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Two Results of Gel’fand and Pinsker from 1980



A Channel with Random Parameters

• Channel law

W (y |x , s), {Sk} ∼ IID PS .

• The encoder knows the state sequence noncausally:

f : M×Sn → X n.

• M is the message set

M =
{

1, . . . , 2nR
}
.

• R is the rate, and n is the blocklength.

• Decoder ignorant of state sequence:

φ : Yn →M.



The highest rate of reliably communication

Gel’fand and Pinsker:

C = max I (U;Y )− I (U;S)

where the maximum is over all PMFs

PS(s)PU|S(u|s)PX |S,U(x |s, u)W (y |x , s).

And there is NLG in choosing PX |S,U deterministic:

PS(s)PU|S(u|s) I
{
x = g(s, u)

}
W (y |x , s)

C = max
PU|S , g : S×U→X

I (U;Y )− I (U;S)



Achievability

• Generate 2n(R+R̃) sequences IID PU :

u(m, `), m ∈M, ` ∈
{

1, . . . , 2nR̃
}
.

• To send Message m after observing s, look for some ` such
that

(
u(m, `), s

)
are j.t. w.r.t. PS ,U .

• If none found, “encoding failure.”

• The probability of encoding failure vanishes if

R̃ > I (U;S).

• Decoder searches for a unique pair (m′, `′) such that(
u(m′, `′), y

)
is j.t. w.r.t. PU,Y .

• The probability of success tends to one if

R + R̃ < I (U;Y ).



The Converse

nR ≤ I (M;Y n) + nεn

=
∑
i

I (M;Yi |Y i−1) + nεn

=
∑
i

I
(
M, Sn

i+1;Yi

∣∣Y i−1)−∑
i

I
(
Sn
i+1;Yi

∣∣M,Y i−1)+ nεn

=
∑
i

I
(
M, Sn

i+1;Yi

∣∣Y i−1)−∑
i

I
(
Y i−1; Si

∣∣M,Sn
i+1

)
+ nεn

=
∑
i

I
(
M, Sn

i+1;Yi

∣∣Y i−1)−∑
i

I
(
M,Y i−1, Sn

i+1;Si
)

+ nεn

≤
∑
i

I
(
M,Y i−1, Sn

i+1;Yi

)
−
∑
i

I
(
M,Y i−1,Sn

i+1; Si
)

+ nεn

=
∑
i

I (Ui ;Yi )− I (Ui ;Si ) + nεn.



It only remains to check that(
M,Y i−1, Sn

i+1

)
(−−

(
Xi , Si

)
(−−Yi .



What Is a Broadcast Channel?

• One transmitter and two receivers.

• Transmitted symbol: X ∈ X .

• Received symbols: Y ∈ Y and Z ∈ Z.

• Message my ∈My for Receiver Y , and mz ∈Mz for Z .

• Channel is used n times (“the blocklength”).

• The rates are

Ry =
log #My

n
, Rz =

log #Mz

n
.

• The encoder:(
my ,mz

)
7→ x(my ,mz) =

(
x1(my ,mz), . . . , xn(my ,mz)

)
∈ X n.

• The decoders:

φy : Yn →My , φz : Zn →Mz .



The Probability of Error

A memoryless BC of law W (y , z |x):

Pr[Y = y,Z = z |X = x] =
n∏

k=1

W (yk , zk |xk).

The probabilities of error:

1

#My

1

#Mz

∑
my∈My

∑
mz∈Mz

Pr[φy (Y) 6= my |My = my , Mz = mz ]

and

1

#My

1

#Mz

∑
my∈My

∑
mz∈Mz

Pr[φz(Z) 6= mz |My = my , Mz = mz ].



Capacity Region

• (Ry ,Rz) is achievable if for every ε > 0 and δ > 0 we are
guaranteed that for all sufficiently large blocklengths n we can
find encoder/decoders of rates (Ry − δ,Rz − δ) for which both
error probabilities are smaller than ε.

