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Our Focus: Decentralized Broadcast Channel with Imperfect CSIT Sharing

sharing/caching of 
user’s data symbols

Imperfect CSI sharing

x2=w2(H(2))s

x3=w3(H(3))s
x1=w1(H(1))s
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Broadcast Channel (JP-CoMP, Network MIMO)

Some simplifying asumptions:
(i) K single-antenna TXs and K single-antennas RXs
(ii) Perfect CSI at the RX
(iii) Gaussian data symbols
(iv) Block fading channel

A key asumption: User’s data symbols are available at all TXs
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(i) K single-antenna TXs and K single-antennas RXs
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(iii) Gaussian data symbols
(iv) Block fading channel
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Received signal at user i

Received signal at user i︷︸︸︷
yi = hH

i x + ηi
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Broadcast Channel (JP-CoMP, Network MIMO)

Some simplifying asumptions:
(i) K single-antenna TXs and K single-antennas RXs
(ii) Perfect CSI at the RX
(iii) Gaussian data symbols
(iv) Block fading channel

A key asumption: User’s data symbols are available at all TXs

Received signal at user i

yi =

Channel from all TXs to user i (1× K)︷︸︸︷
hH
i x + ηi
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Broadcast Channel (JP-CoMP, Network MIMO)

Some simplifying asumptions:
(i) K single-antenna TXs and K single-antennas RXs
(ii) Perfect CSI at the RX
(iii) Gaussian data symbols
(iv) Block fading channel

A key asumption: User’s data symbols are available at all TXs

Received signal at user i

yi = hH
i

Multi-user multi-TX transmit signal (K × 1)︷︸︸︷
x +ηi

with {x}j sent from TX j
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Broadcast Channel (JP-CoMP, Network MIMO)

Some simplifying asumptions:
(i) K single-antenna TXs and K single-antennas RXs
(ii) Perfect CSI at the RX
(iii) Gaussian data symbols
(iv) Block fading channel

A key asumption: User’s data symbols are available at all TXs

Received signal at user i

yi = hH
i x +

Additive white Gaussian Noise NC(0, 1)︷︸︸︷
ηi
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Broadcast Channel (JP-CoMP, Network MIMO)

Some simplifying asumptions:
(i) K single-antenna TXs and K single-antennas RXs
(ii) Perfect CSI at the RX
(iii) Gaussian data symbols
(iv) Block fading channel

A key asumption: User’s data symbols are available at all TXs

Received signal at user i

yi = hH
i x +

Additive white Gaussian Noise NC(0, 1)︷︸︸︷
ηi

For a given transmit power P, let C(P) denote the sum capacity

Our figure of merit will be the Degrees-of-Freedom:

DoF , lim
P→∞

C(P)

log2(P)
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Is DoF Useful?

First order approximation in the SNR

R? = DoF log2(SNR) + o(log2(SNR))

SNR

Rate

DoF

+ Closed form results

+ New insights and new paradigms

+ First step towards capacity

DoF
Generalized 

DoF
Finite Gap 

Results
Capacity

- Inaccurate if strong pathloss differences

- Results not always relevant at finite SNR

Very successful to discover new approaches/insights (MIMO [Telatar, 1999, ETC], IA [Cadambe and

Jafar, 2008, TIT], delayed CSIT [Maddah-Ali and Tse, 2012, TIT],...)
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DoF and Pathloss – A short Parenthesis (1) –

Example

2-user IC, single-antenna nodes, α2 = 10−12, Hi,j ∼ NC(0, 1)

H11 H22

P P

α  H12
α  H21

RX 1 RX 2

TX 1
TX 2

DoF analysis: DoF = 1 [Etkin et al., 2008, TIT]

y Not the expected behaviour
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Generalized DoF – A short Parenthesis (2) –

With Generalized DoF, model the pathloss difference

E[|Hi,j |2]
.

= P−γi,j

Generalized DoF (GDoF) then defined as

DoF ({γi,j}i,j), lim
P→∞

C(P, {γi,j}i,j)
log2(P)

Example continued: For P = 20dB,

γ1,2 = γ2,1 = 6

and
DoF ({γi,j}i,j) = 2

y Expected behaviour!

