Paranoid Secondary: Power Control for a Bursty Cognitive Interference Channel
Debashis Dash, Advisor: Ashutosh Sabharwal
Web: http://www.ece.rice.edu/~dd4932 Email: ddash@rice.edu

MOTIVATION

- Underutilized spectrum
- Rate margin due to burstiness of data
- Interference margin due to channel
- Compatibility with legacy systems

Aim: To maximize the secondary rate while satisfying the interference and average power constraints.

Channel Model:

- $\mathcal{N}(0,1)$

- Tx 1 (Fixed Primary)
- Rx 1

- Tx 2 (Cognitive)
- Rx 2

BLOCK SWITCHING MODEL

- B_1
- B_2
- B_3

- t

Primary Model:

- Fixed decoder and interference margin
- Bursty traffic – one state switch per block

$$R_1 = C \left(\frac{\text{SNR}_1}{1 + \text{INR}_{\text{gap}}} \right)$$

Effective secondary channel:

$$Y_2^{(t)} = X_2^{(t)} + Z_2^{(t)}$$

$$Z_2^{(t)} = \begin{cases}
\mathcal{N}(0,1) & \text{if } s_2 = 0 \\
\mathcal{N}(0,1 + \sqrt{\text{INR}_2}) & \text{if } s_2 = 1
\end{cases}$$

Scheme: SENSE and SEND

Sense at the beginning of each block and then send

No-sensing scheme:

- Treat primary as noise ($x_1.S$)
- Decode off primary and eliminate interference ($x_1.0$)
- Do both (mixture codeword)

Genie-aided sensing scheme:

- When primary is off send (x_0)
- When primary is on use a mixture codeword ($x_1.S$)

Tightness of Bounds

Less burstiness implies less to make use of a genie-aided scheme.

CONCLUSION

- Performance of no-sensing, genie-aided sensing and perfect sensing
- Multiplexed codewords achieve capacity
- Mixture codewords (N+SIC)
- When channel utilization is small, there is no gain in sensing
- For lower channel utilization all the schemes are equally good