• Some special cases for which the capacity is known:
• The degraded BC
• Less Noisy
• More capable
• The deterministic BC
• The semideterministic BC.



The Deterministic Broadcast Channel

Y = fy (X ), Z = fz(X )

for some
fy : X → Y, fz : X → Z.

Gel’fand, Marton, and Pinsker: The capacity region is the convex
closure of the union over all PMFs PX of the (sets of) rate pairs

Ry ≤ H(Y )

Rz ≤ H(Z )

Ry + Rz ≤ H(Y ,Z )

where the entropies are computed for the joint PMF

PXYZ (x , y , z) = PX (x) 1
{
y = fy (x)

}
1
{
z = fz(x)

}
.



The Converse for the Deterministic BC

The converse is easy:

I (My ;Y) ≤
n∑

k=1

H(Yk),

I (Mz ;Z) ≤
n∑

k=1

H(Zk),

and

I (My ,Mz) ≤
n∑

k=1

H(Yk ,Zk).

To bound Ry we ignore the fact that H(Y|My ) is typically not zero
(because of Mz). Likewise for Rz . And to bound Ry + Rz we
pretend that the receivers can cooperate.



Deterministic BC—the Direct Part

• Choose PX , inducing a joint PXPY |XPZ |X of marginal PY ,Z .

• In two independent assignments, assign to each y ∈ Yn a
random index I ∈ {1, . . . , 2nRy } and to each z ∈ Zn a random
index J ∈ {1, . . . , 2nRz}.

• Let B(i , j) comprise the pairs (y, z) that are mapped to (i , j).

• If (y, z) are jointly typical w.r.t. PY ,Z , then there must exist
some x ∈ X n that produces the outputs (y, z), because joint
typicality implies

Pr[Y = y,Z = z] > 2−n
(
H(Y ,Z)+ε

)
> 0,

and the only way this probability can be positive is if some x
induces these outputs.

• To send (my ,mz) look for a pair (y, z) in B(my ,mz) that is
jointly typical, and transmit the sequence x that produces it.

• If there is no j.t. (y, z) in B(my ,mz), ⇒ “encoding failure.”



The Semideterministic Broadcast Channel
Only Y is deterministic given x :

Y = fy (x), Pr[Z = z |X = x ] = W (z |x).

Gel’fand and Pinsker: The capacity is the convex hull of the union
over all PX of the sets of rate pairs (Ry ,Rz)

Ry < H(Y )

Rz < I (U;Z )

Ry + Rz < H(Y ) + I (U;Z )− I (U;Y )

over all joint distribution on (X ,Y ,Z ,U) under which, conditional
on X , the channel outputs Y and Z are drawn according to the
channel law independently of U:

PXYZU(x , y , z , u) = PX ,U(x , u) 1
{
y = fy (x)

}
W (z |x).

Achievability follows from Marton’s Inner Bound (More later).



State-Dependence and Prescience

• A state sequence S1, . . . ,Sn is generated IID ∼ PS . The
channel law is

W (y , z |s, x).

• A prescient encoder knows S1, . . . ,Sn before transmission
begins:

x = x(my ,mz , s).

At least as hard as the BC without a state. . . .
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The Steinberg-Shamai Inner Bound

Achievability of (R1,R2) is guaranteed whenever

R1 ≤ I (U0,U1;Y )− I (U0,U1; S)

R2 ≤ I (U0,U2;Z )− I (U0,U2; S)

R1 + R2 ≤ −
[
max{I (U0;Y ), I (U0;Z )} − I (U0;S)

]+
+ I (U0,U1;Y )− I (U0,U1; S)

+ I (U0,U2;Z )− I (U0,U2;S)− I (U1;U2|U0,S),

for some PMF of marginal PS ; that satisfies

(U0,U1,U2)(−−(X ,S)(−−(Y ,Z );

with the conditional of (Y ,Z ) given (X , S) being W (y , z |x , s).