Remark

GDoF not discussed here but extension for the 2 users case in [Bazco et al., 2017, ISIT]
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Centralized VS Distributed CSI

Centralized –TX Independent–: Conventional model

Cloud RAN
 =H+σN   

Distributed –TX Dependent–: Our focus here

H(2)=H+σ(2)
N

(2)
  

H(3)=H+σ(3)
N

(3)
  

H(1)=H+σ(1)
N

(1)
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Review of the Perfect CSIT Configuration

Outline

1 Review of the Perfect CSIT Configuration

2 Review of the Centralized CSIT Configuration

3 Towards the Distributed CSIT Configuration

4 Warming up: The 2-User Case

5 The K-user Case
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Review of the Perfect CSIT Configuration

DoF with Perfect CSIT

All TXs have perfect knowledge of H: Optimal DoF is DoFPCSI = K

DoF-optimal transmission scheme is Zero Forcing:

x =
√
P

H−1

‖H−1‖F

s1

...
sK


Received signal is

yi =

√
P

‖H−1‖F
si + ηi

SNR scales in P: asymptotically possible to decode si with the rate log2(P) bits

Remark

Importantly, x can also be chosen as x =
∑K

i=1

√
P
K

ti
‖ti‖

si where the

beamformer/precoder ti ∈ CK×1 is

ti = Π⊥h1,,hi−1,hi+1,...,hK hi
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Review of the Centralized CSIT Configuration

Outline

1 Review of the Perfect CSIT Configuration

2 Review of the Centralized CSIT Configuration

3 Towards the Distributed CSIT Configuration

4 Warming up: The 2-User Case

5 The K-user Case
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Review of the Centralized CSIT Configuration

Imperfect CSIT in the Centralized Case

Conventional high SNR parameterization

s1,s2,s3
iii P δhh

ˆ

α ∈ [0, 1] is called the CSIT quality exponent. Intuitively, equal to the ratio between
the ”available CSIT” over the ”needed CSIT”

α = 0 ≈ no CSIT
α = 1 ≈ perfect CSIT

Some practical motivation:
Quantization noise with VQ for B >> 1, with B = # quantization bits,

σ2 ≈ 2
− B

M−1

If B = α(M − 1) log2(P), α ∈ [0, 1]

σ2 ≈ P−α
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Review of the Centralized CSIT Configuration

DoF Analysis of the Centralized Configuration

DoFCCSI(α) = 1 + (K − 1)α

Outerbound recently proven in [Davoodi and Jafar, 2016, TIT]

Achievable scheme in [Jindal, 2006, TIT][Hao et al., 2015, TCOM]

α
0 1

DoF 

1

K

2
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Review of the Centralized CSIT Configuration

DoF-Optimal Scheme for the Centralized Case (1) [Jindal, 2006, TIT][Hao et al., 2015,

TCOM]

DoF-optimal scheme: Zero-Forcing (ZF) + Rate Splitting (RS)

RX 2

P-α

RX 1

P-α
Pα

P

TX 1 TX 2

y1 =
√
PhH

1

[
1
0

]
s0︸ ︷︷ ︸

Common symbol
.
= P

+
√
PαhH

1 tZF
1 s1︸ ︷︷ ︸

private symbol
.
= Pα

+
√
PαhH

1 tZF
2 s2︸ ︷︷ ︸

interference
.
= P0

with tZF
i =

Π⊥h
ī
hi

‖Π⊥h
ī
hi‖

and with

|hH
1 tZF

2 |2 = | ĥH
1 tZF

2︸ ︷︷ ︸
0

+
√
P−αδH1 tZF

2 |2

= P−α|δH1 tZF
2 |2
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Review of the Centralized CSIT Configuration

DoF-Optimal Scheme for the Centralized Case (2) [Jindal, 2006, TIT][Hao et al., 2015,

TCOM]

RX 2

P-α

RX 1

P-α
Pα

P

TX 1 TX 2

y1 =
√
PhH

1

[
1
0

]
s0︸ ︷︷ ︸

Common symbol
.
= P

+
√
PαhH

1 tZF
1 s1︸ ︷︷ ︸

private symbol
.
= Pα

+
√
PαhH

1 tZF
2 s2︸ ︷︷ ︸

interference
.
= P0

Successive Decoding
Decode first s0 with rate (1− α) log2(P) bits (SNR

.
= P1−α)

Decode then s1 with rate α log2(P) bits (SNR
.

