subspace of candidate messages using (variants of) *subspace-evasive sets or subspace designs*.
Open Problems

Large alphabet list decoding quite well understood. But many interesting challenges remain.
Open Problems

Large alphabet list decoding quite well understood. But many interesting challenges remain.

- List decoding capability of Reed-Solomon codes itself?
- Explicit optimal rate binary list-decodable codes?
 - Tackle case of erasures (list decoding up to \(1 - R - \varepsilon\) erasure fraction with rate \(R\))?
Open Problems

Large alphabet list decoding quite well understood.
But many interesting challenges remain.

- List decoding capability of Reed-Solomon codes itself?
- Explicit optimal rate binary list-decodable codes?
 - Tackle case of erasures (list decoding up to $1 - R - \varepsilon$ erasure fraction with rate R)?
- List decoding Gabidulin codes beyond half the distance?
 - Certain variants list decodable up to almost the distance
- Combinatorial bounds for list decoding
 - (p, L)-list decodable binary code of rate $1 - h(p) - \varepsilon$:
 What’s the smallest possible list-size $L = L(\varepsilon)$?
 We have $\log(1/\varepsilon) \lesssim L(\varepsilon) \lesssim 1/\varepsilon$