The Semideterministic State-Dependent BC with a
Prescient Transmitter

• Y is a deterministic function of (x , s) but Z possibly not:

Y = f (s, x), Pr[Z = z |X = x ,S = s] = W (z |x , s).

• The transmitter has noncausal state-information:(
my ,mz , s

)
7→ x(my ,mz , s) =

(
x1(my ,mz , s), . . . , xn(my ,mz , s)

)
.



Two Special Cases

• State is null =⇒ (classical) semideterministic BC.
(Gel’fand and Pinsker’80b).

• Y is null =⇒ the single-user “Gel’fand-Pinsker problem”
(Gel’fand and Pinsker’80a):

C = max
U(−−(X ,S)(−−Z

I (U;Z )− I (U; S)

where the maximization is over PMFs of the form

PS(s)PU|S(u|s)PX |S ,U(x |s, u)W (z |x , s),

and PX |S,U can be taken to be deterministic.
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The Main Result

The capacity region is convex closure of the union of rate-pairs
(Ry ,Rz) satisfying

Ry < H(Y |S)

Rz < I (U;Z )− I (U; S)

Ry + Rz < H(Y |S) + I (U;Z )− I (U;S ,Y )

over all joint distribution on (X ,Y ,Z , S ,U) whose marginal PS is
the given state distribution and under which, conditional on X and
S , the channel outputs Y and Z are drawn according to the
channel law independently of U:

PXYZSU(x , y , z , s, u) = PS(s)PXU|S(x , u|s)1
{
y = f (x , s)

}
W (z |x , s).

Moreover, the capacity region is unchanged if the state sequence is
revealed to the deterministic receiver.



If the State Is Null

Ry < H(Y��SS|S)

Rz < I (U;Z )−����:
0

I (U; S)

Ry + Rz < H(Y��SS|S) + I (U;Z )−���
���:

I (U;Y )
I (U;S ,Y )

PXYZ�ASU
(x , y , z , �As, u) =��

�HHHPS(s)PXU�S|S
(x , u|�As)1

{
y = f (x , �As)

}
W (z |x , �As).

That is,

Ry < H(Y )

Rz < I (U;Z )

Ry + Rz < H(Y ) + I (U;Z )− I (U;Y )

PXYZU(x , y , z , u) = PXU(x , u)1
{
y = f (x)

}
W (z |x).



If the Deterministic Receiver Is Null

��Ry ��<���
�H(Y |S)

Rz < I (U;Z )− I (U; S)

��
�Ry+Rz <���

��:0
H(Y |S) + I (U;Z )−���

���:
I (U; S)

I (U; S ,Y )

PX�YZSU(x ,�y , z , s, u) = PS(s)PXU|S(x , u|s)((((
((((1

{
y = f (x , s)

}
W (z |x , s).

Third and second constraints are identical and

Rz < I (U;Z )− I (U;S)

PXZSU(x , z , s, u) = PS(s)PXU|S(x , u|s)W (z |x , s).
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• On the degraded BC, see
Y. Steinberg, “Coding for the degraded broadcast channel with random parameters, with causal and

noncausal side information,” IEEE Trans. Inform. Theory, vol. 51, no. 8, pp. 2867–2877, Aug. 2005.

• Reza Khosravi and Farokh Marvasti solved the following
special cases of our setting:

• The deterministic case.
• The case where S is also known to the nondeterministc

receiver Z .
• The degraded case, from the deterministic to the noisy:

W (z |x , s) = W̃ (z |y).

“Capacity Bounds for Multiuser Channels with Non-Causal Channel State Information at the

Transmitters,” arXiv:1102.3410v2 (Feb. and May 2011).



Previous Work

• On the degraded BC, see
Y. Steinberg, “Coding for the degraded broadcast channel with random parameters, with causal and

noncausal side information,” IEEE Trans. Inform. Theory, vol. 51, no. 8, pp. 2867–2877, Aug. 2005.

• Reza Khosravi and Farokh Marvasti solved the following
special cases of our setting:

• The deterministic case.
• The case where S is also known to the nondeterministc

receiver Z .
• The degraded case, from the deterministic to the noisy:

W (z |x , s) = W̃ (z |y).