= Pα)

Sum DoF is (1− α) + Kα
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Towards the Distributed CSIT Configuration

Outline

1 Review of the Perfect CSIT Configuration

2 Review of the Centralized CSIT Configuration

3 Towards the Distributed CSIT Configuration

4 Warming up: The 2-User Case

5 The K-user Case
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Towards the Distributed CSIT Configuration

Distributed CSIT Configuration

With imperfect CSIT sharing extends to

)1()1()1(ˆ δhh
 P

)2()2()2(ˆ δhh
 P

)3()3()3(ˆ δhh
 P

s1,s2,s3

s1,s2,s3

s1,s2,s3

CSIT configuration characterized by

1 ≥ α(1) ≥ α(2) ≥ . . . ≥ α(K) ≥ 0

Remark

Arbitrary CSIT configuration
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Towards the Distributed CSIT Configuration

An Intuitive Outerbound [de Kerret and Gesbert, 2016, ISIT]

Theorem (The Centralized Outerbound)

DoFDCSI(α) ≤ 1 + (K − 1) max
j∈{1,...,K}

α(j)

︸ ︷︷ ︸
=α(1)

DoF upperbounded by DoF achieved by full CSIT exchange

Having Ĥα
(1)

, . . . , ..., Ĥα
(K)

doesn’t help over having just best CSIT Ĥα
(1)

α(1) 
0 1

DoF 

1

K

Centralized outer-bound

2
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Towards the Distributed CSIT Configuration

Conventional Zero Forcing [de Kerret and Gesbert, 2012, TIT]

First idea: Use ZF (DoF-optimal for Centralized CSIT)

DoFZF = 1 + (K − 1) min
j∈{1,...,K}

α(j)

︸ ︷︷ ︸
=α(K)

y Very inefficient!
Why? Goal is to design T1 and T2 such that

hH
1

[
T1

T2

]
≈ 0, (Zero Forcing constraint at RX 1)

i.e., find a vector orthogonal to hH
1

T2

T1*

T2*

T2*+n

T1
h1

H
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Towards the Distributed CSIT Configuration

Problem Statement

α(1) 
0 1

DoF 

1

K

Centralized outer-bound

2

ZF

Optimal DoF?
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Warming up: The 2-User Case

Outline

1 Review of the Perfect CSIT Configuration

2 Review of the Centralized CSIT Configuration

3 Towards the Distributed CSIT Configuration

4 Warming up: The 2-User Case

5 The K-user Case
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Warming up: The 2-User Case

Active-Passive Zero-Forcing (AP-ZF) [de Kerret and Gesbert, 2012, TIT]

Main Idea: Less informed TX generates interference, more informed TX removes it

{(h(1)
1 )H}1T1 + {(h(1)

1 )H}2T2 = 0→ T1 = −{(h
(1)
1 )H}2

{(h(1)
1 )H}1

T2

T2

T1*

T2*

T2
APZF=c

T1
T1

APZF

Achieves the DoF
DoFAPZF = 1 + α(1)
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Warming up: The 2-User Case

Active-Passive Zero-Forcing (AP-ZF)

Achieves the DoF
DoFAPZF = 1 + α(1)

α(1) 
0 1

DoF 

1
Centralized outer-bound

2

AP-ZF

Remark

In fact achieves also Generalized DoF [Bazco et al., 2017]
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The K-user Case

Outline

1 Review of the Perfect CSIT Configuration

2 Review of the Centralized CSIT Configuration

3 Towards the Distributed CSIT Configuration

4 Warming up: The 2-User Case

5 The K-user Case

23/33



The K-user Case

Generalization of AP-ZF?

Problem: AP-ZF doesn’t help much with more users

DoFAPZF = 1 + (K − 1)α(K−1)

y Need for a different approach

Main Idea

Exploit interference as side information: Interference useful for both the interfered user
and the desired user
yAnalogy to the use of delayed CSIT [Maddah-Ali and Tse, 2012, TIT]
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The K-user Case

A Multi-layer Transmission Scheme [de Kerret and Gesbert, 2016, ISIT]

1 All TXs serve all users with power Pα
(1)

using Active-Passive ZF

x =
√

Pα(1)

K∑
i=1

TAPZF
i si

yGenerate interferences of power Pα
(1)

RX 1 RX 2 RX 3

TX 3TX 2

Pα(1) 

AP-ZF 
Interferences

TX 1
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The K-user Case

A Multi-layer Transmission Scheme [de Kerret and Gesbert, 2016, ISIT]

2 TX 1 estimates and quantizes the interference terms before their generations

x =
√

Pα(1)

K∑
i=1

TAPZF
i si

RX 1 RX 2 RX 3

TX 3TX 2

Pα(1) 

AP-ZF 
Interferences

Estimate & 
quantize at 

TX 1

TX 1
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The K-user Case

A Multi-layer Transmission Scheme [de Kerret and Gesbert, 2016, ISIT]