“Capacity Bounds for Multiuser Channels with Non-Causal Channel State Information at the

Transmitters,” arXiv:1102.3410v2 (Feb. and May 2011).



The Achievability—the Proof for Yossi and Shlomo

Substitute in the Steinberg-Shamai inner bound

U0 = 0, U1 = Y , U2 = U.

R1 ≤ I (��U0,��>
Y

U1;Y )− I (��U0,��>
Y

U1; S)

R2 ≤ I (��U0,U2;Z )− I (��U0,U2; S)

R1 + R2 ≤ −

���
���

���
���

���
���

�:0[
max{I (U0;Y ), I (U0;Z )} − I (U0;S)

]+
+ I (��U0,��>

Y
U1;Y )− I (��U0,��>

Y
U1;S)

+ I (��U0,U2;Z )− I (��U0,U2;S)− I (��>
Y

U1;U2|��U0,S),



R1 ≤
��

���
���:

H(Y |S)

H(Y )− I (Y ; S)

R2 ≤ I (U2;Z )− I (U2;S)

R1 + R2 ≤
���

���
��:

H(Y |S)

H(Y )− I (Y ; S) + I (U2;Z )

��
���

���
���

�:−I (U2; S ,Y )

−I (U2;S)− I (Y ;U2|S).

The condition

(��U0,��>
Y

U1,U2)(−−(X , S)(−−(Y ,Z )

becomes
(Y ,U2)(−−(X ,S)(−−(Y ,Z ),

which, because Y is a deterministic function of (X ,S), holds
whenever

U2(−−(X ,S)(−−Z .



Achievability for Mortals
Fix some PXYZSU of the form

PXYZSU(x , y , z , s, u) = PS(s)PXU|S(x , u|s)1
{
y = f (x , s)

}
W (z |x , s).

Sum over z to obtain PSUYX and write it as

PSUY (s, u, y)PX |S ,U,Y (x |s, u, y).

For fixed PSUY , only the terms in red depend on PX |S,U,Y :

Ry < H(Y |S)

Rz < I (U;Z )− I (U;S)

Ry + Rz < H(Y |S) + I (U;Z )− I (U;S ,Y )

so, by convexity, we can assume that PX |S,U,Y is zero-one-valued:

g : (y , u, s) 7→ x .
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The Reduction

Henceforth we only consider joint PMFs satisfying

PXYZSU(x , y , z , s, u) = PS(s)PYU|S(y , u|s)1
{
x = g(y , u, s)

}
W (z |x , s)

and
Y = f (S ,X ).



Codebook and Encoder
Generate 2nRy y -bins, each containing 2nR̃y y -tuples IID ∼ PY

y(my , ly ), my ∈ {1, . . . , 2nRy }, ly ∈ {1, . . . , 2nR̃y }.

Independently of that, generate 2nRz u-bins, each containing 2nR̃z

u-tuples IID ∼ PU

u(mz , lz), mz ∈ {1, . . . , 2nRz}, lz ∈ {1, . . . , 2nR̃z}.

To send (my ,mz) look for a y -tuple y(my , ly ) in y -bin my and a
u-tuple u(mz , lz) in u-bin mz such that(

y(my , ly ),u(mz , lz), s
)

are jointly typical PYUS .

If such a pair can be found, send (componentwise)

x = g
(
y(my , ly ),u(mz , lz), s

)
.
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Analysis: The Deterministic Decoder Errs:

• The deterministic receiver observes y(my , ly ).

• It errs only if

y(my , ly ) = y(m′y , l
′
y ), for m′y 6= my .

• This probability of error tends to zero whenever

Ry + R̃y < H(Y ).



Analysis: The Nondeterministic Decoder Errs:

• The nondeterministic decoder searches for a unique pair
(mz , lz) such that u(mz , lz) & z are jointly typical.

• The probability of error tends to zero if

Rz + R̃z < I (U;Z ).



Analysis: An Encoding Error
• Encoding error: We cannot find a pair (ly , lz) such that(

y(my , ly ),u(mz , lz), s
)

are jointly typical PYUS .

• For the probability of this event to tend to zero it suffices
that:

• For every fixed j.t. (u, s), the expected number of y’s in
y -Bin(my ) that are j.t. with (u, s) be exponentially large.

• For every fixed j.t. (y, s), the expected number of u’s in
u-Bin(mz) that are j.t. with (y, s) be exponentially large.

• For every fixed typical s, the expected number of (ly , lz) pairs
such that

(
y(my , ly ),u(mz , lz), s

)
are joinly typical be

exponentially large.

• Hence, it suffices that

R̃y > I (Y ;S)

R̃z > I (U;S)

R̃y + R̃z > H(Y ) + H(U) + H(S)− H(Y ,U,S).
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• For every fixed j.t. (y, s), the expected number of u’s in
u-Bin(mz) that are j.t. with (y, s) be exponentially large.

• For every fixed typical s, the expected number of (ly , lz) pairs
such that

(
y(my , ly ),u(mz , lz), s

)
are joinly typical be

exponentially large.

• Hence, it suffices that

R̃y > I (Y ; S)

R̃z > I (U;S)

R̃y + R̃z > H(Y ) + H(U) + H(S)− H(Y ,U,S).



Concluding the Achievability Proof

The constraints

Ry + R̃y < H(Y ) (a)

Rz + R̃z < I (U;Z ) (b)

R̃y > I (Y ;S) (c)

R̃z > I (U; S) (d)

R̃y + R̃z > H(Y ) + H(U) + H(S)− H(Y ,U, S). (e)

allow the achievability of

Ry < H(Y |S) from (a) and (c)

Rz < I (U;Z )− I (U; S) from (b) and (d)

Ry + Rz < H(Y |S) + I (U;Z )− I (U;S ,Y ) from (a)+(b) and (e)

(Constraint (e) pinches more than (c) + (d).)
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Rz < I (U;Z )− I (U; S) from (b) and (d)
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(Constraint (e) pinches more than (c) + (d).)



The Converse I

Upper-bounding Ry is straightforward:

nRy = H(My )

≤ I (My ;Y n, Sn) + nεn

= I (My ;Y n|Sn) + nεn

=
n∑

i=1

I (My ;Yi |Y i−1,Sn) + nεn

≤
n∑

i=1

H(Yi |Y i−1, Sn) + nεn

≤
n∑

i=1

H(Yi |Si ) + nεn,

where εn decays to zero as n tends to infinity.



The Converse II

Upper-bounding Rz à-la-Gelf’and-Pinsker (first approach):

nR2 ≤ I (Mz ;Zn) + nεn

=
∑
i

I (Mz ;Zi |Z i−1) + nεn

=
∑
i

I
(
Mz ,S

n
i+1;Zi

∣∣Z i−1)−∑
i

I
(
Sn
i+1;Zi

∣∣Mz ,Z
i−1)+ nεn

=
∑
i

I
(
Mz ,S

n
i+1;Zi

∣∣Z i−1)−∑
i

I
(
Z i−1; Si

∣∣Mz ,S
n
i+1

)
+ nεn

=
∑
i

I
(
Mz ,S

n
i+1;Zi

∣∣Z i−1)−∑
i

I
(
Mz ,Z

i−1,Sn
i+1; Si

)
+ nεn

≤
∑
i

I
(
Mz ,Z

i−1,Sn
i+1;Zi

)
−
∑
i

I
(
Mz ,Z

i−1, Sn
i+1;Si

)
+ nεn

=
∑
i

I (Vi ;Zi )− I (Vi ; Si ) + nεn.



The Converse III

Upper-bounding the sum-rate:

n(Ry + Rz) = H(My ,Mz)

= H(Mz) + H(My |Mz)

≤ I (Mz ;Zn) + I (My ;Y n,Sn|Mz) + nεn.