3 TX 1 then transmits them via a common data symbol at the same time as the
private data symbols

x =
√
P

[
1

0K−1

]
s0 +

√
Pα(1)

K∑
i=1

TAPZF
i si

RX 1 RX 2 RX 3

Common signal

TX 3TX 2

Pα(1) 

P

Broadcast

AP-ZF 
Interferences

Estimate & 
quantize at 

TX 1

TX 1

Multicast using 
superposition coding
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The K-user Case

Signal Processing at TX 1

1 Interference estimation at TX 1:√
Pα(1) (ĥ(1)

1 )HTAPZF
2 s2 =

√
Pα(1) (ĥ(1)

1 +
√

P−α(1)δ
(1)
1 )HTAPZF

2 s2

=
√

Pα(1)hH
1 TAPZF

2 s2 +
√

P−α(1) (δ
(1)
1 )HTAPZF

2 s2︸ ︷︷ ︸
O(1)

yTX 1 can compute DoF-perfect estimate of the interference terms!

2 Interference quantization: Use α(1) log2(P) bits to quantize the signal scaling in Pα
(1)

yQuantization error scaling in P0
[Cover and Thomas, 2006]

3 Transmit 3α(1) log2(P) bits to all users
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The K-user Case

Signal Processing at RX 1 (w.l.o.g.)

User 1 has received

y1 =
√
PhH

1

[
1

0K−1

]
s0︸ ︷︷ ︸

.
=P

+
√

Pα(1)hH
1 TAPZF

1 s1︸ ︷︷ ︸
.
=Pα

(1)

+
√

Pα(1)hH
1 TAPZF

2 s2︸ ︷︷ ︸
.
=Pα

(1)

+
√

Pα(1)hH
1 TAPZF

3 s3︸ ︷︷ ︸
.
=P0

User 1 decodes s0 and obtains then√
Pα(1) (ĥ(1)

1 )HTAPZF
2 s2, Useful: Remove interference√

Pα(1) (ĥ(1)
2 )HTAPZF

3 s3, Useless (for RX 1)√
Pα(1) (ĥ(1)

3 )HTAPZF
1 s1, Useful: Desired data

Achieved DoF: If 3α(1) ≤ 1− α(1), achieves DoF

DoF = 6α(1)︸ ︷︷ ︸
2α(1) per user

+ (1− α(1))− 3α(1)︸ ︷︷ ︸
multicast DoF after retransmitting interference
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The K-user Case

Weak CSIT Regime

Theorem

If maxj∈{1,...,K} α
(j) ≤ 1

1+K(K−2)
(weak CSIT regime),

DoFDCSI(α) ≥ 1 + (K − 1) max
j∈{1,...,K}

α(j)

D
o

F

α1

Weak CSIT 
Regime 
[ISIT’16]

3

2

1

10.50.25 0.75

Conventional ZF
Active-Passive ZF [ISIT’16]
Centralized outerbound [ISIT’16]

Figure: DoF as a function of α(1) for α(2) = 2
3
α(1) and α(3) = 0
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The K-user Case

Take Home Message

DoF analysis allows to develop new schemes/insights with simple linear algebra
Role of each TX adapts to the full multi-TX CSIT configuration
Multi-layer transmission scheme: Estimate, Qantize & transmit interference at the
most informed user
Many extensions:

Developed a new Hierarchical Zero-Forcing to extend optimality region
Extend further?
Improving the centralized-outerbound
Going beyond the DoF

D
o

F

α1

Weak CSIT 
Regime 
[ISIT’16]

3

2

1

10.50.25 0.75

Conventional ZF
Active-Passive ZF [ISIT’16]
Centralized outerbound [ISIT’16]
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The K-user Case
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The K-user Case

Conventional precoding

05 décembre 2013.gwb - 1/4 - 13 déc. 2013 13:49:58
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The K-user Case

Extension of the Weak CSIT Regime for K = 3 [de Kerret et al., 2016a, Asilomar]

Improved scheme building on a new Hierarchical ZF precoding paradigm

D
o

F

α1

Weak CSIT 
Regime 
[ISIT’16]

Extension of 
Weak CSIT 

Regime 
[Asilomar’16]

3

2

1

10.50.25 0.75

Conventional ZF
Multi-layer scheme [ISIT’16]
Multi-layer with HZF [Asilomar’16] 
Centralized outerbound [ISIT’16]

Figure: DoF as a function of α(1) for α(2) = 2
3
α(1) and α(3) = 0
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The K-user Case

Beyond the Weak CSIT Regime

Definition (Weak CSIT regime)