The Converse IV

Another bound on I (M2;Zn):

I (Mz ;Zn)

=
∑
i

I (Mz ;Zi |Z i−1)

≤
∑
i

I (Mz ,Z
i−1;Zi )

=
∑
i

I
(
Mz ,Z

i−1, Sn
i+1,Y

n
i+1;Zi

)
−
∑
i

I
(
Sn
i+1,Y

n
i+1;Zi

∣∣Mz ,Z
i−1)

=
∑
i

I
(
Mz ,Z

i−1,Sn
i+1,Y

n
i+1;Zi

)
−
∑
i

I
(
Z i−1; Si ,Yi

∣∣Mz ,S
n
i+1,Y

n
i+1

)
=
∑
i

I
(
Mz ,Z

i−1,Sn
i+1,Y

n
i+1;Zi

)
−
∑
i

I
(
Mz ,Z

i−1,Sn
i+1,Y

n
i+1;Si ,Yi

)
+
∑
i

I
(
Mz ,S

n
i+1,Y

n
i+1;Si ,Yi

)
.



The Converse V

The last term and I (My ;Y n, Sn|Mz) add to

n∑
i=1

I
(
Mz ,S

n
i+1,Y

n
i+1;Si ,Yi

)
+ I (My ;Y n, Sn|Mz) =

n∑
i=1

H(Yi |Si ).

(After lots of identities).



The Converse VI

n(Ry + Rz)

≤
∑
i

I
(
Mz ,Z

i−1, Sn
i+1,Y

n
i+1;Zi

)
−
∑
i

I
(
Mz ,Z

i−1,Sn
i+1,Y

n
i+1;Si ,Yi

)
+

n∑
i=1

H(Yi |Si ) + nεn

=
n∑

i=1

I (Vi ,Ti ;Zi )−
n∑

i=1

I (Vi ,Ti ;Si ,Yi ) +
n∑

i=1

H(Yi |Si ) + nεn.



The Converse VII

We have:

Ry < H(Y |S)

Rz < I (V ;Z )− I (V ; S)

Ry + Rz < H(Y |S) + I (V ,T ;Z )− I (V ,T ; S ,Y ).

(V ,T )(−−(X , S)(−−(Y ,Z ).

We want:

Ry < H(Y |S)

Rz < I (U;Z )− I (U;S)

Ry + Rz < H(Y |S) + I (U;Z )− I (U;S ,Y )

U(−−(X ,S)(−−(Y ,Z ).
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We want:

Ry < H(Y |S)
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The Converse IIX
We are looking for an auxiliary r.v. U such that

U(−−(X , S)(−−(Y ,Z ).

for which

I (V ;Z )− I (V ;S) ≤ I (U;Z )− I (U;S)

and

���
�H(Y |S) + I (V ,T ;Z )− I (V ,T ;S ,Y ) ≤ ����H(Y |S) + I (U;Z )− I (U;S ,Y ).

Choosing U as V will work if

I (T ;Z |V )− I (T ;S ,Y |V ) ≤ 0.

Choosing U as (V ,T ) will work if

I (T ;Z |V )− I (T ;S |V ) ≥ 0.
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I (T ;Z |V )− I (T ;S |V ) ≥ 0.



The Converse IX

At least one of the conditions

I (T ;Z |V )− I (T ;S ,Y |V ) ≤ 0

and
I (T ;Z |V )− I (T ;S |V ) ≥ 0

must hold:

having the first be positive and the second negative
violates

I (T ;Z |V )− I (T ;S ,Y |V ) ≤ I (T ;Z |V )− I (T ;S |V ).

The latter holds because

���
��XXXXXI (T ;Z |V )−I (T ;S |V )−

(
���

��XXXXXI (T ;Z |V )−I (T ;S ,Y |V )
)

= I (T ;Y |S ,V )

and is thus nonnegative.
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Thank you.



Cardinality Bounds

#U ≤ (#S)(#X ) + 2.