α(1) ≤ 1

4
+

3

4
α(2)

Definition (Heterogeneous CSIT regime)

α(1) > min

(
2α(2),

1

4
+

3

4
α(2)

)

Definition (Intermediate CSIT regime)

1

4
+

3

4
α(2) < α(1) ≤ 2α(2)

10.50.25 0.75

α (2)

0.25

0.5

0.75

1

α (1) 

Extension of weak 
CSIT regime

Intermediate CSIT regime

Heterogeneous CSIT 
regime

weak  CSIT regime [ISIT16]
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The K-user Case

Achievable DoF [de Kerret et al., 2016a, Asilomar]

Theorem

In the 3-user MIMO BC with D-CSIT, it holds that

DoFDCSI(α) ≥


1 + 2α(1) (Weak CSIT)
3
2
(1 + α(2)) (Intermediate CSIT)

1+α(1) +
3α(1)(1−α(1))+α(2)(5α(1)−3α(2)−1)

9α(1)−8α(2) (Heterogeneous CSIT)

Can be achieved building on new precoding scheme: Hierarchical zero-forcing
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The K-user Case

Hierarchical ZF with K = 3: Main Property

Lemma

Let tHZF
3 be the HZF beamformer towards user 3 with

average power P. Then:

|hH
1 tHZF

3 |2 ≤̇ P1−α(1)

|hH
2 tHZF

3 |2 ≤̇ P1−α(2)

RX 3RX 2RX 1

TX 2 TX 3TX 1

P1-α(2)

P1- α(1)

compared with conventional ZF

RX 3RX 2RX 1

TX 2 TX 3TX 1

P1-α(2)P1-α(2)
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The K-user Case

Roadmap of Hierarchical ZF

1 Make CSIT hierarchical

2 Split precoding in layers

3 Design layer k to reduce interference at user k without reducing interference
reduction already realized
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The K-user Case

(1) Make CSIT Hierarchical

Example

Example for two transmitters TX1, TX2 with α(1) ≥ α(2)

Let Qα(2) be our Hierarchical quantizer using α(2) log2(P) bits

Let us define

ˆ̂H(1)

α(2) , Qα(2)

(
Ĥ(1)

)
ˆ̂H(2)

α(2) , Qα(2)

(
Ĥ(2)

)
Then, there exists a quantizer Qα(2) such that [de Kerret et al., 2016b, ITW] :

lim
P→∞

Pr
{

ˆ̂H(1)

α(2) = ˆ̂H(2)

α(2)

}
= 1

E
[
‖ ˆ̂H(j)

α(2) −H‖2
F

]
≤̇ P−α

(2)

, j = 1, 2

y TX 1 can obtain ˆ̂H(2)

α(2) : CSIT configuration has been made hierarchical

y More generally, TX i knows what TX i + 1 knows (post quantizing)
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The K-user Case

(1) Make CSIT Hierarchical

Ĥ(1) H 

Ĥ(2) 

   (2) 

Qα(1) Qα(2) Qα(3) 
 (1) 

   (1)    (2)    (3) 

   (1)    (2) 
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The K-user Case

(2) Split Precoding in Layers

tHZF
3 aimed at user 3 decomposed as

tHZF
3 =

tHZF
3 (1)

0
0

+

{tHZF
3 (2)}1

{tHZF
3 (2)}2

0

+

{tHZF
3 (3)}1

{tHZF
3 (3)}2

{tHZF
3 (3)}3


e.g., TX 2 needs to be able to compute the 2th row:

tHZF
3 =

tHZF
3 (1)

0
0

+

{tHZF
3 (2)}1

{tHZF
3 (2)}2

0

+

{tHZF
3 (3)}1

{tHZF
3 (3)}2

{tHZF
3 (3)}3
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The K-user Case

(3) Hierarchical ZF for K = 3

First “layer” (at TX 1, TX 2 and TX 3)

tHZF
3 (3) = λHZF ˆ̂H(3)H

(
ˆ̂H(3)( ˆ̂H(3))H +

1

P
I3

)−1

e3

Second “layer” (at TX 1 and TX 2)

tHZF
3 (2)=− ˆ̂H(2)H

[1:2,1:2]
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The K-user Case

Transmission Scheme

RX1

BC s1 s2 s3

Pα(1)

P

HZF data 
symbols

Pα(1)-α(2)

Common data 
symbols

BC s1 s2 s3

RX3

BC s1 s2 s3

RX2

TextTextInterferences

y Less interference bits to convey in second layer

y More information bits can be squeezed in first layer
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